ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2021. Випуск 62. С. 116–126 Visnyk of the Lviv University. Series Chemistry. 2021. Issue 62. P. 116–126

УДК 546.561: 661.472

СИНТЕЗ ТА КРИСТАЛІЧНА СТРУКТУРА КУПРОЙОДИДНОГО КОМПЛЕКСУ З 1-АЛІЛ-1Н-БЕНЗІМІДАЗОЛОМ СКЛАДУ [(C7H5N2(C3H5))4Cu4I4]

О. Павлюк^{1*}, М. Миськів¹, Є. Горешнік²

¹ Львівський національний університет імені Івана Франка, вул. Кирила і Мефодія, 6, 79005 Львів, Україна

> ² Інститут Йожефа Стефана, вул. Ямова, 39, SI-1000 Любляна, Словенія e-mail: pavalex@gmail.com

Методом змінно-струмного електрохімічного синтезу, виходячи з ацетонітрильного розчину 1-аліл-1H-бензімідазолу та міді, добуто та рентгеноструктурно досліджено сполуки складу [(C₇H₅N₂(C₃H₅))₄Cu₄I₄] (I): просторова група $P\overline{1}$, Z = 2, a = 11,3260(5), b = 12,2730(5), c = 16,3601(6) Å, a = 96,407(3), $\beta = 95,572(3)$, $\gamma = 99,260(4)^{\circ}$, V = 2215,1(2) Å³, $\rho_{oбч.} = 2,089$ г/см³, μ (Mo K_{α}) = 4,72 мм⁻¹, $\theta_{макс.} = 29,0^{\circ}$, 26095 виміряних рефлексів, 9674 використано, $R(F^2) = 0,024$, S = 1,07.

У кристалічній структурі сполуки І атоми купруму(І) розташовано у деформованому тетраедричному координаційному оточенні з трьох атомів йоду та атома нітрогену гетероциклічного ліганду. Завдяки зв'язуванню І⁻ з трьома атомами металу утворюються глобулярні неорганічні фрагменти {C7H5N2(C3H5)CuI}4. Відсутність координації атомом Cu(І) подвійного зв'язку C=C алільної групи 1-аліл-1H-бензімідазолу та особливості будови топологічних одиниць обумовлені переважно стеричними утрудненнями, створюваними атомами йоду.

Ключові слова: 1-аліл-1Н-бензімідазол, купрум(І), йодидні комплекси, кристалічна структура.

DOI: https://doi.org/10.30970/vch.6201.116

1. Вступ

Серед неорганічних речовин чи не найбільше представників координаційних сполук перехідних металів [1], а купрумвмісні комплекси віддавна привертають увагу наукової спільноти як з теоретичної точки зору, так і своїм практичним використанням [2]. Зокрема, для таких сполук характерні широкий спектр способів топологічної побудови кристалічної гратки [3], перспективна з точки зору практичного впровадження протиракова дія [4], каталітична активність [5], тощо. Також відомо, що купрумвмісні сполуки важливі для технологій генерації, передавання і накопичення енергії [6], а бензімідазол та його похідні доволі широко використовують у медицині та промисловості [7–10].

У такому контексті цікаво було добути купройодидну сполуку з 1-аліл-1Нбензімідазолом, визначити та проаналізувати особливості побудови її кристалічної структури.

[©] Павлюк О., Миськів М., Горешнік Є., 2021

2. Матеріали та методика експерименту

Вихідний 1-аліл-1Н-бензімідазол синтезували взаємодією бензімідазолу з хлористим алілом у середовищі етанолу в присутності натрій гідрогенкарбонату [11].

У етанолі розчинили 0,01 моль $C_7H_6N_2$ та додали 0,015 моль алілу хлористого. Отриману суміш нагрівали (60–70 °C) впродовж 30 год. та перемішували магнітною мішалкою. Розчинник відігнали, отримали темно-червону кристалічну масу (вихід 90 %).

Темно-червоні призматичні кристали сполуки $[(C_7H_5N_2(C_3H_5))_4Cu_4I_4]$ (I) утворилися в умовах змінно-струмного електрохімічного синтезу [12, 13] впродовж доби з ацетонітрильного розчину 1-аліл-1Н-бензімідазолу під час розчинення мідних електродів у присутності йоду. Якість кристалів, наближені параметри гратки та дифракційний клас визначали з рентгенограм обертання та вайсенбергограм. Масив інтегральних інтенсивностей відбить для монокристалів дослідженої сполуки отримано на монокристальному дифрактометрі *New Gemini, Dual,* обладнаному детектором *Atlas CCD*. Дифракційні дані опрацьовано за допомогою програми *CrysAlisPro* (табл. 1) [14]. Структуру розв'язано й уточнено за допомогою програм SHELXT [15] та SHELXL-2014 [16] з використанням відповідного графічного інтерфейсу програми OLEX² [17]. Позиції більшості негідрогенових атомів знайдено прямими методами, а решти – з різницевих синтезів Фур'є. Атоми гідрогену уточнювали в моделі "вершника" з використанням відповідних обмежень [18]. Координати атомів і параметри теплового зміщення наведено в табл. 2, основні довжини зв'язків та валентні кути – у табл. 3.

