ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2021. Випуск 62. С. 305–310 Visnyk of the Lviv University. Series Chemistry. 2021. Issue 62. Р. 305–310

УДК 54-161+ 544.653.22

АВТОКАТАЛІТИЧНИЙ ВПЛИВ ДОДАТКІВ АІСІ₃ НА ПРОЦЕС ОКИСНЕННЯ АМОРФНОГО СПЛАВУ АІ₈₇Ni₈Y₅ У 0,5 М ВОДНОМУ РОЗЧИНІ NaCl

Х. Хрущик*, О. Герцик, Л. Бойчишин, М. Ковбуз

Львівський національний університет імені Івана Франка, вул. Кирила і Мефодія, 6, 79005 Львів, Україна e-mail: Khrystyna.Khrushchyk@lnu.edu.ua

Методом вольтамперометрії у потенціодинамічному режимі визначено, що під час введення AlCl₃ (7,4·10⁻³ моль/л) у систему проходить зниження першого максимуму, який відповідає за адсорбцію H⁺ на AMC-електроді (аморфний металевий сплав)- електроді. Результати потенціостатичного дослідження поведінки Al₈₇Ni₈Y₅ у 0,5 M водному розчині NaCl з додатками AlCl₃ свідчать про автокаталітичні властивості малої концентрації AlCl₃ (2·10⁻⁷ моль/л), яка сприяє розчиненню поверхні сплаву.

Методом електронної мікроскопії з'ясовано, що поверхня сплаву у розчині NaCl покривається тонким шаром оксидів та гідроксидів алюмінію, а внаслідок розгортки потенціалів у межах –1000 ÷ +300 мВ у присутності AlCl₃ формується багатошарове покриття.

Ключові слова: аморфні металеві сплави, пасиваційні шари, корозійна тривкість.

DOI: https://doi.org/10.30970/vch.6201.305

1. Вступ

Корозійну тривкість алюмінію та його сплавів визначають, практично, поведінкою його оксидної плівки, якою він майже завжди покритий у корозійному середовищі [1–3]. Випадки низької корозійної тривкості пов'язані із зарядом оксидної плівки, особливо ступенем її гідратації та пористості. Тестування корозійної тривкості масивних виробів з алюмінію та його сплавів проводять у водних розчинах NaCl.

Іони Cl⁻ проникають в оксидну плівку через пори або дефекти легше, ніж інші іони (наприклад, $SO_4^{2^-}$). Можливо також, що вони можуть колоїдно диспергувати оксидну плівку і збільшити її проникність [4]. Сплавам алюмінію властиве пітингоутворення. Першим етапом процесу пітингоутворення є адсорбція іонів хлору на вкритій оксидом поверхні [5–7]. Коли іон Cl⁻ взаємодіє з іонною поверхнею, такою як оксид, то у нейтральних розчинах оксидна плівка на алюмінії матиме позитивний поверхневий заряд:

$-MOH_{\Pi OB} + H^+_{PO34} \leftrightarrows -MOH_2^+_{\Pi OB}$

Адсорбція хлорид-іонів на негативно зарядженій оксидній поверхні є значно менша, однак може відбуватися завдяки силам Ван-дер-Ваальса. Якщо достатня кількість іонів хлору дифундує до поверхні алюмінію через канали в оксидному шарі, відбувається активна корозія з виходом різних продуктів, деякі з них можуть активувати процес окиснення.

У зв'язку з цим, потрібно проаналізувати електрохімічні параметри розчинення АМС-електрода у 0,5 М водному розчині NaCl під час додавання AlCl₃ та оцінити процес формування захисних шарів на поверхні АМС Al₈₇Ni₈Y₅.

[©] Хрущик Х., Герцик О., Бойчишин Л. та ін., 2021

2. Матеріали та методика експерименту

Досліджуваний аморфний сплав складу $Al_{87}Ni_8Y_5$ виготовлено методом швидкого охолодження (10⁵–10⁷ K/c) у вигляді стрічки шириною близько 2 см і товщиною 20 мкм в Інституті металофізики Національної академії наук України, м. Київ.

