УДК 546.882

ІЗОТЕРМІЧНИЙ ПЕРЕРІЗ ДІАГРАМИ СТАНУ СИСТЕМИ Er-Mn-Sn ПРИ 670 K

Л. Ромака¹, В. В. Ромака², Ю. Стадник¹, І. Романів¹

¹Львівський національний університет імені Івана Франка, вул. Кирила і Мефодія, 6, 79005 Львів, Україна;

²Інститут дослідження твердого тіла, Гельмгольц штрасе, 20, 01069 Дрезден, Німеччина e-mail:lyubov.romakal@lnu.edu.ua

Діаграму фазових рівноваг системи Er–Mn–Sn побудовано за температури 670 K у повному концентраційному інтервалі методами рентгенівського фазового і рентгеноспектрального аналізів. За температури дослідження в системі утворюється дві тернарні сполуки ErMn₆Sn₆ (структурний тип MgFe₆Ge₆, просторова група *P6/mmm*, a=0,55157(7) нм, c=0,90051(1) нм) і Er₄Mn₄Sn₇ (структурний тип Zr₄Co₄Ge₇, просторова група *I4/mmm*, a=1,4869(3) нм, c=0,5951(1) нм). На основі бінарної сполуки ErSn₂ (структурний тип ZrSi₂) визначено утворення твердого розчину включення ErMn_{0-x}Sn₂ до вмісту Mn *x*=0,15.

Ключові слова: інтерметаліди, потрійна система, фазові рівноваги.

DOI: https://doi.org/10.30970/vch.6201.028

1. Вступ

Велику увагу дослідників привертають багатокомпонентні системи, сполуки яких володіють широким спектром властивостей. Дослідження взаємодії елементів у металічних системах дає можливість визначити температурні та концентраційні межі існування проміжних фаз, вплив різноманітних факторів на їхню стабільність як важливих чинників за подальшого вивчення фізичних властивостей. Інтерметаліди рідкісноземельних (P3M, R) і перехідних металів викликають особливу увагу науковців як основу для пошуку і створення нових перспективних магнітних матеріалів. Для потрійних систем R–Mn–Sn характерним є утворення тернарних сполук RMn₆Sn₆, які кристалізуються в структурних типах (CT) MgFe₆Ge₆, HoFe₆Sn₆, SmMn₆Sn₆ [1–7]. Для сполуки SmMn₆Sn₆ залежно від температури відпалювання реалізуються структурні типи MgFe₆Ge₆, YCo₆Ge₆ і SmMn₆Sn₆ (розупорядкований варіант структурного типу HfFe₆Ge₆). Вивчення поведінки магнітних властивостей сполук RMn₆Sn₆ засвідчили наявність феро- і феримагнітного впорядковування за температур, вищих кімнатної [3–6, 8].

Для більшості систем R–Mn–Sn також характерним є утворення тернарних сполук зі структурою типу Zr₄Co₄Ge₇ [9]. Для станідів мангану з Tm i Lu, крім сполук структурних типів Zr₄Co₄Ge₇ i MgFe₆Ge₆, реалізуються сполуки зі структурою типу Hf₃Cr₂Si₄ [10]. У праці [11] йдеться про сполуку Yb₄Mn₂Sn₅, яка належить до структурного типу Mg₅Si₆.

[©] Ромака Л., Ромака В. В., Стадник Ю. та ін., 2021

В цій статті ми подаємо результати експериментального вивчення взаємодії компонентів у системі Er–Mn–Sn при 670 К.

2. Матеріали та методика експерименту

Для побудови діаграми фазових рівноваг системи Er–Mn–Sn методом електродугового сплавлення шихти вихідних компонентів (вміст основного компонента не нижчий за 99,9 мас. %) виготовлено 26 потрійних і 12 подвійних сплавів. Гомогенізувальне відпалювання сплавів проводили за температури 670 К упродовж 720 год. Рентгенофазовий аналіз проводили з використанням дифрактометра ДРОН-2.0М (FeK α -випромінювання). Склад фаз контролювали за допомогою рентгеноспектрального аналізу (електронний мікроскоп REMMA-102-02). Для розрахунку кристалічної структури використано експериментальні масиви даних, отримані у кроковому режимі зйомки на автоматичному дифрактометрі STOE STADI P (Cu $K\alpha_1$ -випромінювання). Для розрахунку кристалографічних параметрів використовували комплекс програм WinCSD і FullProf Suite [12, 13].