3. Результати досліджень та їх обговорення

У кристалічній структурі сполуки [($C_7H_5N_2(C_3H_5)$)4 Cu_4I_4] для усіх чотирьох кристалографічно незалежних атомів купруму(І) найближчими сусідами є атом нітрогену однієї з молекул 1-аліл-1H-бензімідазолу (відстань Cu–N в межах 1,990–2,014 Å), три атоми йоду (відстань Cu–I в межах 2,629–2,787 Å), координаційний многогранник відповідає деформованому тетраедру (τ_4 '= 0,90–0,93 [19], рис. 1). Завдяки містковій функції атомів галогену, що входять до координаційних многогранників трьох атомів металу, окремі піраміди з'єднуються у глобулярні фрагменти { $C_7H_5N_2(C_3H_5)CuI$ }, упаковані у кристалічній структурі сполуки (рис. 2).

Описаний характер будови глобулярних топологічних фрагментів є типовим для купройодидних комплексів, сформованих за участю нітрогенвмісних лігандів (табл. 4.). Геометрично подібні глобулярні одиниці $\{LCuI\}_4$ реалізуються як у структурі значно спорідненого за будовою ліганду (*бензімідазол*)CuI [20], так і в сполуках Cu(I) з піридином та піколінами [21–23], піперидином [24], амінами [25, 26], тощо. Наявність ядер $\{Cu_4I_4\}$ у сполуках з доволі різними за складом та будовою лігандами свідчить про переважаючий вплив на утворення таких топологічних одиниці взаємодій Cu–I та Cu...Cu (відстань Cu...Cu – 2,654–2,740 Å, тілесний кут грані для відповідних взаємодій становить 8,36–9,86 % [27]).

Цікавою особливістю структури сполуки є відсутність координації атомів купруму з ненасиченим зв'язком С=С алільної групи катіона 1-аліл-1Н-бензімідазолу. Таку особливість побудови кристалічної гратки можна пояснити стеричними перешкодами від атомів йоду та надзвичайно слабкому впливові водневих контактів. Підтвердженням такого обґрунтування є відсутність π -комплексів Cu(I), у яких до координаційного оточення атомів металу було включено три йодид іони разом з C=C зв'язком, наявність лише шести сполук, де до координаційної сфери атома металу входить йод та C=C зв'язок ненасиченого ліганду [28], серед яких лише два π -комплекси за участю алільної групи та одного йодид-йону [29].

Таблиця 1

Основні кристалографічні параметри та умови рентгенівського експерименту для сполуки [(C7H5N2(C3H5))4Cu4I4]

Table 1

Selected crystal data and structure refinement parameters of I compound

Параметр	Ι
Брутто формула	$[(C_7H_5N_2(C_3H_5))_4Cu_4I_4]$
М, ат. од.	5578,4
Т, К	150
Колір, форма	темно-червоні призми
Дифрактометр	New Gemini, Dual, Atlas
Символ просторової групи	$P\overline{1}$
<i>a</i> , Å	11,3260(5)
b, Å	12,2730(5)
$c, \mathrm{\AA}$	16,3601(6)
<i>α</i> , °	96,407(3)
β , °	95,572(3)
γ, °	99,260(4)
$V, Å^3$	2215,1(2)
Z	2
р _{обч.} , г/см ³	2,089
F(000)	5312
λ, Å	0,71073
μ , mm ⁻¹	4,72
hkl	-15 < h < 15; -16 < k < 16; -21 < l < 22
Кількість відбить:	
виміряних	26095
використано	
під час уточнення	9674
$ heta_{ ext{makc.}}$, град,	29,0
Кількість уточнених параметрів	533
Вагова схема*	0,0189
$[\sigma^2(F_{\text{BHM.}}^2) + (AP)^2 + BP]^{-1}$	1,4066
$R(F^2)$	0,024
$Rw(F^2)$	0,053
Goof	1,07

* $P = (\overline{F_{\text{BUM.}}^2 + 2F_{\text{OGY.}}^2)}.$

Рис. 1. Глобулярна структурна одиниця {C₇H₅N₂(C₃H₅)CuI}₄ у структурі сполуки I Fig.1. Globular structural unit {C₇H₅N₂(C₃H₅)CuI}₄ in the compound **I** structure