З метою дослідження швидкості і механізму корозії застосовували метод циклічної вольтамперометрії в потенціодинамічному режимі з автоматичною розгорткою в часі заданого потенціалу поверхні металу, який дозволяє реєструвати не тільки утворення та нагромадження продуктів електрохімічних процесів, але й також контролювати їх послідовні перетворення. Робочий електрод – пластинка з досліджуваного аморфного матеріалу площею 0,15 см². Вольтамперометричні вимірювання проводили в термостатованій комірці за температури 293±0,5 К за допомогою приладу Jaissle Potentiostat/Galvanostat IMP 88PC-R з частотою фіксування 2 точки/с в елементі типу: AMC-електрод|0,5 М водний NaCI|Hg/Hg₂CI₂/KCI_{нас}. Поляризаційні криві розчинення AMC-

Електрохімічні виміри потенціалу та струму розчинення АМС-електродів при розімкненому зовнішньому електричному колі проводилися протягом 300 с в термостатованій комірці за температури 293±0,5 К за допомогою приладу Jaissle Potentiostat/Galvanostat IMP 88PC-R з частотою фіксування 100 точок/с в елементі типу: АМС-електрод|0,5 М водний NaCI |Hg/Hg₂CI₂/КСІ_{нас}. Чутливість вимірювання струмів становила 0,001 мкА, потенціалів – 1,0 мВ.

Мікрофотографія поверхні стрічки аморфного сплаву одержувано за допомогою електронного мікроскопа WDX-125 із збільшенням у 2 000 разів.

3. Результати досліджень та їх обговорення

За допомогою циклічної вольтаметрії (ЦВА) для ідентифікації продуктів розчинення аморфних алюмінієвих сплавів до 0,5 M розчину NaCl на 3-му і 4-му циклах додавали по 1 мл 0,1 M водного розчину AlCl₃ (7,4·10⁻³моль/л) (рис.1).

Рис. 1. Вольтамперні криві АМС Al₈₇Ni₈Y₅ у 0,5 М водному розчині натрій хлориду (*1–*5), з додатком 0,1 М розчину AlCl₃ (3, 4) (*1–*5 – номер циклу)

Fig. 1. Volt-ampere curves AMA Al₈₇Ni₈Y₅ in 0.5 M aqueous sodium chloride solution (*1*–5) with the addition of 0,1 M AlCl₃ solution (3, 4) (*1*–5 – number of cycle)

Аналізуючи результати експерименту, отримані із ЦВА кривої (рис.1) з'ясовано, що додавання AlCl₃ приводить до зниження струмів на вольтамперній кривій та збільшення меж пасивації поверхні, а також зростання струмів в інтервалі потенціалів +100 ÷ +200 мВ, що відповідає йонам Al³⁺. Аналіз електрохімічних параметрів розчинення AMC-електрода показує, що додавання AlCl₃ приводить до зсуву потенціалу корозії в анодний бік з -657 до -265 мВ і до зменшення на порядок густини струму корозії (табл. 1).

Таблиця 1

Table 1

Електрохімічні параметри розчинення АМС Al₈₇Ni₈Y₅ у 0,5М водному розчині натрій хлориду (1, 2) та з додатком AlCl₃ (3, 4, 5)

iпiку, iкор., iocH. № BA Еосн., мВ $E_{піку}$, мВ -E_{кор.}, мВ мкА/см² мкА/см² мкА/см² 60,87 0,41 189,89 657 1 1,15 0.047 2 -3.810.33 159,03 0.72636 0,033 3* 22,78 0,25 144,91 0,76 579 0,028 4° 1,77 0,18 157,72 1,11 158 0,002 -8,07 139,33 1,00 265 0,004 0,17

Electrochemical parameters of dissolution of AMA Al₈₇Ni₈Y₅ in 0.5 M aqueous solution of sodium chloride (1, 2) and the addition of AlCl₃ (3, 4, 5)

3*-3,8·10⁻³ M AlCl₃; 4**, 5**-7,4·10⁻³ M AlCl₃.

Після зняття вольтамперних кривих Al₈₇Ni₈Y₅-електрода хронопотенціометрично дослідили кінетику визначення стаціонарного потенціалу у 0,5 M водному розчині NaCl (рис. 2) і з додатками AlCl₃ (рис. 3).

Рис. 2. Хронопотенціометрія AMC-електрода Als7NisY5 у 0,5M водному розчині NaCl перед (1) і після (2) ЦВА поляризації із швидкістю сканування потенціалу 20 мВ/с Fig. 2. Chronopotentiometry of the AMA electrode Als7NisY5 in 0.5 M aqueous NaCl solution before (1) and after (2) VA polarization with a scanning potential of 20 mV/s

Амплітуда коливання струмів $\Delta i=0,013$ мкА/см². Потенціометричні дослідження після ЦВА підтверджують пасивацію поверхні АМС-електроду, оскільки (рис. 2) стаціонарний потенціал зсувається в анодний бік на 300 мВ і є стабільнішим у часі ($\Delta E\approx 30$ мВ), а амплітуда коливань струмів зменшується до 0,009 мкА/см² (табл. 2).

