ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2021. Випуск 62. С. 99–108 Visnyk of the Lviv University. Series Chemistry. 2021. Issue 62. Р. 99–108

УДК 546:548.736

ФАЗИ ЗІ СТРУКТУРОЮ ПЕРОВСКІТУ У СИСТЕМАХ *А*-*R*-Fe-O, ДЕ *А* – ЛУЖНОЗЕМЕЛЬНИЙ; *R* – РІДКІСНОЗЕМЕЛЬНИЙ МЕТАЛ

В. В. Грицан, О. І. Заремба*, Р. Є. Гладишевський

Львівський національний університет імені Івана Франка, вул. Кирила і Мефодія 6, 79005 Львів, Україна e-mail: oksanazaremba@gmail.com

Полікристалічні зразки вихідного складу $A_{0,5}R_{0,5}$ FeO₃, де A – лужноземельний; R – рідкісноземельний метал, синтезовано методом твердофазної реакції за температури 1 000 °C. За результатами рентгенофазового та рентгеноструктурного аналізу виявлено, що у системах Ca–R–Fe–O утворюються чотирикомпонентні фази R_{1-x} Ca_xFeO₃ зі структурою ромбічного перовскіту GdFeO₃. Також ми показали, що на перетинах SrFeO₃–RFeO₃ систем Sr–R–Fe–O в рівновазі є тверді розчини заміщення на основі перовскітних фаз з відповідних обмежуючих систем зі структурами типів CaTiO₃ та GdFeO₃, відповідно. Утворення чотирикомпонентних перовскітних фаз у системах Ba–R–Fe–O за умов дослідження не простежували.

Ключові слова: лужноземельний метал, рідкісноземельний метал, фазовий аналіз, кристалічна структура, перовскіти.

DOI: https:/doi.org/10.30970/vch.6201.099

1. Вступ

Сполуки ABO₃ належать до родини перовскітів, що становлять важливий клас функціональних матеріалів. Багато з них уже застосовують як каталізатори, електроди, сенсори тощо [1, 2]. Однак ґрунтовне дослідження таких, на перший погляд, простих сполук залишається актуальним, зважаючи на величезну толерантність структурного типу CaTiO₃ та його похідних, а також широкий спектр притаманних для них фізичних властивостей.

Згідно з літературними відомостями [3] для більшості систем A-R-Fe-O, де A – лужноземельний; R – рідкісноземельний метал (P3M), притаманне утворення чотирикомпонентних сполук (табл. 1). Зауважено, що в багатьох з цих систем утворюються фази загального складу (A,R)FeO₃, що належать до родини перовскітів і викликають особливий інтерес. Однак ці фази відрізняються умовами існування, кристалічними структурами та співвідношенням A/R.

Мета нашої статті — систематичне вивчення взаємодії компонентів на перетинах $AFeO_3$ — $RFeO_3$ систем A—R—Fe—O, де A — лужноземельний; R — рідкісноземельний метал, з метою пошуку чотирикомпонентних перовскітних фаз.

[©] Грицан В. В., Заремба О. І., Гладишевський Р. Є., 2021

Відомості про утворення (+) чотирикомпонентних сполук у системах *А*–*R*–Fe–O, де *А* – лужноземельний; *R* – рідкісноземельний метал

Table 1

Formation (+) of four-component compounds in A-R-Fe–O systems, where A – alkaline-earth; R – rare-earth metal

<i>A</i> / <i>R</i>	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
Ca		+	+	_	+		+	_	+	_		_	_	_
Sr	+	+	+	_	+	+	+	+	+	+	—			_
Ba	+	+	+		+	+	+	+	+	+	+	+	+	+

*Сірим кольором зазначено системи, в яких утворюються фази складу (A,R) FeO₃.

2. Матеріали та методика експерименту

Полікристалічні зразки вихідного складу $A_{0.5}$ R_{0.5}FeO₃ виготовлено методом твердофазної реакції з дрібнодисперсних порошків карбонатів лужноземельних металів, оксидів РЗМ та ферум(III) оксиду високої чистоти у дві стадії. На першій стадії реагенти зважували, перемішували та перетирали впродовж 5 хв після додавання кожного наступного компонента з метою більшої гомогенізації, нагрівали в корундових тиглях за температури 1 000 °С впродовж доби у муфельній печі СНОЛ-1,6 з автоматичним регулюванням температури з точністю $\pm 1^{\circ}$ С для повного розкладу карбонату. На другій стадії отримані суміші знову перетирали, пресували у формі таблеток (маса таблетки становила ~0,5 г) та спікали за температури 1 000 °С на повітрі впродовж доби. Про проходження твердофазної реакції свідчила зміна забарвлення таблеток після термічної обробки (порівняно з сумішшю вихідних речовин), а також твердість і крихкість зразків після спікання.