Таблиця 2

119

Координати атомів та їхні параметри теплових зміщень у структурі сполуки І	
	Tai

Атом	x/a	v/b	- z/c	UekB./Uizo . Å2*
(1)	0.48260(2)	0.37305(2)	0.38574(2)	0.02332(5)
(1)	0.39230(2)	0,37303(2) 0.16484(2)	0,38971(2) 0,13909(2)	0,02332(3) 0,02226(5)
I(2) I(3)	0.16291(2)	0,10101(2) 0,42465(2)	0.22191(2)	0.02220(5) 0.02376(5)
I(3) I(4)	0,10291(2) 0,14526(2)	0,9749(2)	0,22191(2) 0,32241(2)	0,02070(5)
$C_{\rm H}(1)$	0,14520(2) 0.38635(3)	0,09749(2) 0.36324(3)	0,32241(2) 0,22926(2)	0,02052(3) 0.02357(8)
Cu(1) Cu(2)	0,30055(3) 0,37566(3)	0,30324(3) 0,17116(3)	0,22)20(2) 0,30115(2)	0,02531(9)
Cu(2) Cu(3)	0,37300(3) 0.18896(3)	0.20702(3)	0,30119(2) 0.19629(2)	0,02331(9) 0.02132(8)
Cu(3) Cu(4)	0,10000(3) 0.24380(3)	0,20702(3) 0,32342(3)	0,19029(2) 0,34603(2)	0,02152(0) 0.02350(8)
$N(1\Delta)$	0,24300(3) 0.4791(2)	0,32342(3) 0.4769(2)	0,34003(2) 0.16898(15)	0,0231(5)
N(1R)	0,4771(2) 0.4603(2)	0,4705(2) 0.0634(2)	0,10070(17) 0.34077(17)	0,0231(5) 0,0303(6)
N(1C)	0,4073(2) 0,0624(2)	0,0034(2) 0.15492(19)	0,04977(17) 0,09891(15)	0,0305(0) 0.0196(5)
N(1C)	0,0024(2) 0.1704(2)	0,15452(17) 0.3621(2)	0,00001(15) 0.44871(15)	0,0170(5)
N(1D) N(2A)	0,1704(2) 0,5094(3)	0,5021(2) 0.6148(2)	0,44871(15) 0.09214(16)	0,0233(3)
N(2R)	0,5074(3)	0,0140(2) 0.0031(3)	0,00214(10) 0.4333(2)	0,0500(0)
N(2C)	-0.0238(2)	0,0031(3) 0.1256(2)	-0.02180(15)	0,0330(10)
N(2C) N(2D)	-0,0238(2) 0.1462(3)	0,1230(2) 0,4025(2)	-0,03180(13) 0.58145(16)	0,0219(3)
$\Gamma(2D)$	0,1402(3) 0,4270(2)	0,4023(2)	0,36143(10) 0.14088(10)	0,0312(0)
U(1A)	0,4379(3)	0,3009(2)	0,14088(19)	0,0239(7)
$\Gamma(1A)$	0,5050	0,3814	0,1355 0,4055(2)	$0,051^{+}$
U(2)	0,5646(5)	0,0916(4)	0,4055(2)	0,0445(10)
H(2)	0,0009	0,1049	0,4237	0,055*
U(IC)	0,0793(3)	0,1452(2)	0,02000(18)	0,0202(6)
H(IC)	0,1552	0,1514	0,0019	0,024*
C(ID)	0,2240(3)	0,391/(3)	0,52443(19)	0,0278(7)
H(ID)	0,3072	0,4041	0,5377	0,033*
C(2A)	0,4888(4)	0,7131(3)	0,0539(2)	0,0435(10)
H(2AA)	0,4037	0,7171	0,0506	0,052*
H(2AB)	0,5100	0,7049	-0,0022	0,052*
C(2C)	-0,0356(3)	0,1176(3)	-0,12257(18)	0,0318(8)
H(2CA)	-0,0988	0,0556	-0,1456	0,038*
H(2CB)	0,0392	0,1022	-0,1417	0,038*
C(2D)	0,1772(4)	0,4330(3)	0,6700(2)	0,0446(10)
H(2DA)	0,1258	0,4838	0,6898	0,053*
H(2DB)	0,2598	0,4721	0,6807	0,053*
C(3A)	0,5592(4)	0,8197(3)	0,0997(2)	0,0461(10)
H(3A)	0,5596	0,8832	0,0735	0,055*
C(3C)	-0,0643(3)	0,2209(3)	-0,1539(2)	0,0372(8)
H(3C)	-0,0756	0,2203	-0,2110	0,045*
C(3D)	0,1645(4)	0,3365(4)	0,7172(2)	0,0511(11)
H(3D)	0,1784	0,3512	0,7747	0,061*
C(4A)	0,6198(4)	0,8317(3)	0,1727(3)	0,0585(13)
H(4AA)	0,6220	0,7705	0,2013	0,070*
H(4AB)	0,6610	0,9016	0,1964	0,070*
C(4C)	-0,0749(4)	0,3121(3)	-0,1080(3)	0,0487(10)
H(4CA)	-0,0643	0,3161	-0,0506	0,058*
H(4CB)	-0,0930	0,3730	-0,1327	0,058*
C(4D)	0,1354(5)	0.2323(4)	0.6847(3)	0.0650(13)