Наявність у фоновому електроліті йонів AlCl₃ під час хронопотенціометрії AMC Al₈₇Ni₈Y₅ у 0,5 M водному розчині натрій хлориду знижує положення потенціальної залежності Е стосовно аналогічної на рис. 2.

Сталі значення $\Delta i = 0,016 \text{ мкA/см}^2$ свідчать про гальмування виходу йонів за межі подвійного електричного шару, що підтверджує утворення нових захисних поверхневих шарів, які, однак, у цьому агресивному середовищі можуть частково руйнуватись [8, 9]. Про це свідчить зсув потенціалу електроду АМС Al₈₇Ni₈Y₅ в катодний бік після 100 с контакту (рис. 3, а) з розчином натрій хлориду у присутності AlCl₃ (7,4·10⁻³ M).

Таблиця 2

Результати потенціометричних досліджень АМС Al₈₇Ni₈Y₅ у 0,5 М водному розчині NaCl перед та після циклічної вольтаметрії за різних швидкостях сканування потенціалу

Table 2

Results of potentiometric investigation of AMA Al ₈₇ Ni ₈ Y ₅ in 0.5 M aqueous NaCl solution before										
and after cyclic voltammetry at different potential scan rates										

V _{розг} ,	-Е, мВ				i , мкА/см ²				Амплітуда коливання струмів, Δі, мкА/см ²			
мВ/с	перед		після		перед		після		перед		після	
	поч.	кін.	поч.	кін.	поч.	кін.	поч.	кін.	поч.	кін.	поч.	кін.
10	1094	964	752	683	0,445	0,445	0,439	0,447	0,010	0,012	0,010	0,008
20	1124	1026	754	721	0,445	0,447	0,441	0,445	0,010	0,013	0,009	0,009
50	1104	940	790	764	0,447	0,447	0,443	0,445	0,008	0,014	0,020	0,010
100	1164	950	808	809	0,448	0,447	0,445	0,447	0,010	0,010	0,014	0,010

Fig. 3. Chronopotentiometry of AMA Al_87NisY5 in 0.5 M aqueous sodium chloride solution with AlCl₃ additives $(7.4 \ 10^{-3} \ M)$

Для незалежного підтвердження впливу одноіменних іонів Al^{3+} і Cl^- на процеси формування захисних шарів на поверхні $Al_{87}Ni_8Y_5$ у 0,5 M водному розчині NaCl за допомогою електронного мікроскопу зроблено мікрофотографії поверхні сплаву після зняття ЦВА у фоновому розчині NaCl (рис. 4, *a*) та з 1,0 M додатком AlCl₃ (рис. 4, *б*). Поверхня сплаву у розчині NaCl покривається тонким шаром оксидів та гідроксидів алюмінію, а внаслідок розгортки потенціалів в межах $-1000 \div +300$ мВ за наявності AlCl₃ формується багатошарове покриття.

Рис. 4. Мікрофотографії сплаву Al₈₇Ni₈Y₅ після зняття ЦВА у 0,5 M розчині NaCl (*a*) та з 0,1M додатком AlCl₃ (*b*) Fig. 4. Micrographs of Al₈₇Ni₈Y₅ alloy after removal of VA in 0.5M NaCl solution (*a*)

and with 0.1M addition of $AlCl_3(b)$

4. Висновки

Отже, результати вольтамперометричних досліджень у потенціодинамічному режимі виявили, що за введення AlCl₃ (7,4·10⁻³ моль/л) у досліджувану систему проходить зниження першого максимуму, який, як виявили подальші дослідження, відповідає за адсорбцію H⁺ на AMC-електроді. Потенціостатичне дослідження поведінки Al₈₇Ni₈Y₅ у 0,5 M водному розчині NaCl з додатками AlCl₃ свідчить про автокаталітичні властивості малої концентрації AlCl₃ (2·10⁻⁷ моль/л), яка сприяє розчиненню поверхні сплаву.

