ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2022. Випуск 63. 16–28 Visnyk of the Lviv University. Series Chemistry. 2022. Issue 63. P. 16–28

УДК 546.3-866.711.682

## СИСТЕМА Но-Ni-In ПРИ 870 К

## В. Заремба<sup>\*</sup>, М. Дзевенко, Г. Ничипорук, Ю. Малецька, Я. Каличак

Львівський національний університет імені Івана Франка, вул. Кирила і Мефодія, 6, 79005 Львів, Україна e-mail: vasyl.zaremba@lnu.edu.ua

Досліджено взаємодію компонентів і побудовано ізотермічний переріз діаграми стану системи Ho–Ni–In у повному концентраційному інтервалі при 870 К. За температури відпалу в системі існує 12 тернарних сполук. Тернарна сполука HoNi<sub>1,00-0,50</sub>In<sub>1,00-1,50</sub> має область гомогенності вздовж ізоконцентрати 0,333 ат. частки гольмію, а між сполуками HoNi<sub>2</sub> та HoNi<sub>4</sub>In утворюється неперервний ряд твердих розчинів. На основі сполуки NiIn формується твердий розчин включення-віднімання складу Ho<sub>0-0,08</sub>NiIn<sub>1-0.94</sub>.

*Ключові слова*: гольмій, індій, нікель, тернарна сполука, потрійна система, ізотермічний переріз.

DOI: https://doi.org/10.30970/vch.6301.016

#### 1. Вступ

Трикомпонентні системи P3M–d-метал–In досліджують упродовж багатьох років. У них існує декілька сотень сполук [1, 2], частина з яких із унікальними фізичними властивостями. Зокрема, сполука  $Ce_2CoIn_8 \in$  представником важкоферміонних систем, а  $CeCoIn_5 -$  характеризується поєднанням антиферомагнітного впорядкування і надпровідного стану [3, 4]. Тернарні сполуки зі структурою типу ZrNiAl володіють магнетокалоричним ефектом [5] чи змінюють упорядкування з феромагнітного на антиферомагнітне [6].

Ізотермічні перерізи діаграм стану побудовано для систем R-Cu-In (R = Y, La, Ce-Sm, Gd-Tm, Lu) [7], Ce-Co-In [8], Er-Co-In [9], Pr-Co-In (частково) [10], {Y, Tb, Dy}-Fe-In [11, 12], R-Ni-In (R = Ce, Gd, Tb, Dy, Er, Tm, Y) [13–19].

Для подвійних систем, які обмежують досліджувану потрійну (Ho–Ni, Ni–In i Ho–In), побудовано діаграми стану та визначено кристалічні структури сполук [20–22]. Мета нашої статті – побудова ізотермічного перерізу діаграми стану системи Ho–Ni–In при 870 К.

#### 2. Матеріали та методика експерименту

Для дослідження системи Ho–Ni–In виготовлено 70 подвійних та потрійних сплавів. Зразки масою до 1 г синтезували електродуговим плавленням шихти з компактних металів (гольмій з вмістом 0,998 мас. частки Но; нікель – 0,9992 мас. частки Ni; індій – 0,9999 мас. частки In) у відповідних масових співвідношеннях в атмосфері очищеного аргону (гетер – губчастий титан). Для забезпечення гомогенізації сплави переплавляли двічі. Втрати під час плавлення не перевищували 1 мас. % для кожного сплаву, тому склад сплавів приймали таким, що дорівнює складу шихти.

<sup>©</sup> Заремба В., Дзевенко М., Ничипорук Г. та ін., 2022

Одержані зразки відпалювали у вакуумованих кварцових ампулах при 870 К упродовж місяця з наступним загартовуванням у холодну воду без попереднього розбивання ампул. Сплави, як литі, так і відпалені, стійкі до дії навколишнього середовища протягом тривалого часу.

Фазовий аналіз виконували за дифрактограмами, отриманими на порошковому дифрактометрі (ДРОН-2.0, Fe  $K\alpha$ -випромінювання) шляхом порівняння порошкограм досліджуваних сплавів з порошкограмами відомих бінарних та тернарних сполук і чистих компонентів. Теоретичні інтенсивності рефлексів обчислено за допомогою програм Powder Cell [23] і STOE WinXPOW [24]. Для детальнішого вивчення кристалічної структури використовували масиви експериментальних даних, отриманих на дифрактометрі STOE STADI P (Си  $K\alpha_1$ -випромінювання). Для розрахунків порошкових дифрактограм використовували програму FullProf [25]. Окремі сплави досліджували на скануючому електронному мікроскопі Tescan Vega 3 LMU.

# 3. Результати досліджень та їх обговорення

За результатами рентгенівського фазового та, частково, локального рентгеноспектрального аналізів побудовано ізотермічний переріз діаграми стану системи Ho–Ni–In у повному концентраційному інтервалі за температури 870 К (рис. 1). Підтверджено існування відомих [20–22] бінарних сполук: Ho<sub>2</sub>In (структурний тип (СТ) Ni<sub>2</sub>In), Ho<sub>5</sub>In<sub>3</sub> (СТ W<sub>5</sub>Si<sub>3</sub>), HoIn (СТ CsCl), Ho<sub>3</sub>In<sub>5</sub> (СТ Pu<sub>3</sub>Pd<sub>5</sub>), HoIn<sub>3</sub> (СТ AuCu<sub>3</sub>); Ho<sub>3</sub>Ni (СТ Fe<sub>3</sub>C), Ho<sub>3</sub>Ni<sub>2</sub> (СТ Er<sub>3</sub>Ni<sub>2</sub>), HoNi (СТ FeB), HoNi<sub>2</sub> (СТ MgCu<sub>2</sub>), HoNi<sub>3</sub> (СТ PuNi<sub>3</sub>), Ho<sub>2</sub>Ni<sub>7</sub> (СТ Gd<sub>2</sub>Co<sub>7</sub>), HoNi<sub>5</sub> (СТ CaCu<sub>5</sub>), Ho<sub>2</sub>Ni<sub>17</sub> (СТ Th<sub>2</sub>Ni<sub>17</sub>); Ni<sub>3</sub>In (СТ Mg<sub>3</sub>Cd), Ni<sub>2</sub>In (СТ Ni<sub>2</sub>In),  $\zeta$  (Ni<sub>x</sub>In<sub>1-x</sub>, CT NiAs), Ni<sub>13</sub>In<sub>9</sub> (СТ Ni<sub>13</sub>Ga<sub>9</sub>), NiIn (СТ CoSn), Ni<sub>2</sub>In<sub>3</sub> (СТ Ni<sub>2</sub>Al<sub>3</sub>).