О. Павлюк, М. Миськів, Є. Горешнік ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2021. Випуск 62

		Продовження таблиці 2		
Атом	x/a	y/b	z/c	$U_{ m ekb.}/U_{ m i30.},{ m \AA}^{2*}$
H(4DA)	0,1208	0,2142	0,6274	0,078*
H(4DB)	0,1293	0,1763	0,7187	0,078*
C(5A)	0,6073(3)	0,5620(3)	0,08758(19)	0,0290(7)
C(4)	0,5287(3)	-0,0910(4)	0,3930(2)	0,0427(10)
C(5C)	-0,1172(3)	0,1223(2)	0,01692(18)	0,0205(6)
C(5D)	0,0316(3)	0,3773(3)	0,5389(2)	0,0303(7)
C(6A)	0,7074(4)	0,5785(3)	0,0445(2)	0,0429(10)
H(6A)	0,7192	0,6353	0,0115	0,051*
C(9)	0,5232(5)	-0,2050(4)	0,3976(3)	0,0639(15)
H(9)	0,5798	-0,2310	0,4320	0,077*
C(6C)	-0,2415(3)	0,1055(2)	-0,0031(2)	0,0273(7)
H(6C)	-0,2772	0,0941	-0.0577	0,033*
C(6D)	-0,0831(3)	0,3760(3)	0,5647(2)	0,0393(9)
H(6D)	-0,0937	0.3918	0,6201	0,047*
C(7A)	0.7874(4)	0.5073(3)	0.0532(3)	0.0513(11)
H(7A)	0,8549	0,5159	0,0249	0,062*
C(8)	0.4308(5)	-0.2768(4)	0.3493(3)	0.0645(14)
C(6C)	-0.2415(3)	0,1055(2)	-0.0031(2)	0,0273(7)
H(6C)	-0.2772	0.0941	-0.0577	0.033*
C(6D)	-0.0831(3)	0.3760(3)	0.5647(2)	0.0393(9)
H(6D)	-0.0937	0.3918	0.6201	0.047*
C(7A)	0.7874(4)	0.5073(3)	0.0532(3)	0.0513(11)
H(7A)	0.8549	0.5159	0.0249	0.062*
C(8)	0.4308(5)	-0.2768(4)	0.3493(3)	0.0645(14)
H(8)	0.4236	-0.3528	0.3520	0.077*
C(7C)	-0.3083(3)	0.1067(3)	0.0623(2)	0.0316(8)
H(7C)	-0,3918	0,0956	0,0516	0,038*
C(7D)	-0.1788(3)	0.3501(3)	0.5035(2)	0.0403(9)
H(7D)	-0,2564	0,3484	0,5181	0,048*
C(8A)	0,7717(3)	0,4222(3)	0,1031(3)	0,0442(10)
H(8A)	0,8293	0,3765	0,1080	0,053*
C(7)	0,3483(4)	-0.2384(3)	0,2968(3)	0,0543(12)
H(7)	0,2876	-0,2897	0,2644	0,065*
C(8C)	-0.2554(3)	0,1243(3)	0,1452(2)	0,0296(7)
H(8C)	-0,3042	0,1242	0,1877	0,036*
C(8D)	-0,1637(3)	0,3262(3)	0,4204(2)	0,0371(8)
H(8D)	-0,2312	0,3096	0,3811	0,045*
C(9A)	0,6718(3)	0,4049(3)	0,1451(2)	0,0328(8)
H(9A)	0,6608	0,3480	0,1781	0,039*
C(6)	0,3530(3)	-0,1260(3)	0,2909(2)	0,0392(9)
H(6)	0,2967	-0,1010	0,2556	0,047*
C(9C)	-0,1318(3)	0,1416(2)	0,16421(19)	0,0244(7)
H(9C)	-0,0964	0,1535	0,2189	0,029*
C(9D)	-0,0517(3)	0,3265(3)	0,3951(2)	0,0309(7)
H(9D)	-0,0422	0,3098	0,3395	0,037*
C(10A)	0,5885(3)	0,4752(2)	0,13655(18)	0,0238(7)
C(5)	0,4448(3)	-0,0529(3)	0,3397(2)	0,0308(7)
C(10C)	-0,0622(3)	0,1405(2)	0,09883(18)	0,0190(6)
C(10D)	0,0475(3)	0,3528(3)	0,45578(19)	0,0259(7)
C(10E)**	0,713(2)	-0,0276(16)	0,4810(16)	0,046(5)