3. Результати досліджень та їх обговорення

Ізотермічний переріз діаграми стану системи Er–Mn–Sn при 670 К побудований за результатами рентгенівського фазового і рентгеноспектрального аналізів виготовлених зразків (рис. 1). Фотографії мікроструктур деяких сплавів наведено на рис. 2, 3.

Fig. 1. Isothermal section of the Er-Mn-Sn system at 670 K

Рис. 2. Фотографії мікроструктур і фазовий склад зразків: $a - Er_{33}Mn_{33}Sn_{34}$ (світла фаза – $Er_{4}Mn_{4}Sn_{7}$; сіра фаза – $Mn_{3}Sn$; темна фаза – $Er_{5}Sn_{3}$); $b - Er_{27}Mn_{21}Sn_{52}$ (світла фаза – $Er_{4}Mn_{4}Sn_{7}$; сіра фаза – $ErMn_{0-x}Sn_{2}$; темно-сіра фаза – $ErMn_{6}Sn_{6}$); $c - Er_{24}Mn_{37}Sn_{40}$ (світла фаза – $Er_{5}Sn_{3}$; сіра фаза – $Er_{4}Mn_{4}Sn_{7}$; темна фаза – $Mn_{3}Sn$); $d - Er_{40}Mn_{53}Sn_{7}$ (світла фаза – $Er_{5}Sn_{3}$; сіра фаза – $ErMn_{2}$) Fig. 2. Electron microphotographs and phase composition of alloys: $a - Er_{33}Mn_{33}Sn_{34}$ (light phase – $Er_{4}Mn_{4}Sn_{7}$; grey phase – $Mn_{3}Sn$; dark phase – $Er_{5}Sn_{3}$); $b - Er_{27}Mn_{21}Sn_{52}$ (light phase – $Er_{4}Mn_{4}Sn_{7}$; grey phase – $ErMn_{0-x}Sn_{2}$; dark grey phase – $ErMn_{6}Sn_{6}$); $c - Er_{24}Mn_{37}Sn_{40}$ (light phase – $Er_{5}Sn_{3}$; grey phase – $Er_{4}Mn_{4}Sn_{7}$; dark phase – $Mn_{3}Sn$); $d - Er_{40}Mn_{53}Sn_{7}$ (light phase – $Er_{5}Sn_{3}$; grey phase – $Er_{4}Mn_{4}Sn_{7}$; dark phase – $Mn_{3}Sn$);

З метою перевірки літературних даних про сполуки подвійних систем Er–Sn, Er–Mn і Mn–Sn виготовлено сплави, склади яких відповідають описаним у літературі бінарним сполукам [14, 15]. За температури відпалювання 670 К у системах Mn–Sn, Er–Mn і Er–Sn підтверджено існування всіх бінарних сполук, наведених у літературі (рис. 1). Область гомогенності бінарної сполуки Mn₂Sn, наведеної на діаграмі стану Mn–Sn згідно з даними [14], під час дослідження визначено за результатами локального спектрального аналізу й обмежується складами Mn_{67,78}Sn_{32,22} і Mn_{63,73}Sn_{36,27}. На основі бінарної сполуки ErSn₂ (CT ZrSi₂) виявлено утворення твердого розчину включення ErMn_{0-x}Sn₂ до вмісту 5 ат. % Mn. Періоди гратки змінюються від a = 0,4369(9), b = 1,6138(8), c = 0,4273(9) нм (для сполуки ErSn₂) до a = 0,4370(8), b = 1,6141(9), c = 0,4287(4) нм для зразка складу Er₃₂Mn₅Sn₆₃. Збільшення об'єму елементарної комірки зі збільшенням вмісту Mn (V=0,3013 нм³ для ErSn₂, V=0,3024 нм³ для зразка $Er_{32}Mn_5Sn_{63}$) підтверджує утворення твердого розчину включення. Граничний склад твердого розчину підтверджений результатами рентгеноспектрального аналізу зразка $Er_{27}Mn_{21}Sn_{52}$ (рис. 2, δ), який містить у рівновазі $Er_4Mn_4Sn_7$, $ErMn_xSn_2$ ($Er_{32,44}Mn_{4,88}Sn_{62,68}$) і $ErMn_6Sn_6$. Утворення твердого розчину включення узгоджується з даними праці [16], згідно з якою на основі бінарних станідів RSn_2 зі структурою типу $ZrSi_2$ (R – рідкісноземельні елементи підгрупи Ітрію) утворюються тверді розчини включення шляхом інтеркаляції атомів перехідних металів у тетрагонально-антипризматичні пустоти структури бінарних сполук RSn_2 .