За температури дослідження в системі Ho–Ni–In підтверджено існування вивчених раніше одинадцяти тернарних сполук [1, 2, 26–41], для сполуки зі структурою типу ZrNiAl визначено межі області гомогенності та виявлено існування нової сполуки приблизного складу ~Ho<sub>6</sub>NiIn<sub>2</sub>. Кристалографічні характеристики усіх сполук цієї системи наведено у табл. 1. Кристалічну структуру сполуки ~Ho<sub>6</sub>NiIn<sub>2</sub> за порошковими даними визначити не вдалось, як й отримати придатні для структурних досліджень монокристали.

Таблиця 1

Кристалографічні характеристики тернарних сполук системи Ho–Ni–In *Table 1* 

| er journe en autoren stel er ternar journe in die He He He He He |                                                   |                                                  |             |                      |         |         |       |  |
|------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------|-------------|----------------------|---------|---------|-------|--|
| Mo                                                               | Сполука                                           | СТ                                               | ПΓ          | Параметри комірки, Å |         |         | Пiт   |  |
| J₩⊇                                                              |                                                   |                                                  |             | а                    | b       | с       | J111. |  |
| 1                                                                | HoNi <sub>9</sub> In <sub>2</sub>                 | YNi9In2                                          | P4/mbm      | 8,211                | -       | 4,827   | 26    |  |
| 2                                                                | Ho <sub>4</sub> Ni <sub>11</sub> In <sub>20</sub> | U4Ni11Ga20                                       | C12/m1      | 22,4528              | 4,2947  | 16,5587 | 28    |  |
| 3                                                                | HoNi <sub>4</sub> In                              | MgCu <sub>4</sub> Sn                             | F-43m       | 7,0040               | _       | _       | 29    |  |
| 4                                                                | Ho10Ni9In20                                       | Ho10Ni9In20                                      | P4/nmm      | 13,286               | -       | 9,083   | 30    |  |
| 5                                                                | HoNi1,0-0,5In1,0-1,5                              | ZrNiAl                                           | P-62m       | 0,7442-              | -       | 0,3746– | 32    |  |
|                                                                  |                                                   |                                                  |             | -0,7661              |         | -0,3832 |       |  |
| 6                                                                | Ho <sub>2</sub> Ni <sub>2</sub> In                | $Mn_2AlB_2$                                      | Cmmm        | 3,899                | 14,139  | 3,658   | 34    |  |
| 7                                                                | Ho2Ni1,8In                                        | $Mo_2FeB_2$                                      | P4/mbm      | 7,345                | _       | 3,667   | 35    |  |
| 8                                                                | Ho5Ni2In4                                         | Lu <sub>5</sub> Ni <sub>2</sub> In <sub>4</sub>  | Pbam        | 17,722               | 7,866   | 3,558   | 37    |  |
| 9                                                                | Ho11Ni4In9                                        | Nd <sub>11</sub> Pd <sub>4</sub> In <sub>9</sub> | Cmmm        | 14,2898              | 21,4764 | 3,6023  | 39    |  |
| 10                                                               | Ho <sub>6</sub> Ni <sub>2</sub> In                | Ho <sub>6</sub> Co <sub>2</sub> Ga               | Immm        | 9,319                | 9,523   | 9,930   | 40    |  |
| 11                                                               | ~Ho <sub>6</sub> NiIn <sub>2</sub>                |                                                  |             |                      |         |         | *     |  |
| 12                                                               | Ho13,35Ni3,17In3,48                               | $Lu_{14}Co_3In_3$                                | $P4_2/nmc$  | 9,4835               | -       | 22,706  | 41    |  |
| 13                                                               | Ho <sub>3</sub> Ni <sub>2</sub> In <sub>4</sub>   | $Lu_3Co_2In_4$                                   | <i>P</i> -6 | 7,686                | _       | 3,724   | 42**  |  |

Crystallographic characteristics of ternary compounds in the Ho-Ni-In system

\* Результати цієї праці.

\*\* Сполуку за температури відпалу не виявлено.

Згідно з одержаними результатами у системі Ho–Ni–In формується неперервний ряд твердих розчинів між бінарною HoNi<sub>2</sub> та тернарною HoNi<sub>4</sub>In сполуками. Дифрактограми двох зразків з цієї області зображено на рис. 2, а результати розрахунків наведено в табл. 2. Параметри елементарної комірки у зразку Ho<sub>0,30</sub>Ni<sub>0,667</sub>In<sub>0,033</sub> є дещо меншими за відповідні параметри комірки бінарної сполуки HoNi<sub>2</sub> (CT MgCu<sub>2</sub>, ПГ *Fd-3m*, a = 7,1462 Å, [43]), а параметри комірки у зразку Ho<sub>0,24</sub>Ni<sub>0,667</sub>In<sub>0,093</sub> є, відповідно, більшими за параметри комірки тернарної сполуки HoNi<sub>4</sub>In (CT MgCu<sub>4</sub>Sn, ПГ *F-43m*, a = 7,004 Å, [29]). Ці дані підтверджують існування неперервної зустрічної розчинності між сполуками HoNi<sub>2</sub> та HoNi<sub>4</sub>In, в межах якої відбувається зменшення параметрів комірки під час переходу від бінарної сполуки до тернарної внаслідок заміщення більших за розміром атомів гольмію на менші атоми індію (рис. 3).