120

О. Павлюк, М. Миськів, Є. Горешнік ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2021. Випуск 62

				Продовження таблиці 2
Атом	x/a	y/b	z/c	$U_{ m ekb.}/U_{i_{30.}}, { m \AA}^{2*}$
H(0EA)**	0,7154	-0,0001	0,5392	0,056*
H(0EB)**	0,7045	-0,1080	0,4760	0,056*
C(11E)**	0,820(3)	0,015(3)	0,454(3)	0,097(15)
H(11E)**	0,8385	-0,0125	0,4023	0,117*
C(12E)**	0,9046(11)	0,1007(9)	0,5060(8)	0,050(4)
H(1EA)**	0,8866	0,1279	0,5578	0,060*
H(1EB)**	0,9772	0,1292	0,4877	0,060*
C(10B)***	0,7117(12)	0,0236(9)	0,4960(8)	0,046(3)
H(0AC)***	0,7076	-0,0360	0,5304	0,056*
H(0AD)***	0,7140	0,0930	0,5314	0,056*
C(11B)***	0,8229(9)	0,0294(11)	0,4529(9)	0,035(3)
H(11B)***	0,8966	0,0376	0,4854	0,042*
C(12B)***	0,8236(7)	0,0241(6)	0,3771(6)	0,069(3)
H(2A)***	0,7516	0,0160	0,3426	0,083*
H(2B)***	0,8962	0,0283	0,3545	0,083*

* Для негідрогенових атомів $U_{e\kappa e} = 1/3 \sum_{i} \sum_{j} U_{ij} a_{i}^{*} a_{j}^{*} (\vec{a}_{i} \vec{a}_{j})$, для H – $U_{iso.}$

** Алільна група однієї з кристалографічно незалежних молекул 1-аліл-1Нбензімідазолу розвпорядкована. Заселеність позиції 0,35(1).

*** Заселеність позиції 0,65(1).

Рис. 2. Упаковка топологічних одиниць у структурі I Fig. 2. Topological units packaging in structure of I

Основні довжини зв'язків (d) та валентні (ω) кути у структурі сполуки I *Table 3*

Selected bond distances (d) and valence angles (ω) in the structure of I compound			
Зв'язок	<i>d</i> , Å	Кут	ω,°
I(1)–Cu(1)	2,6652(4)	N(1A)-Cu(1)-I(1)	112,08(7)
I(1)–Cu(4)	2,6737(4)	N(1A)-Cu(1)-I(2)	104,33(7)
I(1)–Cu(2)	2,7323(4)	I(1)-Cu(1)-I(2)	112,03(2)
I(2)–Cu(2)	2,6695(4)	N(1A)–Cu(1)–I(3)	102,27(7)
I(2)–Cu(3)	2,6724(4)	I(1)-Cu(1)-I(3)	111,04(1)
I(2)–Cu(1)	2,7166(4)	I(2)-Cu(1)-I(3)	114,50(2)
I(3)–Cu(4)	2,6596(4)	N(1B)–Cu(2)–I(2)	110,53(8)
I(3)–Cu(3)	2,7248(4)	N(1B)-Cu(2)-I(4)	105,00(8)
I(3)–Cu(1)	2,7499(4)	I(2)-Cu(2)-I(4)	108,61(1)
I(4)–Cu(3)	2,6291(4)	N(1B)-Cu(2)-I(1)	103,82(8)
I(4)–Cu(2)	2,6898(4)	I(2)-Cu(2)-I(1)	111,40(2)
I(4)–Cu(4)	2,7866(4)	I(4)-Cu(2)-I(1)	117,12(2)
Cu(1)-N(1A)	2,014(2)	N(1C)–Cu(3)–I(4)	111,79(7)
Cu(2)–N(1B)	2,007(3)	N(1C)–Cu(3)–I(2)	103,94(7)
Cu(3)–N(1C)	2,009(2)	I(4)-Cu(3)-I(2)	110,37(1)
Cu(4)–N(1D)	1,990(2)	N(1D)-Cu(4)-I(3)	111,79(8)
N(1A)–C(1A)	1,309(4)	N(1D)-Cu(4)-I(1)	106,71(7)
N(1A)-C(10A)	1,397(4)	I(3)-Cu(4)-I(1)	113,65(2)
N(1B)–C(2)	1,318(4)	N(1D)-Cu(4)-I(4)	96,54(7)
N(1B)–C(5)	1,397(4)	I(3)-Cu(4)-I(4)	110,97(1)
N(1C)-C(1C)	1,318(4)	I(1)-Cu(4)-I(4)	115,80(2)
N(1C)-C(10C)	1,394(4)	C(1A)-N(1A)-C(10A)	104,9(3)
N(1D)-C(1D)	1,310(4)	C(2)-N(1B)-C(5)	105,3(3)
N(1D)-C(10D)	1,395(4)	C(1C)-N(1C)-C(10C)	104,9(2)
N(2A)–C(1A)	1,342(4)	C(1D)-N(1D)-C(10D)	105,2(3)
N(2A)-C(5A)	1,376(4)	C(1A)-N(2A)-C(5A)	106,8(3)
N(2A)C(2A)	1,460(4)	C(1A)-N(2A)-C(2A)	126,3(3)
N(2B)–C(2)	1,347(5)	C(5A)–N(2A)–C(2A)	126,8(3)
N(2B)–C(4)	1,378(6)	C(2)–N(2B)–C(4)	107,3(3)
N(2B)-C(10B)	1,49(1)	C(2)–N(2B)–C(10B)	118,2(5)
N(2B)-C(10E)	1,52(2)	C(4)–N(2B)–C(10B)	134,5(5)
N(2C)-C(1C)	1,347(4)	C(2)-N(2B)-C(10E)	140,7(8)
N(2C)-C(5C)	1,383(4)	C(4)–N(2B)–C(10E)	110,7(8)
N(2C)C(2C)	1,469(4)	C(1C)-N(2C)-C(5C)	106,9(2)
N(2D)-C(1D	1,354(4)	C(1C)-N(2C)-C(2C)	126,8(3)
N(2D)-C(5D)	1,383(4)	C(5C)-N(2C)-C(2C)	126,1(3)
N(2D)C(2D)	1,450(4)		