Основним методом ідентифікації фаз у зразках був рентгенівський фазовий аналіз, а для уточнення кристалічної структури виявлених фаз використовували рентгенівський структурний аналіз на основі масивів даних, отриманих на автоматичному порошковому дифрактометрі ДРОН-2.0М (проміння Fe Ka) з наступним уточненням за допомогою комп'ютерної програми DBWS [4]. Вихідні моделі для структурних уточнень взято з баз даних Pearson's Crystal Data [3], Pauling File [5] та окремих наукових статей. У процесі вивчення кристалічних структур індивідуальних фаз визначали та уточнювали параметри елементарних комірок і координати атомів, фактори шкали, параметр змішування функцій Ґаусса та Лоренца, асиметрію піків, ширину піків на половині висоти, фактори текстури, зайнятість окремих положень атомів тощо.

Для оцінки достовірності вибраної моделі використовували фактор достовірності (розбіжності) $R_{\rm B} = \Sigma |I_{cnocm.} - I_{posp.}| / \Sigma I_{cnocm.}$, де $I_{cnocm.}$ – спостережувана інтенсивність піка; $I_{posp.}$ – розрахована інтенсивність піка.

Скануючу електронну мікроскопію (SEM) проводили у ЦККНО "Лабораторія матеріалознавства інтерметалічних сполук" Львівського національного університету імені Івана Франка на скануючому електронному мікроскопі Tescan Vega 3 LMU.

3. Результати досліджень та їх обговорення

За результатами рентгенофазового аналізу полікристалічних зразків складу $Ca_{0.5}R_{0.5}FeO_3$, синтезованих за температури 1 000 °C, з'ясовано, що вони містять як домінуючу фазу $R_{1-x}Ca_xFeO_3$ ($x \sim 0.15$) зі структурою ромбічного перовскіту GdFeO₃ [6] (символ Пірсона *оP*20, просторова група *Pnma*) (табл. 2).

Результати фазового аналізу полікристалічних зразків складу Са_{0,5}*R*_{0,5}FeO₃, синтезованих за температури 1 000 °С

Table 2

101

Ma	Вихідний	Фазовий	СТ	СП	пг	Вміст,
JNO	склад зразка	склад зразка	CI	CII	111	мас.%
		Ca0,15Pr0,85FeO3	GdFeO ₃	oP20	Pnma	78,0
1	Ca0,5Pr0,5FeO3	CaFeO ₃	GdFeO ₃	oP20	Pnma	17,9
		Pr7O12	Pr7O12	hR57	<i>R</i> -3	4,1
2	C. NI E.O	Ca _{0,11} Nd _{0,89} FeO ₃	GdFeO ₃	oP20	Pnma	76,7
2	Ca0,5INd0,5FeO3	CaFeO ₃	GdFeO ₃	oP20	Pnma	23,3
2	Ca Sm EaO	Ca0,12Sm0,88FeO3	GdFeO ₃	oP20	Pnma	87,4
3	Ca _{0,5} Sm _{0,5} FeO ₃	CaFeO ₃	GdFeO ₃	oP20	Pnma	12,6
4	C. E. E.O	Ca0,10Eu0,90FeO3	GdFeO ₃	oP20	Pnma	61,6
4	Ca0,5Eu0,5FeO3	CaFe ₂ O ₄	CaV_2O_4	oP28	Pnma	38,4
		Ca0,15Gd0,85FeO3	GdFeO ₃	oP20	Pnma	83,7
5	Ca0,5Gd0,5FeO3	CaFeO ₃	GdFeO ₃	oP20	Pnma	12,4
		Gd_2O_3	$(Mn_{0,5}Fe_{0,5})_2O_3$	<i>cI</i> 80	Ia-3	3,9
		Ca0,15Tb0,85FeO3	GdFeO ₃	oP20	Pnma	52,6
6	Ca0,5Tb0,5FeO3	CaFe ₂ O ₄	CaV ₂ O ₄	oP28	Pnma	31,1
		Tb7O12	Pr7O12	hR57	<i>R</i> -3	16,3
		Ca0,11Dy0,89FeO3	GdFeO ₃	oP20	Pnma	56,4
7	Ca0,5Dy0,5FeO3	CaFe ₂ O ₄	CaV ₂ O ₄	oP28	Pnma	28,8
		Dy ₂ O ₃	(Mn0,5Fe0,5)2O3	<i>cI</i> 80	Ia-3	14,8
		Ca0,12H00,88FeO3	GdFeO ₃	oP20	Pnma	65,2
8	Ca _{0,5} Ho _{0,5} FeO ₃	CaFe ₂ O ₄	CaV_2O_4	oP28	Pnma	20,4
		Ho ₂ O ₃	(Mn0,5Fe0,5)2O3	<i>cI</i> 80	Ia-3	14,4
		Ca0,09Er0,91FeO3	GdFeO ₃	oP20	Pnma	49,0
9	Ca0,5Er0,5FeO3	CaFe ₂ O ₄	CaV ₂ O ₄	oP28	Pnma	35,6
		Er ₂ O ₃	(Mn0,5Fe0,5)2O3	<i>cI</i> 80	Ia-3	15,4
		Ca0,09Tm0,91FeO3	GdFeO ₃	oP20	Pnma	42,5
10	Ca0,5Tm0,5FeO3	CaFe ₂ O ₄	CaV ₂ O ₄	oP28	Pnma	37,7
		Tm_2O_3	(Mn0,5Fe0,5)2O3	<i>cI</i> 80	Ia-3	19,8
		Ca _{0,12} Yb _{0,88} FeO ₃	GdFeO ₃	oP20	Pnma	55,0
11	Ca _{0,5} Yb _{0,5} FeO ₃	CaFe ₂ O ₄	CaV_2O_4	oP28	Pnma	30,9
		Yb ₂ O ₃	(Mn0,5Fe0,5)2O3	<i>cI</i> 80	Ia-3	14,1
		Ca _{0,15} Lu _{0,85} FeO ₃	GdFeO ₃	oP20	Pnma	42,6
12	Ca0,5Lu0,5FeO3	CaFe ₂ O ₄	CaV ₂ O ₄	oP28	Pnma	35,3
		Lu ₂ O ₃	(Mn0,5Fe0,5)2O3	<i>cI</i> 80	Ia-3	22,1