Рис. 2. Експериментальна (•), розрахована (–) та різницева (знизу) дифрактограми зразків:  $a - \text{Ho}_{0,24}\text{Ni}_{0,667}\text{In}_{0,093} (1 - \text{Ho}_{1,47}\text{Ni}_4\text{In}_{0,53}; 2 - \text{HoNi}_3);$  $\delta - \text{Ho}_{0,30}\text{Ni}_{0,667}\text{In}_{0,033} (1 - \text{Ho}_{1,88}\text{Ni}_4\text{In}_{0,12}; 2 - \text{Ho}_2\text{Ni}_2\text{In})$ 

Fig. 2. Experimental (•), calculated (-) and difference (bottom) X-ray patterns of the alloys:

 $a - \text{Ho}_{0.24}\text{Ni}_{0.667}\text{In}_{0.093} (1 - \text{Ho}_{1.47}\text{Ni}_4\text{In}_{0.53}; 2 - \text{Ho}\text{Ni}_3);$ 

 $b-{\rm Ho}_{0.30}{\rm Ni}_{0.667}{\rm In}_{0.033}\;(1-{\rm Ho}_{1.88}{\rm Ni}_{4}{\rm In}_{0.12};2-{\rm Ho}_{2}{\rm Ni}_{2}{\rm In})$ 

Таблиця 2

# Деталі експерименту та результати уточнення структури фаз в області неперервного ряду твердих розчинів HoNi2-HoNi4In

Table 2

Experimental details and results of structure refinements for phases in the region of continuous series of solid solutions HoNi2-HoNi4In

| Склад зразка                                                  | $Ho_{0,24}Ni_{0,667}In_{0,093}^{*}$                   | Ho <sub>0,30</sub> Ni <sub>0,667</sub> In <sub>0,033</sub> * |  |  |
|---------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------|--|--|
| Обчислений склад                                              | Ho <sub>1,47</sub> Ni <sub>4</sub> In <sub>0,53</sub> | Ho <sub>1,88</sub> Ni <sub>4</sub> In <sub>0,12</sub>        |  |  |
| Розрахована густина <i>D</i> <sub>x</sub> , г/см <sup>3</sup> | 9,86                                                  | 10,07                                                        |  |  |
| Структурний тип                                               | $MgCu_4Sn$                                            | $MgCu_4Sn$                                                   |  |  |
| Просторова група                                              | F-43m                                                 | F-43m                                                        |  |  |
| Дифрактометр                                                  | STOE STADI P                                          | STOE STADI P                                                 |  |  |
| Випромінювання                                                | 1,54060 (Cu <i>K</i> α <sub>1</sub> )                 | 1,54060 (Cu <i>K</i> α <sub>1</sub> )                        |  |  |
| Межі $2\theta$                                                | 6,00°–110,625°                                        | 6,00°-110,625°                                               |  |  |
| Крок, час знімання                                            | 0,015°, 250 c                                         | 0,015°, 250 c                                                |  |  |
| Параметри комірки, Å                                          | a = 7,07841(4)                                        | a = 7,11815(4)                                               |  |  |
| Об'єм, Å <sup>3</sup>                                         | 354,655(4)                                            | 360,664(4)                                                   |  |  |
| Корекція на абсорбцію, $\mu_{\text{Reff}}$                    | 1,7                                                   | 1,8                                                          |  |  |
| Параметри профілю U; V; W                                     | 0,029(6); 0,0023(4);                                  | 0,020(5); 0,004(1);                                          |  |  |
|                                                               | 0,009(1)                                              | 0,008(1)                                                     |  |  |
| $B_{i_{30}}, Å^2$ Ho (4 <i>a</i> ) 0 0 0                      | 0,89(8)                                               | 1,9(2)                                                       |  |  |
| Ni (16 <i>e</i> ) <i>x x x</i>                                | 0,3(1)                                                | 0,44(8);                                                     |  |  |
|                                                               | x = 0,626(1)                                          | x = 0,628(2)                                                 |  |  |
| Ho/In (4c) 1/4 1/4 1/4                                        | 0,89(8)                                               | 0,7(1)                                                       |  |  |
|                                                               | G = 0,47(2)/0,53(2)                                   | G = 0,88(2)/0,12(2)                                          |  |  |
| $R_{\rm p}; R_{\rm wp}, \%$                                   | 8,62; 11,5                                            | 6,85; 9,24                                                   |  |  |
| $R_{\mathrm{Bragg}}, R_{\mathrm{F}}, \%$                      | 2,43; 3,59                                            | 2,55; 2,87                                                   |  |  |

\* Додаткова фаза HoNi<sub>3</sub> (CT PuNi<sub>3</sub>; ПГ *R*-3*m*; *a* = 4,957(1), *c* = 24,291(8) Å;  $R_{\text{Bragg}} = 15,1\%$ ;  $R_{\text{F}} = 15,0\%$ ;  $\omega = 6(1)\%$ ). \*\* Додаткова фаза Ho<sub>2</sub>Ni<sub>2</sub>In (CT Mn<sub>2</sub>AlB<sub>2</sub>; ПГ *Cmmm*; *a* = 3,897(1), *b* = 14,104(4), *c* = 3,644(1) Å;  $R_{\text{Bragg}} = 22,4\%$ ;  $R_{\text{F}} = 16,7\%$ ;  $\omega = 3(1)\%$ ).



Рис. 3. Зміна параметрів елементарної комірки в межах твердого розчину HoNi2-HoNi4In Fig. 3. Variation of the unit cell parameters of the HoNi2-HoNi4In solid solution

Для детальнішого уточнення фазових рівноваг як вздовж ізоконцентрати нікелю 0,50 ат. часток, так і з дотриманням співвідношення нікелю до індію 1:1 з метою перевірки існування твердого розчину на основі бінарної сполуки NiIn [44], подібно до інших споріднених систем, виготовлено та досліджено ряд додаткових сплавів. Результати уточнення параметрів двох зразків (рис. 4) цього твердого розчину наведено в табл. 3. Структурні розрахунки проводили як за моделлю структури твердого розчину  $Er_{0-0,12}NiIn_{1-0,89}$  [17], яка також реалізується у системах з Tb–Ni–In [15] і Tm–Ni–In [18], так і за моделлю структури твердих розчинів  $Dy_{0-0,18}NiIn_{1-0,95}$  [16] та  $Gd_{0-0,14}NiIn_{1-0,98}$  [14]. Твердий розчин включення-віднімання на основі бінарної сполуки NiIn в системі Ho–Ni–In простягається до 0,08 ат. часток Ho, а його склад можна описати формулою  $Ho_{0-0,08}NiIn_{1-0,94}$ . У межах цього твердого розчину відбувається включення атомів гольмію та індію в позицію (2*e*) з одночасним виключенням невеликої кількості атомів індію з позиції (1*a*), внаслідок чого параметри комірки незначно збільшуються (рис. 5).