Таблиця 4

Деякі купройодидні комплекси з глобулярними фрагментами {*L*CuI}₄ *Table 4*

Selected copper-iodine complexes with globular topological units {LCuI}₄

Склад сполуки	Ліганди	Література
$C_{28}H_{24}N_8Cu_4I_4\cdot 3(C_6H_{14}O_3)$	N NH	[20]
C20H44N4Cu4I4	NH	[24]
C20H20N4Cu4I4		[21]
C24H28N4Cu4I4	CH3	[23]
C24H28N4Cu4I4	CH ₃	[30]
C24H28N4Cu4I4·2(C7H8)	H ₃ C	[30]
$C_{18}H_{24}N_4Cu_4I_4$		[25]
$C_{12}H_{36}N_4Cu_4I_4$	$H_{3}C - N$ $H_{3}C - N$ CH_{3} CH_{3}	[26]

4. Висновки

Отже, як в умовах модифікованого змінно-струмного електрохімічного синтезу в присутності 1-аліл-1Н-бензімідазолу, металічної міді та йоду, утворюється сполука [($C_7H_5N_2(C_3H_5)$)₄Cu₄I₄], у якій відсутня координація алільної групи ліганду атомом Cu(I). Можливим поясненням описаної особливості структури є вплив стеричних перешкод від атомів йоду та стійкість {Cu₄I₄} топологічних одиниць.

1. *Hosmane N. S.* Advanced inorganic chemistry: applications in everyday life // London: Academic press, 2017. 255 p.

Smith D. R. Copper 1996 // Coord. Chem. Rev. 1998. Vol. 172, No. 1. P. 457–573. DOI: https//doi.org/10.1016/S0010-8545(98)00098-8

Slyvka Y., Goreshnik E., Pavlyuk O. et al. Copper(I) π-complexes with allyl derivatives of heterocyclic compounds: structural survey of their crystal engineering // Open Chem. (Central. Eur. J. Chem.). 2013. Vol. 11, No. 12. P. 43–61. DOI: https://doi.org/10.2478/s11532-013-0323-3