Phase analysis of the Ca_{0.5} $R_{0.5}$ FeO₃ polycrystalline samples synthesized at 1000 °C

У табл. З наведено уточнені параметри елементарної комірки чотирикомпонентних перовскітних фаз $R_{1-x}Ca_xFeO_3$. Моделі для структурних уточнень взято з [3]. Як бачимо з рис. 1, об'єм елементарної комірки перовскітних фаз закономірно зменшується за збільшення порядкового номера РЗМ.

За результатами вивчення зразків складу $Sr_{0.5}R_{0.5}FeO_3$ (табл. 4) виявлено, що вони містять фази $Sr_{1-x}R_xFeO_3$ (СТ СаТіО₃, СП *сР*5, ПГ *Рт-3т* [7]) та $R_{1-x}Sr_xFeO_3$ (СТ GdFeO₃, СП *оP*20, ПГ *Рпта*), а також, за винятком зразка із Sm, незначну кількість оксиду РЗМ. Параметри елементарної комірки фаз $Sr_{1-x}R_xFeO_3$ практично не змінюються,

тоді як об'єм елементарної комірки фаз R_{1-x} Sr_xFeO₃ закономірно зменшується зі збільшенням порядкового номера рідкісноземельного металу (табл. 5, рис. 2). Моделі для структурних уточнень взято з [3].

Додатково синтезовано зразки вихідних складів $Sr_{0,7}Ho_{0,3}FeO_3$ та $Sr_{0,3}Ho_{0,7}FeO_3$, результати вивчення яких наведено у табл. 6.

Таблиця З

Параметри елементарної комірки фаз *R*_{1-x}Ca_xFeO₃ (CT GdFeO₃,CП *oP*20, ПГ *Pnma*) *Table 3*