Рис. 4. Експериментальна (•), розрахована (–) та різницева (знизу) дифрактограми зразків:  $a - Ho_{0,04}Ni_{0,48}In_{0,48} (I - Ho_{0,04}NiIn_{0,97}; 2 - HoNi_4In);$   $\delta - Ho_{0,08}Ni_{0,46}In_{0,46} (I - Ho_{0,08}NiIn_{0,94}; 2 - HoNi_4In)$ Fig. 4. Experimental (•), calculated (–) and difference (bottom) X-ray patterns of the alloys:  $a - Ho_{0,04}Ni_{0,48}In_{0,48} (I - Ho_{0,04}NiIn_{0,97}; 2 - HoNi_4In);$  $b - Ho_{0,08}Ni_{0,46}In_{0,46} (I - Ho_{0,08}NiIn_{0,94}; 2 - HoNi_4In);$ 

Таблиця 3

Деталі експерименту та результати уточнення структури фаз твердого розчину на основі бінарної сполуки Niln

Table 3

| Experimenta | l details | s and resu | lts of a | structure | refineme | nts for | phases | based |  |
|-------------|-----------|------------|----------|-----------|----------|---------|--------|-------|--|
|             |           | of bir     | ary co   | ompound   | l NiIn   |         |        |       |  |

| Склад зразка                          |                                                 | Ho <sub>0,04</sub> Ni <sub>0,48</sub> In <sub>0,48</sub> * | Ho <sub>0,08</sub> Ni <sub>0,46</sub> In <sub>0,46</sub> ** |  |  |
|---------------------------------------|-------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------|--|--|
| Обчисле                               | ний склад                                       | Ho <sub>0,04</sub> NiIn <sub>0,97</sub>                    | Ho <sub>0,08</sub> NiIn <sub>0,94</sub>                     |  |  |
| Розрахон                              | зана густина D <sub>x</sub> , г/см <sup>3</sup> | 8,499                                                      | 8,795                                                       |  |  |
| СТ Стру                               | ктурний тип                                     | CoSn                                                       | CoSn                                                        |  |  |
| ПГ Прос                               | торова група                                    | P6/mmm                                                     | P6/mmm                                                      |  |  |
| Дифракт                               | тометр                                          | STOE STADI P                                               | STOE STADI P                                                |  |  |
| Випромі                               | нювання                                         | 1,54060 (Cu <i>K</i> α <sub>1</sub> )                      | 1,54060 (Cu <i>K</i> α <sub>1</sub> )                       |  |  |
| Межі 20                               |                                                 | 6,00°-110,625°                                             | 6,00°-110,625°                                              |  |  |
| Крок, ча                              | с знімання                                      | 0,015°, 250 c                                              | 0,015°, 250 c                                               |  |  |
| Парамет                               | ри комірки, Å                                   | a = 5,24478(3)                                             | a = 5,2746(1)                                               |  |  |
|                                       |                                                 | c = 4,35766(5)                                             | c = 4,3723(2)                                               |  |  |
| Об'єм, Å                              | 3                                               | 103,810(2)                                                 | 105,345(4)                                                  |  |  |
| Корекція                              | на абсорбцію, $\mu_{\text{Reff}}$               | 1,3                                                        | 1,9                                                         |  |  |
| Парамет                               | ри профілю U; V; W                              | 0,005(2); 0,026(3);                                        | 0,026(8); 0,056(9);                                         |  |  |
| Π                                     |                                                 | 0,0042(8)                                                  | 0,008(2)                                                    |  |  |
| Параметр текстури [001]               |                                                 |                                                            | 0,085(9)                                                    |  |  |
| $B_{i30}, A^2$                        | Ni (3f) 1/2 0 0                                 | 0,4(2)                                                     | 1,44(7)                                                     |  |  |
|                                       | In1 (2d) 1/3 2/3 1/2                            | 0,2(1)                                                     | 0,93(5)                                                     |  |  |
|                                       | In2 (1 <i>a</i> ) 0 0 0                         | 0,6(2)                                                     | 0,33(8)                                                     |  |  |
|                                       |                                                 | G = 0,46(2)                                                | G = 0,72(2)                                                 |  |  |
|                                       | In3 (2 <i>e</i> ) 0 0 <i>z</i>                  | 0,6(2)                                                     | 0,33(8)                                                     |  |  |
|                                       |                                                 | z = 0,87(4)                                                | z = 0,852(7)                                                |  |  |
|                                       |                                                 | G = 0,18(1)                                                | G = 0,10(2)                                                 |  |  |
|                                       | Ho (2 <i>e</i> ) 0 0 <i>z</i>                   | 0,6(2)                                                     | 0,33(8)                                                     |  |  |
|                                       |                                                 | z = 0,362(8)                                               | z = 0,388(4)                                                |  |  |
|                                       |                                                 | G = 0,18(2)                                                | G = 0,06(2)                                                 |  |  |
| $R_{\mathrm{p}}; R_{\mathrm{wp}}, \%$ |                                                 | 8,56; 11,4                                                 | 12,00; 15,7                                                 |  |  |
| $R_{ m Bragg}, R_{ m F}, \%$          |                                                 | 3,18; 3,43                                                 | 5,49; 6,14                                                  |  |  |

\* Додаткова фаза HoNi<sub>4</sub>In: (стр. тип MgCu<sub>4</sub>Sn; *F*-43*m*; *a* = 7,0278(2) Å;  $R_{\text{Bragg}} = 6,18\%; R_{\text{F}} = 6,88\%; \omega = 16(1)\%).$ \*\* Додаткова фаза HoNi<sub>4</sub>In: (стр. тип MgCu<sub>4</sub>Sn; *F*-43*m*; *a* = 7,0371(2) Å;  $R_{\text{Bragg}} = 4,60\%; R_{\text{F}} = 7,87\%; \omega = 19(1)\%).$ 



Puc. 5. Зміна параметрів елементарної комірки в межах твердого розчину Ho<sub>0-0.08</sub>NiIn<sub>1-0.94</sub> Fig. 5. Variation of the unit cell parameters of the Ho<sub>0-0.08</sub>NiIn<sub>1-0.94</sub> solid solution

На рис. 6 наведено фотографії поверхонь мікрошліфів (по одному зразку) із області існування твердих розчинів у системі Но–Ni–In.