Згідно з літературою [14] бінарна сполука $ErMn_2$ кристалізується в CT MgZn₂. Для перевірки можливої реалізації сполуки $ErMn_2$ зі CT MgCu₂ у подвійній системі Er-Mn виготовлено додаткові сплави складів $Er_{40}Mn_{60}$ і $Er_{50}Mn_{50}$. Рентгенофазовий аналіз обох зразків, відпалених при 670 К, засвідчив наявність сполуки $ErMn_2$ зі CT MgZn₂ та Er. Інші бінарні сполуки не розчиняють третього компонента за умов дослідження.

Згідно з результатами рентгенофазового та металографічного аналізів у системі Er-Mn-Sn за температури 670 К підтверджено утворення двох тернарних сполук $ErMn_6Sn_6$ і $Er_4Mn_4Sn_7$, кристалографічні характеристики яких наведені у табл. 1. Обидві сполуки за умов дослідження характеризуються практично постійним складом.

Рис. 3. Фотографії мікроструктур і фазовий склад зразків:

a – Er₃₀Mn₂₈Sn₄₂ (світла фаза – Er₅Sn₃; сіра фаза – Er₄Mn₄Sn₇; темна фаза – Mn₃Sn);
b – Er₂₅Mn₂₉Sn₄₆ (світла фаза – ErSn₂; сіра фаза – Er₄Mn₄Sn₇; темна фаза – ErMn₆Sn₆)
Fig. 3. Electron microphotographs and phase composition of alloys:

 $a - \text{Er}_{30}\text{Mn}_{28}\text{Sn}_{42}$ (light phase $- \text{Er}_{5}\text{Sn}_{3}$; grey phase $- \text{Er}_{4}\text{Mn}_{4}\text{Sn}_{7}$; dark phase $- \text{Mn}_{3}\text{Sn}_{3}$; $b - \text{Er}_{25}\text{Mn}_{29}\text{Sn}_{46}$ (light phase $- \text{Er}\text{Sn}_{2}$; grey phase $- \text{Er}_{4}\text{Mn}_{4}\text{Sn}_{7}$; dark phase $- \text{Er}\text{Mn}_{6}\text{Sn}_{6}$)

Існування сполуки ErMnSn₂ зі структурою типу ZrCrSi₂, про яку йдеться у праці [17], за умов нашого дослідження не підтверджено. Це може бути пов'язано з вищою температурою гомогенізувального відпалювання (1 073 K), за якої визначено існування сполуки ErMnSn₂ авторами праці [17]. За температури гомогенізувального відпалювання 670 K зразки в цій області системи Er–Mn–Sn містять у рівновазі фази ErMn₆Sn₆, Er₄Mn₄Sn₇ і ErMn_{0-x}Sn₂.