	Unit-cell parameters of the R _{1-x} Ca _x FeO ₃ phases (ST GdFeO ₃ , PS <i>oP</i> 20, SG <i>Pnma</i>)							
N₂	Фаза	<i>a</i> , Å	b, Å	<i>c</i> , Å	$R_{ m B}$			
1	Ca0,15Pr0,85FeO3	5,540(2)	7,756(3)	5,468(1)	0,109			
2	Ca0,11Nd0,89FeO3	5,570(2)	7,750(2)	5,446(1)	0,090			
3	Ca0,12Sm0,88FeO3	5,583(1)	7,703(1)	5,400(1)	0,109			
4	Ca0,10Eu0,90FeO3	5,593(1)	7,682(1)	5,377(1)	0,101			
5	Ca0,15Gd0,85FeO3	5,583(1)	7,647(1)	5,348(1)	0,108			
6	Ca0,15Tb0,85FeO3	5,579(1)	7,628(1)	5,318(1)	0,110			
7	Ca0,11Dy0,89FeO3	5,586(1)	7,616(1)	5,309(1)	0,077			
8	Ca0,12H00,88FeO3	5,585(1)	7,602(1)	5,289(1)	0,061			
9	$Ca_{0,09}Er_{0,91}FeO_3$	5,582(1)	7,596(1)	5,272(1)	0,068			
10	Ca0,09Tm0,91FeO3	5,573(1)	7,584(1)	5,259(1)	0,093			
11	Ca0,12Yb0,88FeO3	5,569(1)	7,571(1)	5,243(1)	0,092			
12	Ca0,15Lu0,85FeO3	5,554(1)	7,549(1)	5,217(1)	0,063			

Рис. 1. Зміна об'єму елементарної комірки чотирикомпонентних фаз *R*_{1-x}Ca_xFeO₃ (CT GdFeO₃) за збільшення порядкового номера рідкісноземельного металу Fig. 1. Cell volume of four-component *R*_{1-x}Ca_xFeO₃ phases (ST GdFeO₃) *vs.* atomic number of the rare-earth metal

Результати фазового аналізу полікристалічних зразків складу Sr_{0,5}R_{0,5}FeO₃, синтезованих за температури 1 000 °C

Table 4

103

<u>г</u>							
N⁰	Вихіднии	Фазовии	CT	СП	ПГ	BMICT,	
	склад зразка	склад зразка		D5		Mac.%	
		Sr0,86Pr0,14FeO3		<i>cP</i> 5	Pm-3m	51,1	
1	Sr0,5Pr0,5FeO3	Pr _{0,73} Sr _{0,27} FeO ₃	GdFeO ₃	oP20	Pnma	44,0	
		Pr7O12	Pr ₇ O ₁₂	hR57	<i>R</i> -3	4,9	
2	Sro 5Ndo 5FeO3	Sr _{1-x} Nd _x FeO ₃	CaTiO ₃	cP5	Pm-3m	~60	
	510,51 (00,51 0 0 5	Nd _{1-x} Sr _x FeO ₃	GdFeO ₃	oP20	Pnma	~40	
3	SrosSmosFeO2	Sr0,65Sm0,35FeO3	CaTiO ₃	cP5	Pm-3m	58,3	
5	510,55110,51 603	Sm _{1-x} Sr _x FeO ₃	GdFeO ₃	oP20	Pnma	41,7	
		Eu0,85Sr0,15FeO3	GdFeO ₃	oP20	Pnma	52,1	
4	Sr0,5Eu0,5FeO3	Sr0,69Eu0,31FeO3	CaTiO ₃	cP5	Pm-3m	44,6	
		Eu ₂ O ₃	(Mn0,5Fe0,5)2O3	<i>cI</i> 80	Ia-3	3,3	
		Sr0,89Gd0,11FeO3	CaTiO ₃	cP5	Pm-3m	57,2	
5	Sr _{0,5} Gd _{0,5} FeO ₃	Gd _{0,87} Sr _{0,13} FeO ₃	GdFeO ₃	oP20	Pnma	26,4	
		Gd ₂ O ₃	(Mn0,5Fe0,5)2O3	<i>cI</i> 80	Ia-3	16,4	
		Sr _{0,84} Tb _{0,16} FeO ₃	CaTiO ₃	cP5	Pm-3m	56,3	
6	Sr _{0,5} Tb _{0,5} FeO ₃	Tb _{1-x} Sr _x FeO ₃	GdFeO ₃	oP20	Pnma	41,4	
		Tb_7O_{12}	Pr_7O_{12}	hR57	<i>R</i> -3	2,3	
		Sr0,81Dy0,19FeO3	CaTiO ₃	cP5	Pm-3m	52,2	
7	Sr _{0,5} Dy _{0,5} FeO ₃	Dy _{1-x} Sr _x FeO ₃	GdFeO ₃	oP20	Pnma	45,4	
		Dy ₂ O ₃	$(Mn_{0,5}Fe_{0,5})_2O_3$	<i>cI</i> 80	Ia-3	2,4	
		Sr0,83H00,17FeO3	CaTiO ₃	cP5	Pm-3m	49,7	
8	Sr0,5H00,5FeO3	Ho0,95Sr0,05FeO3	GdFeO ₃	oP20	Pnma	46,8	
		Ho ₂ O ₃	$(Mn_{0,5}Fe_{0,5})_2O_3$	<i>cI</i> 80	Ia-3	3,5	
		Er0,90Sr0,10FeO3	GdFeO ₃	oP20	Pnma	49,0	
9	Sr0,5Er0,5FeO3	Sr0,90Er0,10FeO3	CaTiO ₃	cP5	Pm-3m	41,1	
		Er ₂ O ₃	(Mn0,5Fe0,5)2O3	<i>cI</i> 80	Ia-3	9,9	
		Sr0,79Tm0,21FeO3	CaTiO ₃	cP5	Pm-3m	51,9	
10	Sr0,5Tm0,5FeO3	Tm0,89Sr0,11FeO3	GdFeO ₃	oP20	Pnma	33,4	
		Tm ₂ O ₃	(Mn0,5Fe0,5)2O3	<i>cI</i> 80	Ia-3	14,7	
		Sr _{0,79} Yb _{0,21} FeO ₃	CaTiO ₃	cP5	Pm-3m	54,4	
11	Sr0.5Yb0.5FeO3	Yb0.97Sr0.03FeO3	GdFeO ₃	oP20	Pnma	28,3	
	- , ,	Yb ₂ O ₃	$(Mn_{0.5}Fe_{0.5})_2O_3$	<i>cI</i> 80	Ia-3	17,3	
		Sr _{0.83} Lu _{0.17} FeO ₃	CaTiO ₃	cP5	Pm-3m	54,0	
12	Sr0 5Lu0 5FeO3	$Lu_{0.92}$ Sr _{0.08} FeO ₃	GdFeO ₃	oP20	Pnma	23.0	
		Lu ₂ O ₃	$(Mn_{0.5}Fe_{0.5})_2O_3$	<i>cI</i> 80	Ia-3	23,0	