Рис. 6. Фотографії поверхонь мікрошліфів зразків складів: *a* – Ho<sub>0,24</sub>Ni<sub>0,667</sub>In<sub>0,093</sub> (загальний склад – Ho<sub>0,23</sub>Ni<sub>0,68</sub>In<sub>0,09</sub>; сіра фаза – Ho<sub>0,23</sub>Ni<sub>0,68</sub>In<sub>0,09</sub>); *б* – Ho<sub>0,08</sub>Ni<sub>0,46</sub>In<sub>0,46</sub> (загальний склад – Ho<sub>0,08</sub>Ni<sub>0,47</sub>In<sub>0,45</sub>; сіра фаза – Ho<sub>0,07</sub>Ni<sub>0,49</sub>In<sub>0,44</sub>; світла фаза – Ho<sub>0,18</sub>Ni<sub>0,67</sub>In<sub>0,15</sub>) Fig. 6. Photography of microstructure of samples: *a* – Ho<sub>0,24</sub>Ni<sub>0,667</sub>In<sub>0,093</sub> (total composition – Ho<sub>0,23</sub>Ni<sub>0,68</sub>In<sub>0,09</sub>; grey phase – Ho<sub>0,23</sub>Ni<sub>0,68</sub>In<sub>0,09</sub>); *b* – Ho<sub>0,08</sub>Ni<sub>0,46</sub>In<sub>0,46</sub> (total composition – Ho<sub>0,08</sub>Ni<sub>0,47</sub>In<sub>0,45</sub>; grey phase – Ho<sub>0,07</sub>Ni<sub>0,49</sub>In<sub>0,44</sub>; light grey phase – Ho<sub>0,18</sub>Ni<sub>0,67</sub>In<sub>0,15</sub>)

Досліджена система Ho–Ni–In при 870 К за характером фазових полів і взаємодії компонентів є подібною до вивчених раніше систем R–Ni–In (R = Y, Gd, Tb, Dy, Er, Tm). Більшість тернарних сполук, які утворюються в цих системах, є ізоструктурними, а сполуки зі структурами типів ZrNiAl та MgCu<sub>4</sub>Sn характеризуються змінним складом. Зустрічну розчинність між бінарними  $RNi_2$  і тернарними  $RNi_4$ In сполуками виявлено у споріднених системах за участю диспрозію, тербію, ербію та тулію, та її немає у системах з гадолінієм та ітрієм. В останніх двох системах бінарні сполуки GdNi<sub>2</sub> та  $YNi_2$  практично не розчиняють третій компонент, а тернарні сполуки утворюють невелику область гомогенності. Крім того, для усіх перелічених вище потрійних систем з нікелем є характерним утворення твердих розчинів на основі бінарної сполуки NiIn.

На відміну від дослідженої, споріднена система Ho–Cu–In [45] містить значно менше тернарних сполук (шість). В обох системах є сполуки, ізоструктурні до типів ZrNiAl і Mo<sub>2</sub>FeB<sub>2</sub>.

### 4. Висновки

Побудовано ізотермічний переріз діаграми стану системи Ho–Ni–In у повному концентраційному інтервалі за температури 870 К. За умов дослідження в цій системі існує 12 тернарних сполук складів: HoNi<sub>9</sub>In<sub>2</sub> (CT YNi<sub>9</sub>In<sub>2</sub>), Ho<sub>4</sub>Ni<sub>11</sub>In<sub>20</sub> (CT U<sub>4</sub>Ni<sub>11</sub>Ga<sub>20</sub>), HoNi<sub>4</sub>In (CT MgCu<sub>4</sub>Sn), Ho<sub>10</sub>Ni<sub>9</sub>In<sub>20</sub> (CT Ho<sub>10</sub>Ni<sub>9</sub>In<sub>20</sub>), HoNi<sub>1,0-0,5</sub>In<sub>1,0-1,5</sub> (CT ZrNiAl), Ho<sub>2</sub>Ni<sub>2</sub>In (CT Mn<sub>2</sub>AlB<sub>2</sub>), Ho<sub>2</sub>Ni<sub>1,8</sub>In (CT Mo<sub>2</sub>FeB<sub>2</sub>), Ho<sub>5</sub>Ni<sub>2</sub>In<sub>4</sub> (CT Lu<sub>5</sub>Ni<sub>2</sub>In<sub>4</sub>), Ho<sub>11</sub>Ni<sub>4</sub>In<sub>9</sub> (CT Nd<sub>11</sub>Pd<sub>4</sub>In<sub>9</sub>), Ho<sub>6</sub>Ni<sub>2</sub>In (CT Ho<sub>6</sub>Co<sub>2</sub>Ga), ~ Ho<sub>6</sub>NiIn<sub>2</sub> (структура невідома) і Ho<sub>13,35</sub>Ni<sub>3,17</sub>In<sub>3,48</sub> (CT Lu<sub>14</sub>Co<sub>3</sub>In<sub>3</sub>). Між сполуками HoNi<sub>2</sub> та HoNi<sub>4</sub>In утворюється неперервний ряд твердих розчинів. Твердий розчин включення-віднімання на основі бінарної сполуки NiIn описуємо формулою Ho<sub>0-0,08</sub>NiIn<sub>1-0,94</sub>.