Таблиця 1

Table 1

Кристалографічні характеристики тернарних сполук системи Er–Mn–Sn

Crystallographic characteristics of the ternary compounds in Er-Mn-Sn system

January 8-4									
Сполуки	ПГ	СТ	Періоди ґратки, нм						
			а	b	С				
ErMn ₆ Sn ₆	MgFe6Ge6	P6/mmm	0,55157(7)	-	0,90051(1)				
Er4Mn4Sn7	Zr ₄ Co ₄ Ge ₇	I4/mmm	1,4869(3)	_	0,5951(1)				

Уточнення кристалічної структури сполуки $ErMn_6Sn_6$ підтвердило належність цієї сполуки до структурного типу MgFe₆Ge₆ (просторова група *P6/mmm*, *a*=0,55157(7) нм, *c*=0,90051(1) нм, $R_p = 0,0671$, $R_{wp} = 0,0842$, $R_{Brag} = 0,0596$). Розраховані координати атомів наведено у табл. 2. Експериментальну, теоретичну та різницеву дифрактограми станіду ErMn₆Sn₆ зображено на рис. 4.

Таблиця 2

Атомні координати та ізотропні параметри атомного зміщення у структурі сполуки ErMn₆Sn₆ *Table* 2

Atomic coordinates and isotropic displacement parameters for ErMn₆Sn₆ compounds

Атом	ПСТ	x/a	y/b	z/c	$B_{i_{30}}$ ·10 ² , HM ²
					нммнм(нм ²)
Gd	1a	0	0	0	1,05(1)
Mn	6 <i>i</i>	1/2	0	0,2492(5))	0,76(10)
Sn1	2e	0	0	0,3366(4)	1,04(9)
Sn2	2c	1/3	2/3	0	0,75(9)
Sn3	2d	1/3	2/3	1/2	1,04(8)

сполуки ErMn₆Sn₆

Fig. 4. The observed, calculated and difference X-ray patterns of ErMn₆Sn₆ compound

Порівняльний аналіз дослідженої потрійної системи Er–Mn–Sn з раніше вивченими {Y, Ce, Nd, Gd, Dy}–Mn–Sn [7, 18–20] та відомими в літературі тернарними сполуками показав, що для систем R–Mn–Sn характерно утворення невеликої кількості сполук. Сполуки структурних типів CeNiSi₂ та Gd₃Cu₄Ge₄ утворюються тільки в системах з рідкісноземельними елементами церієвої підгрупи. В більшості систем R–Mn–Sn утворюються тернарні сполуки зі структурою типу Zr₄Co₄Ge₇ та сполуки RMn₆Sn₆, які реалізуються у дослідженій системі Er–Mn–Sn. Утворення станідів мангану зі структурою типу Hf₃Cr₂Si₄ характерно для Tm i Lu.

4. Висновки

Методами рентгенівського фазового і рентгеноспектрального аналізів досліджено взаємодію компонентів у потрійній системі Er-Mn-Sn за температури 670 К. За умов дослідження підтверджено утворення двох тернарних сполук $ErMn_6Sn_6$ (структурний тип $MgFe_6Ge_6$) і $Er_4Mn_4Sn_7$ (структурний тип $Zr_4Co_4Ge_7$). Визначено розчинність Mn у бінарній сполуці $ErSn_2$ (структурний тип $ZrSi_2$) до вмісту 5 ат. % з утворенням твердого розчину включення $ErMn_{0-x}Sn_2$.