Phase analysis of the Sr_{0.5} $R_{0.5}$ FeO₃ polycrystalline samples synthesized at 1 000 °C

Як бачимо з табл. 4 і 6, за збільшення вмісту рідкісноземельного металу у зразках на перетині SrFeO₃–HoFeO₃ системи Sr–Ho–Fe–O вміст фази зі структурою кубічного (ідеального) перовскіту закономірно зменшується, тоді як вміст фази зі структурою ромбічного (деформованого) перовскіту зростає. Отже, на прикладі системи Sr–Ho–Fe–O показано, що на перетинах SrFeO₃–RFeO₃ тетрарних фаз складу $A_{0.5}R_{0.5}$ FeO₃ не утворюється, а в рівновазі є тверді розчини заміщення на основі перовскітних фаз з відповідних обмежуючих систем.

Table 5

Параметри елементарної комірки фаз R_{1-x} Sr_xFeO₃ (CT GdFeO₃, CП oP20, ПГ Pnma) та Sr_{1-x} R_x FeO₃ (CT CaTiO₃, СП cP5, ПГ Pm-3m)

Unit-cell parameters of the *R*_{1-x}Sr_xFeO₃ (ST GdFeO₃, SP *oP*20, SG *Pnma*) and Sr_{1-x}*R*_xFeO₃ phases (ST CaTiO₃, PS *cP*5, SG *Pm*-3*m*)