# 5. Подяка

Автори вдячні провідному науковому співробітнику П. Ю. Демченку (Міжфакультетська науково-навчальна лабораторія рентгеноструктурного аналізу ЛНУ ім. І. Франка) за допомогу в отриманні експериментальних масивів дифрактограм окремих сплавів та науковому співробітнику В. М. Кордану (Центр колективного користування науковим обладнанням "Лабораторія матеріалознавства інтерметалічних сполук") за допомогу у дослідженні мікроструктур окремих зразків.

24

Kalychak Ya. M., Zaremba V. I., Pöttgen R., Lukachuk M., Hoffmann R.-D. Rare Earth–Transition Metal–Indides // In: K. A. Gschneidner, Jr., J.-C. Bünzli, V. K. Pecharsky (eds.), Handbook on the Physics and Chemistry of Rare Earths. Elsevier. Amsterdam, 2005. Vol. 34. P. 1–133. DOI: https://doi.org/10.1016/S0168-1273(04)34001-8

<sup>2.</sup> *Villars P., Cenzual K.* (Eds.). Pearson's Crystal Data – Crystal Structure Database for Inorganic Compounds. Release 2019/2020, ASM International, Materials Park. 2019.

Petrovic C., Pagliuso P. G., Hundley M. F., Movshovich R., Sarrao J. L., Thompson J. D., Fisk Z., Monthoux P. Heavy-fermion super-conductivity in CeCoIn<sub>5</sub> at 2.3 K // J. Physics: Condensed Matter. 2001. Vol. 13. P. L337–L342. DOI: http://dx.doi.org/10.1088/0953-8984/13/17/103

- Chen G., Ohara S., Hedo M., Uwatoko Y., Sakamoto I. Transport properties of the heavy-fermion superconductor Ce<sub>2</sub>CoIn<sub>8</sub> // J. Physics: Condensed Matter. 2003. Vol. 15. P. S2175–S2178. DOI: https://doi.org/10.1088/0953-8984/15/28/346
- Zhang H., Xu Z. Y., Zheng X. Q., Shen J., Hu F. X., Sun J. R., Shen B. G. Magnetocaloric effects in RNiIn (R = Gd–Er) intermetallic compounds // J. Appl. Phys. 2011. Vol. 109. P. 123926–1–6. DOI: https://doi.org/10.1063/1.3603044
- Tyvanchuk Yu. B., Kalychak Ya. M., Gondek Ł., Rams M., Szytuła A., Tomkowicz Z. Magnetic properties of RNi<sub>1-x</sub>In<sub>1+x</sub> (R = Ho–Er) compounds // J. Magn. Magn. Mater. 2004. Vol. 277. P. 368–378. DOI: https://doi.org/10.1016/j.jmmm.2003.11.018
- 7. *Kalychak Ya.* Phase equilibria and crystal structures of compounds in *R*–Cu–In systems // Izv. RAN. Metally. 1998. No. 4. P. 110–118 (in Russian).
- Kalychak Ya. The Ce–Co–In system // Visnyk Lviv Univ. Ser. Chem. 1999. Iss. 38. P. 70–73 (in Ukrainian).
- Dzevenko M., Hamyk A., Tyvanchuk Yu., Kalychak Ya. Phase equilibria in the Er–Co–In system and crystal structure of Er<sub>8</sub>CoIn<sub>3</sub> compound // Cent. Eur. J. Chem. 2013. Vol. 11, No. 4. P. 604–609. DOI: https://doi.org/10.2478/s11532-012-0195-Ho
- Gabay A. M., Hadjipanayis G. C. Phases and phase equilibria in cobalt-rich Pr–Co–In alloys for permanent magnets // J. Alloys. Compd. 2010. Vol. 500. P. 161–166. DOI: https://doi.org/10.1016/j.jallcom.2010.03.247
- Demchyna M., Belan B., Manyako M., Akselrud L., Gagor A., Dzevenko M., Kalychak Y. Phase equilibria in the Dy–Fe–In system and crystal structure of Dy<sub>6</sub>Fe<sub>1.72</sub>In // Intermetallics. 2013. Vol. 37. P. 22–26. DOI: http://dx.doi.org/10.1016/j.intermet.2013.01.010
- 12. Bigun I., Demchyna M., Dzevenko M., Belan B., Manyako M., Tyvanchuk Yu., Kalychak Ya. The component interaction in {Gd, Tb}–Fe–In systems // Visnyk Lviv Univ. Ser. Chem. 2013. Iss. 54, Pt. 1. P. 3–10 (in Ukrainian).
- 13. *Kalychak Ya.* The component interaction in Ce–Ni–In system // Ukr. Chem. Jorn. 1998. Vol. 64, No. 7. P. 15–20 (in Ukrainian).
- Zaremba V., Dzevenko M., Pöttgen R., Kalychak Ya. Phase equilibrium in the Gd–Ni–In system at T = 870 K // Z. Naturforsch. B. 2019. Vol. 74(7–8). P. 613–618. DOI: https://doi.org/10.1515/znb-2019-0083
- 15. Dzevenko M., Tyvanchuk Yu., Demidova Ch., Lukachuk M., Kalychak Ya. Phase equilibria in Tb–Ni–In system at 870 K // Visnyk Lviv Univ. Ser. Chem. 2014. Iss. 55, Pt. 1. P. 21–28 (in Ukrainian).
- Tyvanchuk Yu. B., Zaremba V. I., Akselrud L. G., Szytula A., Kalychak Ya. M. The Dy–Ni–In system at 870 K: isothermal section, solid solutions, crystal structures // J. Alloys Compd. 2017. Vol. 704. P. 717–723. DOI: http://dx.doi.org/10.1016/j.jallcom.2017.02.023
- Dzevenko M., Tyvanchuk Yu., Bratash L., Zaremba V., Havela L., Kalychak Ya. Ternary system Er–Ni–In at T = 870 K // J. Solid State Chem. 2011. Vol. 184, Iss. 10. P. 2707–2712. DOI: https://doi.org/10.1016/j.jssc.2011.08.006
- Tyvanchuk Yu. B., Lukachuk M., Pöttgen R., Szytula A., Kalychak Ya. M. The ternary system Tm–Ni–In at 870 K // Z. Naturforsch. B: J. Chem. Sci. 2015. Vol. 70. P. 665–670. DOI: https://doi.org/10.1515/znb-2015-0075
- Zaremba V., Dzevenko M., Nychyporuk G., Kalychak Ya. Phase equilibrium in the system Y–Ni–In at 870 K // Visnyk Lviv Univ. Ser. Chem. 2021. Iss. 62. P. 18–27 (in Ukrainian). DOI: http://dx.doi.org/10.30970/vch.6201.018