- Santini C., Pellei M., Gandin V. et al. Advances in copper complexes as anticancer agents // Chem. Rev. 2013. Vol. 114, No. 1. P. 815–862. DOI: https://doi.org/10.1021/cr400135x
- Wang X.-S., Zhao H., Li Y.-H. et al. Olefin-copper(I) complexes and their properties // Top. Catal. 2005. Vol. 35, No. 1–2. P. 43–61. DOI: https://doi.org/10.1007/s11244-005-3812-6
- Benesperi I., Singh R., Freitag M. Copper coordination complexes for energy-relevant applications // Energies. 2020. Vol. 13, No. 9. P. 2198–2217. DOI: https://doi.org/10.3390/en13092198
- Shinde V. S., Lawande P. P., Sontakke V. A., et al. Synthesis of benzimidazole nucleosides and their anticancer activity // Carbohydr. Res. 2020. Vol. 498. P. 108178. DOI: https//doi.org/10.1016/j.carres.2020.108178
- Alamgir M., Black D. S. C., Kumar N. Synthesis, reactivity and biological activity of benzimidazoles // Bioactive Heterocycles III. Topics in Heterocyclic Chemistry. Berlin, Heidelberg, 2007. – P. 87–118.
- Paramashivappa R., Phani Kumar P., Subba Rao P.V. et al. Design, synthesis and biological evaluation of benzimidazole/benzothiazole and benzoxazole derivatives as cyclo-oxygenase inhibitors // Bioorg. Med. Chem. Lett. 2003. Vol. 13, No. 4. P. 657–660. DOI: https://doi.org/10.1016/S0960-894X(02)01006-5
- Onyeachu I. B., Solomon M. M., Umoren S. A. et al. Corrosion inhibition effect of a benzimidazole derivative on heat exchanger tubing materials during acid cleaning of multistage flash desalination plants // Desalination. 2020. Vol. 479, P. 2198–2217. DOI: https://doi.org/10.1016/j.desal.2019.114283
- 11. *Weigand K., Khilgetag G.* Experimental methods in organic chemistry: trans. with it., ed. Suvorova N.N. M: Chemistry, 1968.944 p.
- Mikhalichko B. M., Myskiv M. G. Patent. No. 25450 A Ukraine, MKI C30B 7/12, C30B 7/14. Method of obtaining crystalline modifications of copper halide π-complexes / Ukraine. № 95083610. Application. 01.08.95ю Publ. 10/30/98 Bull. № 6. 1998. S. 4.
- 13. Gordiychuk O.R., Myskiv M.G. Pat. 108760 Ukraine, IPC6 C25 B 1/24. C 30 B 7/12, C 30 B 7/14. Method for synthesis of copper (I) iodide coordination compounds / Gordiychuk OR, Myskiv MG; applicant and owner Ivan Franko National University of Lviv. № U2016 01668.
- 14. CrysAlisPro 1.171.38.34a (Rigaku OD, 2015).
- Sheldrick G.M. SHELXT Integrated space-group and crystal-structure determination // Acta Cryst. A. 2015. Vol. 71, No. 1. P. 3–8. DOI: https://doi.org/10.1107/S2053273314026370
- 16. *Sheldrick G.M.* Crystal structure refinement with SHELXL // Acta Cryst. C. 2015. Vol. 71, No. 1. P. 3–8. DOI: https://doi.org/10.1107/S2053229614024218
- Dolomanov O. V., Bourhis L. J., Gildea R. J. et al. OLEX²: a complete structure solution, refinement and analysis program // J. Appl. Crystallogr. 2009. Vol. 42, No. 2. P. 339–341. DOI: https://doi.org/10.1107/S0021889808042726
- 18. *Muller P., Herbst-Irmer R., Spek A.L. et al.* A Crystallographer's guide to SHELXL. Oxford University Press, USA, 2006. 213 p.
- Okuniewski A., Rosiak D., Chojnacki J., et al. Coordination polymers and molecular structures among complexes of mercury(II) halides with selected 1-benzoylthioureas // Polyhedron. 2015. Vol. 90. P. 47–57. DOI: https://doi.org/10.1016/j.poly.2015.01.035