N₂	Фаза	<i>a</i> , Å	b, Å	<i>c</i> , Å	$R_{ m B}$
1	Pr0,73Sr0,27FeO3	5,535(1)	7,771(2)	5,490(2)	0,151
2	$Nd_{1-x}Sr_xFeO_3$		недостатньо я	кісний зразок	
3	$Sm_{1-x}Sr_xFeO_3$	5,567(1)	7,705(2)	5,410(1)	0,088
4	$Eu_{0,85}Sr_{0,15}FeO_3$	5,580(1)	7,688(1)	5,383(1)	0,135
5	Gd _{0,87} Sr _{0,13} FeO ₃	5,577(1)	7,676(2)	5,363(1)	0,125
6	$Tb_{1-x}Sr_xFeO_3$	5,582(1)	7,641(1)	5,327(1)	0,093
7	$Dy_{1-x}Sr_xFeO_3$	5,582(1)	7,622(1)	5,304(1)	0,111
8	Ho0,95Sr0,05FeO3	5,581(1)	7,610(1)	5,282(1)	0,130
9	$Er_{0,90}Sr_{0,10}FeO_3$	5,576(1)	7,603(1)	5,268(1)	0,158
10	$Tm_{0,89}Sr_{0,11}FeO_3$	5,562(1)	7,585(1)	5,248(1)	0,087
11	Yb0,97Sr0,03FeO3	5,553(1)	7,572(1)	5,233(1)	0,126
12	$Lu_{0,92}Sr_{0,08}FeO_3$	5,544(1)	7,560(1)	5,221(1)	0,094
13	$Sr_{0,86}Pr_{0,14}FeO_3$	3,867(1)	—	—	0,085
14	$Sr_{1-x}Nd_xFeO_3$		недостатньо я	кісний зразок	
15	Sr _{0,65} Sm _{0,35} FeO ₃	3,864(1)	-	_	0,023
16	Sr _{0,69} Eu _{0,31} FeO ₃	3,866(1)	-	_	0,035
17	Sr _{0,89} Gd _{0,11} FeO ₃	3,867(1)	-	_	0,041
18	Sr _{0,84} Tb _{0,16} FeO ₃	3,869(1)	-	_	0,018
19	Sr _{0,81} Dy _{0,19} FeO ₃	3,869(1)	-	_	0,031
20	Sr _{0,83} Ho _{0,17} FeO ₃	3,870(1)	_	-	0,023
21	$Sr_{0,90}Er_{0,10}FeO_3$	3,873(1)	-	_	0,038
22	Sr _{0,79} Tm _{0,21} FeO ₃	3,866(1)	-	_	0,031
23	$Sr_{0,79}Yb_{0,21}FeO_3$	3,864(1)	_	—	0,025
24	Sr _{0,83} Lu _{0,17} FeO ₃	3,864(1)	-	-	0,020

Рис. 2. Зміна об'єму елементарної комірки чотирикомпонентних фаз *R*_{1-x}Sr_xFeO₃ (CT GdFeO₃) за збільшення порядкового номера рідкісноземельного металу Fig. 2. Cell volume of four-component *R*_{1-x}Sr_xFeO₃ phases (ST GdFeO₃) *vs*. atomic number of the rare-earth metal

ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2021. Випуск 62

Таблиця б

105

Результати фазового аналізу полікристалічних зразків Sr0,7H00,3FeO3 та Sr0,3H00,7FeO3, синтезованих за температури 1 000 °C

Table 6

Phase analysis of the Sr _{0.7} Ho _{0.3} FeO ₃ and Sr _{0.3} Ho _{0.7} FeO ₃ polycrystalline samples	
synthesized at 1 000 °C	

No	Вихідний	Фазовий	СТ	СП	ПГ	Вміст,
	склад зразка	склад зразка				мас.%
		Sr0,84H00,16FeO3	CaTiO ₃	cP5	Pm-3m	77,7
1	Sr _{0,7} Ho _{0,3} FeO ₃	Ho _{1-x} Sr _x FeO ₃	GdFeO ₃	oP20	Pnma	8,2
		Ho ₂ O ₃	$(Mn_{0,5}Fe_{0,5})_2O_3$	<i>cI</i> 80	Ia-3	14,1
		Sr0,75H00,25FeO3	CaTiO ₃	cP5	Pm-3m	28,5
2	Sr _{0,3} Ho _{0,7} FeO ₃	Ho _{0,90} Sr _{0,10} FeO ₃	GdFeO ₃	oP20	Pnma	56,2
		Ho ₂ O ₃	(Mn0,5Fe0,5)2O3	<i>cI</i> 80	Ia-3	15,3

Як приклад, наводимо дифрактограму зразка Sr_{0.5}Sm_{0.5}FeO₃ (рис. 3).

Поверхню зразка вихідного складу Sr_{0,5}Sm_{0,5}FeO₃ досліджено методом скануючої електронної мікроскопії. Фотографії поверхні зразка за різного збільшення зображено на рис. 4. Як бачимо з рисунка, досліджений зразок доволі дрібнодисперсний. Розміри кристалітів становлять близько 200 нм.

Рис. 3. Дифрактограма зразка Sr_0,5Sm_0,5FeO₃, синтезованого за температури 1 000 °C Fig. 3. X-ray powder diffraction pattern of the Sr_0.5Sm_0.5FeO₃ sample synthesized at 1 000 °C

Результати вивчення полікристалічних зразків складу $Ba_{0.5}R_{0.5}FeO_3$, синтезованих за температури 1 000 °С, наведено в табл. 7. За умов дослідження у системах Ba_R –Fe–O чотирикомпонентні перовскітні фази не утворюються. Крім того, зразки $Ba_{0.5}Tb_{0.5}FeO_3$, $Ba_{0.5}Dy_{0.5}FeO_3$, $Ba_{0.5}Ho_{0.5}FeO_3$, $Ba_{0.5}EeO_3$, $Ba_{0.5}Tm_{0.5}FeO_3$, Ba_{0