- 20. *Villars P., Okamoto H., Cenzual K.* (Eds.) ASM Alloy Phase Diagram Database. Release 2006/2018, ASM International, Materials Park, OH. 2018.
- Phase diagrams of binary nickel alloys / P. Nash, editor. Materials Park, OH: ASM International. 1991. 394 p.
- Okamoto H. In–Ni (Indium–Nickel) // J. Phase Equilibria. 1999. Vol. 20, No. 5. P. 540. DOI: https://doi.org/10.1361/105497103770330479
- 23. Kraus W., Nolze G. Powder Cell For Windows. Berlin, 1999.
- 24. STOE WinXPOW, Version 1.2, STOE & CIE GmbH. Darmstadt, 2001.
- 25. *Rodriguez-Carvajal J.* Recent developments of the program FULLPROF // Commission on Powder Diffraction. Newsletter. 2001. Vol. 26. P. 12–19.
- 26. Bigun I., Dzevenko M., Havela L., Kalychak Ya. RENi<sub>9</sub>In<sub>2</sub> (RE = Rare-Earth Metal): Crystal Chemistry, Hydrogen Absorption, and Magnetic Properties // Eur. J. Inorg. Chem. 2014. Iss.16. P. 2631–2642. DOI: https://doi.org/10.1002/ejic.201400058
- 27. *Kalychak Y. M., Akselrud L. G., Zaremba V. I., Baranyak V. M.* The crystal structure of the *R*Ni<sub>9</sub>In<sub>2</sub> (*R* = Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er) compounds // Dopov. Akad. Nauk Ukr. RSR. Ser. B. 1984. No. 8. P. 35–37 (in Ukrainian).
- Tyvanchuk Y. B., Svitlyk V. O., Kalychak Y. M. The crystal structure of Ho<sub>4</sub>Ni<sub>11</sub>In<sub>20</sub> // Cent. Eur. J. Chem. 2012. Vol. 10. P. 354–359. DOI: https://doi.org/10.2478/s11532-011-0146-z
- 29. Zaremba V. I., Baranyak V. M., Kalychak Y. M. Crystal structure of the RNi<sub>4</sub>In compounds // Visnyk Lviv Univ. Ser. Chem. 1984. Iss. 25. P. 18–19 (in Russian).
- Zaremba V. I., Belskii V. K., Kalychak Y. M., Pecharskii V. K., Gladyshevskii E. I. The crystal structure of the R<sub>10</sub>Ni<sub>9</sub>In<sub>20</sub> (R = Ho, Er, Tm, Lu) compounds // Dopov. Akad. Nauk Ukr. RSR. Ser. B. 1987. No. 3. P. 42–45 (in Ukrainian).
- Ferro R., Marazza R., Rambaldi G. Equiatomic ternary phases in the alloys of the rare earths with indium and nickel or palladium // Z. Metallkd. 1974. No. 65. P. 37–39. DOI: https://doi.org/10.1515/ijmr-1974-650106
- 32. *Kalychak Ya. M., Zaremba V. I., Tyvanchuk Yu. B.* The solid solutions with ZrNiAl structure type in the *R*–Ni–In systems // Coll. Abs. Sixth International conference on crystal chemistry of intermetallic compounds. Lviv, 1995. P. 77.
- Gondek L., Szytula A., Baran S., Rams M., Hernandez Velasco J., Tyvanchuk Y. B. Magentic structures of non-stoichiometric hexagonal RNi<sub>1-x</sub>In<sub>1+x</sub> (R = Dy, Ho, Er) compounds // J. Magn. Magn. Mater. 2004. No. 278. P. 392–396.
- Zaremba V. I., Bruskov V. A., Zavalii P. Y., Kalychak Y. M. Crystal structure of R<sub>2</sub>Ni<sub>2</sub>In compounds (R = Y, Sm, Gd, Tb, Ho, Er, Tm, Lu) // Izv. Akad. Nauk SSSR. Neorg. Mater. 1988. Vol. 24. P. 409–411 (in Russian).
- 35. Kalychak Y. M., Zaremba V. I., Baranyak V. M., Zavalii P. Y., Bruskov V. A., Sysa L. V., Dmytrakh O. V. Crystal structure of the compounds R<sub>2</sub>Ni<sub>2</sub>In, R<sub>2</sub>Ni<sub>2-x</sub>In and R<sub>2</sub>Cu<sub>2</sub>In (R = La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Lu, Y) // Izv. Akad. Nauk SSSR. Neorg. Mater. 1990. Vol. 26. P. 94–96 (in Russian).
- 36. Tyvanchuk Y. B., Baran S., Jaworska Gołab T., Duraj R., Kalychak Y. M., Szytuła A. Structural chemistry and magnetic properties of R<sub>2</sub>Ni<sub>2-x</sub>In (R = Gd–Er, x = 0.22 or 0.3) compounds // Acta Phys. Pol. A. 2012. Vol. 121. P. 678–681.
- Zaremba V. I., Kalychak Y. M., Zavalii P. Y., Bruskov V. A. Crystal structures of the compounds R<sub>5</sub>Ni<sub>2</sub>In<sub>4</sub> (R = Ho, Er, Tm, Lu) // Kristallografiya. 1991. Vol. 36. P. 1415–1418 (in Russian).

В. Заремба, М. Дзевенко, Г. Ничипорук та ін.