- Malaman B., Venturini G., Roques B. New ternary stannides: MMn₆Sn₆ (M=Sc, Y, Sm, Gd-Tm, Lu) and ScFe₆Sn₆// Mater. Res. Bull. 1988. Vol. 23. P. 1629–1633. DOI: https://doi.org/10.1016/0025-5408(88)90252-8
- 1. *Skolozdra R. V.* Handbook on the Physics and Chemistry of Rare-Earths; K. A. Gschneidner, Jr. L. Eyring (eds.) // North-Holland. Amsterdam, 1997. Vol. 24. P. 399.
- Weitzer F., Leithe Jasper A., Hiebl K., Rogl P. Structural chemistry, magnetism and ¹¹⁹Sn Mössbauer spectroscopy of ternary compounds REMn₆Sn₆ (RE= Pr, Nd, Sm) // J. Appl. Phys. 1993. Vol. 73. P. 8447–8450. DOI: https://doi.org/10.1063/1.353416
- Malaman B., Venturini G., Chafik El Idrissi B., Ressouche E. Magnetic properties of NdMn₆Sn₆ and SmMn₆Sn₆ compounds from susceptibility measurements and neutron diffraction study // J. Alloys Compd. 1997. Vol. 252. P. 41–49. DOI: https://doi.org/10.1016/S0925-8388(96)02717-X
- Chafik El Idrissi B., Venturini G., Malaman B., Fruchart D. Magnetic structures of TbMn₆Sn₆ and HoMn₆Sn₆ compounds from neutron diffraction study // J. Less-Common Met. 1991. Vol. 175. P. 143–154. DOI: https://doi.org/10.1016/0022-5088(91)90359-C
- Mazet T., Welter R., Malaman B. A study of the new ferromagnetic YbMn₆Sn₆ compound by magnetization and neutron diffraction measurements // J. Magn. Magn. Mater. 1999. Vol. 204. P. 11–19. DOI: https://doi.org/10.1016/S0304-8853(99)00452-7
- Romaka V. V., Konyk M., Romaka L., Pavlyuk V., Ehrenberg H., Tkachuk A. Peculiarity of component interaction in {Y,Dy}–Mn–Sn ternary systems // J. Alloys Compd. 2011. Vol. 509. P. 7559–7564. DOI: https://doi.org/10.1016/j.jallcom.2011.04.110
- Malaman B., Venturini G., Welter R., Sanchez J. P., Vulliet P., Ressouche E. Magnetic properties of RMn₆Sn₆ (R=Gd–Er) compounds from neutron diffraction and Mössbauer measurements // J. Magn. Magn. Mater. 1999. Vol. 202. P. 519–534. DOI: https://doi.org/10.1016/S0304-8853(99)00300-5

- 8. *Romaka V., Romaka L., Tkachuk V.* Crystal structure of *R*₄Mn₄Sn₇ (*R*=Y, Gd–Lu) compounds // Visnyk Lviv Univ. Ser. Chem. 2011. Vol. 52. P. 48–53 (in Ukrainian).
- Lei X.-W., Hu C.-L., Mao J.-G. Syntheses and crystal structures of RE₃MnSn_{5-x} (RE=Tm, Lu) with 3D Mn–Sn framework // J. Solid State Chem. 2010. Vol. 183. P. 2032–2039. DOI: https://doi.org/10.1016/j.jssc.2010.07.003
- Lei X.-W., Zhong G.-H., Li M.-J., Mao J.-G. Yb₃CoSn₆ and Yb₄Mn₂Sn₅: New polar intermetallics with 3D open-framework structures // J. Solid State Chem. 2008. Vol. 181. P. 2448–2455. DOI: https://doi.org/10.1016/j.jssc.2008.05.036
- Akselrud L., Grin Yu. WinCSD: software package for crystallographic calculations (Version 4) // J. Appl. Cryst. 2014. Vol. 47. P. 803. DOI: doi.org/10.1107/S1600576714001058
- 12. *Roisnel T., Rodriguez-Carvajal J.* WinPLOTR: a Windows tool for powder diffraction patterns analysis // Mater. Sci. Forum. 2001. Vol. 378–381. P.118–123.
- 13. *Massalski T. B.* Binary Alloy Diagrams. American Society for Metals. Metals Park OH 44073. 1986. Vol. 1, 2.
- 14. *Villars P., Calvert J. D.* Pearson's Handbook of Crystallographic Data for Intermetallic Phases. Metals Park OH 44073. 1997.
- 15. Francois M., Venturini G., Malaman B., Roques B. Nouveaux isotypes de CeNiSi2 dans les systems R–M–X (R = La–Lu, M = metaux des groupes 7 a 11 et X = Ge, Sn) // J. less-Common Met. 1990. Vol. 160. P.197–213. DOI: https://doi.org/10.1016/0022-5088(90)90381-S
- Venturini G., Malaman B., Roques B. New rare earth-transition metal stannides with Sc₆Co₄Si₁₀- and TiMnSi₂-type structures. Atomic size effects on their stability // Mater. Res. Bull. 1989. Vol. 24. P. 1135–1139. DOI: https://doi.org/10.1016/0025-5408(89)90071-8
- 17. Weitzer F., Rogl P. The Ce–Mn–Sn system (cerium–manganese–tin) // J. Phase Equil. 1994. Vol. 15. P. 636–639. DOI: https://doi.org/10.1007/BF02647638
- 18. Weitzer F., Rogl P. The Mn–Nd–Sn system (manganese–neodymium–tin) // J. Phase Equil. 1993. Vol. 14. P. 676–681. DOI: https://doi.org/10.1007/BF02667879
- 19. *Romaka L. P., Stadnyk Yu. V., Romaka V. V., Konyk M., Serkiz R.* Interaction of the components in the Gd–Mn–Sn ternary system at 873 and 673 K // Phys. Chem. Solid State. 2018. Vol. 19(1). P. 60–65. DOI: https://doi.org/10.15330/pcss.19.1.60-65