Рис. 4. Фотографії поверхні зразка Sr_{0.5}Sm_{0.5}FeO₃ (SEM) Fig. 4. Photos of a Sr_{0.5}Sm_{0.5}FeO₃ sample surface (SEM)

Результати фазового аналізу полікристалічних зразків складу Ва0,5R0,5FeO3, синтезованих за температури 1 000 °C

7	a	h	le	7
	u	$\boldsymbol{\nu}$	$\iota \iota$	

107

	•	1 5	5 1 .			
No	Вихідний	Фазовий	СТ	СП	ПГ	Вміст,
JN⊇	склад зразка	склад зразка	CI	CII	111	мас.%
		PrFeO ₃	GdFeO ₃	oP20	Pnma	48,8
1	Ba0,5Pr0,5FeO3	BaFeO ₃	CaTiO ₃	cP5	Pm-3m	34,0
		Pr ₂ O ₃	$(Mn_{0,5}Fe_{0,5})_2O_3$	<i>cI</i> 80	<i>Ia</i> -3	17,2
		NdFeO ₃	GdFeO ₃	oP20	Pnma	53,6
2	Ba0,5Nd0,5FeO3	BaFeO ₃	CaTiO ₃	cP5	Pm-3m	30,2
		Nd ₂ O ₃	$(Mn_{0,5}Fe_{0,5})_2O_3$	cI80	Ia-3	16,2
		SmFeO ₃	GdFeO ₃	oP20	Pnma	40,5
3	Ba0,5Sm0,5FeO3	BaFeO ₃	CaTiO ₃	cP5	Pm-3m	41,9
		Sm ₂ O ₃	$(Mn_{0,5}Fe_{0,5})_2O_3$	cI80	Ia-3	17,6
		EuFeO ₃	GdFeO ₃	oP20	Pnma	45,0
4	Ba0,5Eu0,5FeO3	BaFeO ₃	CaTiO ₃	cP5	Pm-3m	38,0
		Eu_2O_3	$(Mn_{0,5}Fe_{0,5})_2O_3$	<i>cI</i> 80	<i>Ia</i> -3	17,0
		GdFeO ₃	GdFeO ₃	oP20	Pnma	42,5
5	Ba0,5Gd0,5FeO3	BaFeO ₃	CaTiO ₃	cP5	Pm-3m	36,5
		Gd_2O_3	$(Mn_{0,5}Fe_{0,5})_2O_3$	<i>cI</i> 80	<i>Ia</i> -3	21,0
6	Pas al us aFaOs	BaFe ₂ O ₄	BaFe ₂ O ₄	oS56	$Cmc2_1$	62,0
0	Da0,5Lu0,5FeO3	Lu ₂ O ₃	$(Mn_{0,5}Fe_{0,5})_2O_3$	<i>cI</i> 80	Ia-3	38,0

Phase analysis of the Ba_{0.5} $R_{0.5}$ FeO₃ polycrystalline samples synthesized at 1 000 °C

4. Висновки

Методом твердофазної реакції за температури 1 000 °С синтезовано полікристалічні зразки складу $A_{0,5}R_{0,5}$ FeO₃, де A – лужноземельний; R – рідкісноземельний метал, та проведено їхній рентгенофазовий та рентгеноструктурний аналізи на основі масивів дифракційних даних, отриманих на дифрактометрі ДРОН-2.0М (проміння Fe $K\alpha$). Отже, виявлено, що у системах Ca–R–Fe–O утворюються чотирикомпонентні фази R_{1-x} Ca_xFeO₃ ($x \sim 0,15$) зі структурою ромбічного перовскіту GdFeO₃. Крім того, показано, що на перетинах SrFeO₃–RFeO₃ систем Sr–R–Fe–O в рівновазі є тверді розчини заміщення на основі перовскітних фаз з відповідних обмежуючих систем зі структурами типів CaTiO₃ та GdFeO₃, відповідно. Об'єм елементарної комірки чотирикомпонентних фаз зі структурою ромбічного перовскіту GdFeO₃ закономірно зменшується за збільшення порядкового номера P3M. Дослідження поверхні зразка складу Sr_{0.5}Sm_{0.5}FeO₃ методом скануючої електронної мікроскопії виявило, що розміри кристалітів становлять близько 200 нм. Під час вивчення зразків у системах Ba–R–Fe–O за умов дослідження утворення чотирикомпонентних перовскітних фаз не простежували.