- Toth A., Floriani C., Chiesi-Villa A. et al. Copper(I)-benzimidazole adducts: From mononuclear to polymeric complexes // Inorg. Chem. 1987. Vol. 26, No. 23. P. 3897–3902. DOI: https://doi.org/10.1021/ic00270a015
- Raston C. L., White A. H. Crystal structure of the copper(I) iodide-pyridine (1/1) tetramer // J. Chem. Soc. Dalt. Trans. 1976. Vol. 1976, No. 21. P. 2153–2156. DOI: https://doi.org/10.1039/dt9760002153
- Healy P. C., Pakawatchai C., Raston C. L., et al. Lewis-base adducts of group 1B metal (I) compounds. Part 1. Synthesis and structure of CuIL_n complexes (L= nitrogen base, n = 1.5) // J. Chem. Soc., Dalt. Trans. 1983. No. 9. P. 1905–1916. DOI: https://doi.org/10.1039/dt9830001905
- 23. Healy P. C., Pakawatchai C., White A. H. Lewis-base adducts of Group 1B metal(I) compounds. Part 2. Synthesis and structure of CuIL₂ complexes (L = nitrogen base) // J. Chem. Soc. Dalt. Trans. 1983. No. 9. P. 1917. DOI: https://doi.org/10.1039/dt9830001917
- Schramm V. Crystal and molecular structure of tetrameric copper(I) iodide-piperidine, a complex with a tetrahedral tetrakis[copper(I) iodide] core // Inorg. Chem. 1978. Vol. 17, No. 3. P. 714–718. DOI: https://doi.org/10.1021/ic50181a043
- Rath N. P., Holt E. M., Tanimura K. Fluorescent copper(I) complexes: structural and spectroscopic characterization of bis(p-toluidine)bis(acetonitrile)tetraiodotetracopper and bis[(p-chloroaniline)(acetonitrile)diiododicopper] tetrameric complexes of mixedligand character // Inorg. Chem. 1985. Vol. 24, No. 23. P. 3934–3938. DOI: https://doi.org/10.1021/ic00217a048
- Babich O. A., Kokozay V. N. Direct synthesis and crystal structure of tetrameric copper(I) iodide with trimethylamine [CuI(NMe₃)]₄ // Polyhedron. 1997. Vol. 16, No. 9. P. 1487–1490. DOI: https://doi.org/10.1016/S0277-5387(96)00431-7
- Blatov V. A. Voronoi–Dirichlet polyhedra in crystal chemistry: theory and applications // Crystallogr. Rev. 2004. Vol. 10, No. 4. P. 249–318. DOI: https://doi.org/10.1080/08893110412331323170
- Groom C. R., Bruno I. J., Lightfoot M. P. et al. The Cambridge structural database // Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 2016. Vol. 72, No. 2. P. 171–179. DOI: https://doi.org/10.1107/S2052520616003954
- Hordiichuk O. R., Kinzhybalo V. V., Goreshnik E. A., et al. Influence of apical ligands on Cu-(C=C) interaction in copper(I) halides (Cl⁻, Br⁻, I⁻) π-complexes with an 1,2,4-triazole allyl-derivative: Syntheses, crystal structures and NMR spectroscopy // J. Organomet. Chem. 2017. Vol. 838, P. 1–8.
 DOL: https://doi.org/10.1016/j.jergenzham.2017.02.022
 - DOI: https://doi.org/10.1016/j.jorganchem.2017.03.022
- Cariati E., Bu X., Ford P. C. Solvent- and vapor-Induced isomerization between the luminescent solids [CuI(4-pic)]₄ and [CuI(4-pic)] ∞ (pic = methylpyridine). The structural basis for the observed luminescence vapochromism // Chem. Mater. 2000. Vol. 12, No. 11. P. 3385–3391. DOI: https://doi.org/10.1021/cm0010708

SYNTHESIS AND CRYSTAL STRUCTURE OF COPPER(I) IODINE COMPLEXES WITH 1-ALLYL-1H-BENZIMIDAZOLE

O. Pavlyuk^{1*}, M. Mys'kiv¹, E. Goreshnik²

¹Ivan Franko National University of L'viv, Kyryla i Mefodiya, Str., 6, 79005 Lviv, Ukraine;

²Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia e-mail: pavalex@gmail.com

By reaction of acetonitrile solution of 1-allyl-4-benzimidazole, iodine and copper under alternating current technique in 1 day the dark red crystals of $[(C_7H_5N_2(C_3H_5))_4Cu_4I_4]$ (I) compound was obtained and structurally characterized by X-ray single crystal method: space group $P\overline{1}$, Z = 2, a = 11,3260(5), b = 12,2730(5), c = 16,3601(6) Å, $\alpha = 96,407(3)$, $\beta = 95,572(3)$, $\gamma = 99,260(4)^\circ$, V = 2215,1(2) Å³, $\rho_{o64} = 2,089$ г/см³, New Gemini, Dual, $\mu(MoK_{\alpha}) = 4,72$ мм⁻¹, empirical absorption correction, $\theta_{max} = 29,0^\circ$, 26095 measured, 9674 used reflections, $R(F^2) = 0,024$, $Rw(F^2) = 0,053$, S = 1,07.

Structures was solved by direct methods and refined by least-squares method on F^2 by SHELXL-2014 with following graphical user interfaces of OLEX².

In the crystal structure of compound I, the copper(I) atoms possess a deformed tetrahedral coordination environment formed by nitrogen atom (Cu-N distances 1,990–2,014 Å) of organic ligand and three iodine atoms (Cu-I distances 2,629–2,787 Å). Due to the fact that each I atom of four independent ones connects three copper(I) atoms, globular units $\{Cu_4I_4\}^-$ are appearing. Bonding of nitrogen atom of ligand moieties with Cu(I) closed coordination environments causes an appearance of the $\{C_7H_5N_2(C_3H_5)CuI\}_4$ topological block.

An interesting feature of the compound structure is the lack of coordination of copper atoms with the unsaturated C=C bond of the allyl group of the 1-allyl-1H-benzimidazole cation. This feature of the crystal structure topology can be explained by a steric hindrance from iodine atoms and the extremely weak power of hydrogen and Cu...Cu contacts. Confirmation of this approval is the lack of literature information about π -complexes of Cu(I), in which the coordination environment of metal atoms included three iodide ions together with C=C bond.

Keywords: 1-allyl-1H-benzimidazole, copper(I), iodine coordination compounds, crystal structure.

Стаття надійшла до редколегії 01.11.2020 Прийнята до друку 18.05.2021