- Tyvanchuk Y. B., Penc B., Szytula A., Zarzycki A. Magnetic Properties of Ho<sub>5</sub>Ni<sub>2</sub>In<sub>4</sub> // Acta Phys. Pol. A. 2010. No. 117. P. 599–600.
- Ritter C., Provino A., Manfrinetti P., Pecharsky V. K., Gschneidner K. A. Jr., Dhar S. K. Magnetic structures of R<sub>5</sub>Ni<sub>2</sub>In<sub>4</sub> and R<sub>11</sub>Ni<sub>4</sub>In<sub>9</sub> (R = Tb and Ho): Strong hierarchy in the temperature dependence of the magnetic ordering in the multiple rare-earth sublattices // J. Phys.: Condens. Matter. 2015. Vol. 27. P. 476001–1–20. DOI: http://dx.doi.org/10.1088/0953-8984/27/47/476001
- Galadzhun Y., Dzevenko M., Zaremba V., Stepien-Damm J., Kalychak Y. RE<sub>6</sub>Ni<sub>2</sub>In (RE = Gd, Tb, Dy, Ho, Lu) the new representatives of Ho<sub>6</sub>Co<sub>2</sub>Ga structure type // Acta Cryst. 2005. Vol. A61. P. 372.
- Lukachuk M., Galadzhun Y. V., Zaremba R. I., Kalychak Y. M., Zaremba V. I., Rodewald U. Ch., Pöttgen R. New rare earth metal-rich indides RE<sub>14</sub>Ni<sub>3</sub>In<sub>3</sub> (RE = Sc, Y, Ho–Tm, Lu) – synthesis and crystal chemistry // J. Solid State Chem. 2005. Vol. 178. P. 2724–2733. DOI: https://doi.org/10.1016/j.jssc.2005.06.021
- 42. Heying B., Niehaus O., Rodewald U. Ch., Pöttgen R. Indides  $RE_3T_2In_4$  (RE = Y, Gd– Tm, Lu; T = Ni, Ru, Rh) with a ZrNiAl superstructure // Z. Naturforsch. 2016. Vol. 71(12). P. 1261–1267. DOI: https://doi.org/10.1515/znb-2016-0167
- Mansey R. C., Rainor G. V., Harris I. R. Rare-earth intermediate phases. V. The cubic Laves phases formed by rare-earth metals with iron and nickel // J. Less-Common Met. 1968. Vol.14. P. 329–336. DOI: https://doi.org/10.1016/0022-5088(68)90038-6
- 44. Hellner E. Das System Nickel-Indium // Z. Metallkd. 1950. No. 41. P. 401-406.
- 45. *Kalychak Y. M., Bakar A. M.* The systems Ho–Cu–In and Er–Cu–In // Visnyk Lviv Univ. Ser. Chem. 1994. Iss. 33. P. 32–36 (in Ukrainian).

## THE SYSTEM Ho-Ni-In AT 870 K

#### V. Zaremba\*, M. Dzevenko, G. Nychyporuk, Yu. Maletska, Ya. Kalychak

Ivan Franko National University of Lviv, Kyryla i Mefodiya Str., 6, 79005 Lviv, Ukraine e-mail: vasyl.zaremba@lnu.edu.ua

The components interaction in the Ho–Ni–In system was investigated by X-ray powder diffraction and, partially, scanning electron microscopy with energy-dispersive X-ray spectroscopy. Isothermal section of the phase diagram was constructed in full concentration range at 870 K.

The samples were synthesized in an arc-furnace on a water-cooled Cu-plate under an argon atmosphere and annealed in silica tubes at 870 K for 720 h. The phase analysis was performed by X-ray powder diffraction method.

Twelve ternary compounds, namely  $HoNi_9In_2$  (YNi\_9In\_2-type structure),  $Ho_4Ni_{11}In_{20}$  (U<sub>4</sub>Ni<sub>11</sub>Ga<sub>20</sub>-type structure),  $HoNi_4In$  (MgCu<sub>4</sub>Sn-type structure),  $Ho_{10}Ni_9In_{20}$  (Ho<sub>10</sub>Ni<sub>9</sub>In<sub>20</sub>-type structure),  $HoNi_{1.0-0.5}In_{1.0-1.5}$  (ZrNiAl-type structure),  $Ho_2Ni_2In$  (Mn\_2AlB<sub>2</sub>-type structure),  $Ho_2Ni_{1.8}In$  (Mo<sub>2</sub>FeB<sub>2</sub>-type structure),  $Ho_5Ni_2In_4$  (Lu<sub>5</sub>Ni<sub>2</sub>In<sub>4</sub>-type structure),  $Ho_{11}Ni_4In_9$  (Nd<sub>11</sub>Pd<sub>4</sub>In<sub>9</sub>-type structure),  $Ho_6Ni_2In$  (Ho<sub>6</sub>Co<sub>2</sub>Ga-type structure), ~ Ho<sub>6</sub>NiIn<sub>2</sub> (unknown structure) i  $Ho_{13.35}Ni_{3.17}In_{3.48}$  (Lu<sub>1</sub>Co<sub>3</sub>In<sub>3</sub>-type structure) exist in the Ho–Ni–In system at the temperature of annealing.

ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2022. Випуск 63

The substitution of Ni for In was observed for  $HoNi_{1.00-0.50}In_{1.00-1.50}$  compound. Besides, Ho can enter the structure of NiIn (CoSn-type structure) compound leading to formation of including subtraction type solid solution, which is stable up to 8 at. % Ho. The composition of this solid solution can be described by the formula  $Ho_{0.008}NiIn_{1.094}$ . The inclusion of holmium and indium atoms in position (2*e*) with the simultaneous exclusion of a small amount of indium atoms from position (1*a*) takes place in the homogeneity range of this solid solution.

The character of interaction between the components in the ternary Ho–Ni–In system is similar to other related system R-T–In (R – rare earth of the yttrium subgroup). The common feature of all these systems is the existence of large number isotypical ternary compounds, the formation of homogeneity range for compounds with ZrNiAl-type structure and including-subtraction type solid solutions based on the binary compound NiIn.

Keywords: holmium, indium, ternary compound, ternary system, isothermal section.

Стаття надійшла до редколегії 30.10.2021 Прийнята до друку 10.06.2022