Wagner P., Wackers G., Cardinaletti I., Manca J., Vanacken J. From colossal magnetoresistance to solar cells: An overview on 66 years of research into perovskites // Phys. Status Solidi A. 2017. Vol. 9. P. 1700394. DOI: https://doi.org/10.1002/pssa.201700394

^{2.} *Tilley R. J. D.* Perovskites Structure-Property Relationships // John Wiley & Sons, Ltd, UK, 2016. 328 p.

- 3. *Villars P., Cenzual K. (Eds.)* Pearson's Crystal Data Crystal Structure Database for Inorganic Compounds // ASM International: Materials Park, OH, USA, Release 2017/18.
- 4. *Wiles D. B., Sakthivel A., Young R. A.* Program DBWS3.2 for Rietveld Analysis of X-Ray and Neutron Powder Diffraction Patterns // Atlanta: School of Physics, Georgia Institute of Technology, 1998.
- 5. Villars P., Cenzual K., Daams J. L. C., Hulliger F., Okamoto H., Osaki K., Prince A., Iwata S. Pauling File. Inorganic Materials Database and Design System // Crystal Impact (Distributor), Germany, 2001.
- Ross N. L., Zhao J., Angel R. J. High-pressure structural behavior of GdAlO₃ and GdFeO₃ perovskites // J. Solid State Chem. 2004. Vol. 177. P. 3768–3775. DOI: https://doi.org/10.1016/j.jssc.2004.07.002
- Yashima M., Ali R. Structural phase transition and octahedral tilting in the calcium titanate perovskite CaTiO₃ // Solid State Ionics. 2009. Vol. 180. P. 120–126. DOI: https://doi.org/10.1016/j.ssi.2008.11.019

PEROVSKITE PHASES IN THE *A*–*R*–Fe–O SYSTEMS, WHERE *A* – ALKALINE-EARTH; *R* – RARE-EARTH METAL

V. V. Hrytsan, O. I. Zaremba*, R. E. Gladyshevskii

Ivan Franko National University of Lviv, Kyryla i Mefodiya Str., 6, UA-79005 Lviv, Ukraine e-mail: oksanazaremba@gmail.com

*AB*O₃ phases belonging to the well-known perovskite family constitute an important class of functional materials. Many of them are already used as catalysts, electrodes, sensors, *etc.* However, a systematic study of perovskite phases remains topical, taking into account the huge tolerance of the CaTiO₃ structure type and its derivatives, as well as the wide range of their physical properties.

Ceramic samples of nominal composition $A_{0.5}R_{0.5}FeO_3$, where A – alkaline-earth and R – rareearth metal, were prepared by solid-state reaction using high-purity CaCO₃, SrCO₃ or BaCO₃ carbonates, rare-earth metal oxides and Fe₂O₃. Firstly, the reagents were mixed manually and heated in corundum crucibles for decomposition of the carbonates. After cooling to room temperature, the final mixtures were ground to achieve homogeneity, pressed into pellets and sintered again. Each stage was carried out at 1 000 °C in air for 24 h. X-ray phase and structure analyses were carried out on powder diffraction data (DRON 2.0M diffractometer, Fe K_{α} radiation). Sample surfaces were studied using a Tescan Vega 3 LMU scanning electron microscope.

As a result of the X-ray phase and structure analyses the presence of four-component phases $R_{1-x}Ca_xFeO_3$ ($x \sim 0.15$) with GdFeO₃-type perovskite structures (Pearson symbol *oP*20, space group *Pnma*) was discovered in the Ca–*R*–Fe–O systems.

We also showed that $Sr_{1-x}R_xFeO_3$ (structure type CaTiO₃, Pearson symbol *cP*5, space group *Pm-3m*) and $R_{1-x}Sr_xFeO_3$ phases (structure type GdFeO₃, Pearson symbol *oP*20, space group *Pnma*) are formed on the SrFeO₃–*R*FeO₃ cross-sections of the Sr–*R*–Fe–O systems. The unit-cell volume of the $R_{1-x}Sr_xFeO_3$ phases with structure type GdFeO₃ decreases monotonically with increasing atomic number of the rare-earth metal. Scanning electron microscopy of the Sr_{0.5}Sm_{0.5}FeO₃ sample revealed that the size of the crystallites was close to 200 nm. Formation of four-component perovskites in the Ba–*R*–Fe–O systems was not observed at the conditions of our investigation.

Keywords: alkali-earth metal, rare-earth metal, phase analysis, crystal structure, perovskites.

Стаття надійшла до редколегії 01.11.2020 Прийнята до друку 18.05.2021

108