ISOTHERMAL SECTION OF THE Er-Mn-Sn SYSTEM AT 670 K

L. Romaka¹, V. V. Romaka², Yu. Stadnyk¹, I. Romaniv²

¹Ivan Franko National University of Lviv, Kyryla i Mefodiya Str., 6, 79005 Lviv, Ukraine;

²Leibniz Institute for Solid State and Materials Research Dresden, Helmholtzstr., 20, 01069 Dresden, Germany e-mail:lyubov.romakal@lnu.edu.ua

Interaction between the components in the Er-Mn-Sn ternary system was studied at 670 K over the whole concentration range using methods of X-ray diffractometry, metallography and electron microprobe analysis. The alloys for investigation were prepared by direct arc melting the stoichiometric amounts of the constituent elements under high purity Ti-gettered argon atmosphere on a water-cooled copper hearth. The arc-melted ingots were then annealed at 670 K in evacuated guartz glass tubes for 720 hours and subsequently cold water quenched. The synthesized and annealed samples are stable in atmospheric conditions. For the characterization of the annealed samples X-ray powder diffraction on DRON-2.0m diffractometer with Fe $K\alpha$ radiation was performed. The chemical and phase compositions of the obtained samples were examined by Scanning Electron Microscopy (SEM) (REMMA-102-02 electron microscope). A formation of the all binaries in the Er-Sn, Er-Mn and Mn-Sn systems which delimit the studied Er-Mn-Sn was confirmed. According to EPMA data the homogeneity range of Mn2Sn binary is limited by the Mn67,81Sn32,19 and Mn63,87Sn36,13 compositions. At the temperature of investigation phase relations in the Er-Mn-Sn system are characterized by existence of two ternary compounds ErMn₆Sn₆ (MgFe₆Ge₆ structure type, space group P6/mmm, a=0.55157(7) nm, c=0.90051(1) nm) and Er4Mn4Sn7 (Zr4Co4Ge7 structure type, space group I4/mmm, a=1.4869(3) nm, c=0.5951(1) nm). During investigation of Er-Mn-Sn system the existence of interstitial solid solution ErMn_{0-x}Sn₂ based on the ErSn₂ binary (ZrSi₂-type) was observed. The solubility of Mn atoms was found to be up to 5 at. % at 670 K. The lattice parameters change from a = 0.4369(9), b = 1.16138(8), c = 0.4273(9) HM nm (for ErSn₂ compound) to a =0.4370(8), b = 1.6141(9), c = 0.4287(4) nm for Er₃₂Mn₅Sn₆₃ sample. Limited composition of the solid solution was confirmed by results of EDX analysis (Er32.44Mn4.88Sn62.68). Solubility of the third component in other binary compounds is less than 1-2 at. %. Analysis of the Er-Mn-Sn system and studied early {Y, Ce, Nd, Gd, Dy}-Mn-Sn showed that the ternary R-Mn-Sn systems are characterized by small number of the intermediate phases. Stannides with CeNiSi2 and Gd3Cu4Ge4 structure types are formed only in the systems with rare earths of Cerium group. R-Mn-Sn systems where R is a rare earth element of Yttrium group are characterized by formation of the ternary compounds with Zr4Co4Ge7-type and MgFe6Ge6 structure types, which are realized in the studied Er-Mn-Sn system.

Keywords: intermetallics, ternary system, phase equilibria.

Стаття надійшла до редколегії 31.10.2020 Прийнята до друку 18.05.2021