- Wang Z., Scudino S., Prashanth K., J. Eckert. Corrosion properties of high-strength nanocrystalline Al₈₄Ni₇Gd₆Co₃ alloy produced by hot-pressing of metallic glass // J. Alloys Compd. 2017. Vol. 707. P. 63–67.
 - DOI: https://doi.org/10.1016/j.jallcom.2016.11.212
- Minghao G., Weiyan Lu, Baijun Y., Suode Zh., Jianqiang W. High corrosion and wear resistance of Al-based amorphous metallic coating synthesized by HVAF spraying // J. Alloys Compd. 2018. Vol. 735. P. 1363–1373. DOI: https://doi.org/10.1016/j.surfcoat.2018.08.086
- Zhang L. M., Zhang S. D., Ma A. L., Hu H. X., Wang J. Q. Thermally induced structure evolution on the corrosion behavior of Al–Ni–Y amorphous alloys // Corr. Sci. 2018. Vol. 144. P. 172–183. DOI: https://doi.org/10.1016/j.corsci.2018.08.046
- Mazhar A. A., Arab S. T. and. Noor E. A. The role of chloride ions and pH in the corrosion and pitting of Al–Si alloys // J. Appl. Electrochem. 2001. Vol. 31. P. 1131– 1140. DOI: https://doi.org/10.1023/A:1012039804089
- McCafferty E. Sequence of steps in the pitting of aluminium by chloride ions // Cor. Sci. 2003. Vol. 45. P.1421–1438. DOI: http://dx.doi.org/10.1016/S0010-938X(02)00231-7
- Yu-Mei Han, X.-Grant Chen. Electrochemical Behavior of Al-B₄C Metal Matrix Composites in NaCl Solution // Mater. (Basel). 2015. Vol. 8(9). P. 6455–6470. DOI: https://doi.org/10.3390/ma8095314

- Chidambaram D., Clayton C. R., Halada G. P., Kendig M. W. Surfase pretreatments of aluminum alloy AA2024-T3 and formation of chromat conversion coatings. (1) Composition and electrochemical behavior of the oxide film // J. Electrochem. Soc. 2004. Vol. 151(11). P. B605–B612. DOI: https://doi.org/10.1149/1.1806393
- 8. Boichyshyn L. M., Hertsyk O. M., Kovbuz M. O., Pereverzeva T. H. and Kotur B. Ya. Properties of amourphous alloys of Al–REM–Ni and Al–REM–Ni–Fe systems with nanocrystalline structure // Mat. Sci. 2013. Vol. 48, No. 4. P. 555–559. DOI: https://doi.org/10.1007/s11003-013-9537-y
- Yasakau K. A., Zheludkevich M. L., Ferreira M. G. S. Role of intermetallics in corrosion of aluminum alloys. Smart corrosion protection // Intermet. Matrix Compos. 2018. P. 425–462. DOI: https://doi.org/10.1016/B978-0-85709-346-2.00015-7

AUTOCATALITY EFFECT OF AICl3 APPLICATIONS ON THE OXIDATION PROCESS OF AMORPHOUS Al87Ni8Y5 ALLOY IN 0.5 M AQUEOUS NaCl SOLUTION

Kh. Khrushchyk*, O. Hertsyk, L. Boichyshyn, M. Kovbuz

Ivan Franko National University of Lviv, Kyryla i Methodiya Str.,6, 7900 Lviv, Ukraine e-mail: Khrystyna.Khrushchyk@lnu.edu.ua

Investigation of corrosion resistance of amorphous metal alloy (AMA) from aluminum is carried out in 0.5 M aqueous solutions of NaCl. Cl- ions penetrate the oxide layer through pores or defects and can colloidally disperse the oxide film and increase its permeability.

The Al₈₇Ni₈Y₅ were obtained by melt spinning technique in helium atmosphere onto a copper wheel with a circumferential speed of about 30 m/sec (cooling rate = 10^{6} K/sec).

The method of voltammetry in the potential-dynamic mode showed that the introduction of AlCl₃ (7.4 · 10⁻³ mol/l) in the system of origin reduces the first maximum, which is responsible for the adsorption of H⁺ on the AMA electrode. A potentiostatic ivestigates of the behavior of Al₈₇Ni₈Y₅ in 0.5 M aqueous NaCl solution with additional elements AlCl₃ indicates the autocatalytic properties of a low concentration of AlCl₃ (2 · 10⁻⁷ mol/l), which contributes to the dissolution of the surface.

The kinetics of establishing the stationary potential in 0.5 M aqueous NaCl solution and with AlCl₃ applications were chronopotentiometrically investigated.

The presence of AlCl₃ ions in the background electrolyte during chronopotentiometry of AMA Al₈₇Ni₈Y₅ in 0.5 M aqueous sodium chloride solution reduces the position of the potential dependence.

To independently confirm the influence of Al^{3+} and Cl^{-} ions on the processes of formation of protective layers on the surface of $Al_{87}Ni_8Y_5$ in 0.5 M aqueous NaCl solution using a electron microscope. Micrographs of the alloy surface were taken after VA removal in NaCl background solution 1M application of AlCl₃, the surface of the alloy in NaCl solution is covered with a thin layer of oxides and hydroxides of aluminum, and due to the sweep potentials in the range of -1000 \div +300 mV in the presence of AlCl₃ a multilayer coating is formed.

Keywords: amorphous metallic alloys, passivation layers, corrosion resistance.

Стаття надійшла до редколегії 1.11.2020 Прийнята до друку 18.05.2021