ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2021. Випуск 62. С. 5–17 Visnyk of the Lviv University. Series Chemistry. 2021. Issue 62. P. 5–17

Неорганічна хімія

УДК 544:(344.3+015.35):546:(663'27'26):548.734

ФАЗОВІ РІВНОВАГИ У СИСТЕМІ Ег–Zr–Ni ПРИ 800 °C В ОБЛАСТІ ErNi–Zr–Ni

В. Бабіжецький¹, В. Левицький¹, О. Мякуш^{2*}, Б. Котур¹

¹Львівський національний університет імені Івана Франка, вул. Кирила і Мефодія 6, 79005 Львів, Україна;

²Національний лісотехнічний університет України, вул. Чупринки 105, 7900 Львів, Україна e-mail: oksmyakush@gmail.com.ua

За результатами дослідження відпалених при 800 °С зразків методами Х-променевого фазового і структурного аналізів та енергодисперсійної Х-променевої спектроскопії побудовано ізотермічний переріз діаграми стану системи Er–Zr–Ni в області ErNi–Zr–Ni. Виявлено існування твердих розчинів заміщення: Er_{2-x}Zr_xNi₁₇ (0 $\leq x \leq 0,16$; CT Th₂Ni₁₇); Er_{1-x}Zr_xNi₅ (0 $\leq x \leq 0,63$; CT CaCu₅); Er_{1-x}Zr_xNi₄ (0 $\leq x \leq 0,30$; CT PuNi₄); α –Er_{2-x}Zr_xNi₇ (0 $\leq x \leq 0,05$; CT Er₂Co₇); Er_{1-x}Zr_xNi₃ (0 $\leq x \leq 0,18$; CT PuNi₃); Er_{0.98-x}Zr_xNi₂ (0 $\leq x \leq 0,34$; CT TmNi₂); Er_{1-x}Zr_xNi (0 $\leq x \leq 0,55$; CT β -FeB), Zr_{1-x}Er_xNi₅ (0 $\leq x \leq 0,30$; CT AuBe₅); Zr_{2-x}Er_xNi₇ (0 $\leq x \leq 0,30$; CT Al₂Cu). Методом порошку уточнено кристалічну структуру сполуки Er_xZr_{1-x}Ni (0 $\leq x \leq 0,24$) для зразка складу Er_{0.17}Zr_{0.83}Ni₂: структурний тип MgCu₂ просторова група *Fd*-3*m*, *Z* = 8, *a* = 6,987 (5) Å, *R*₁ =0,0315 для восьми незалежних відбить, *I*₀ > 2 σ (*I*₀). На квазібінарному перетині "ZrNi²"– Er_{0.98}Ni₂ визначено існування морфотропного ряду кубічних структур MgCu₂→ TmNi₂ – надструктура до структурного типу MgCu₂ з подвоєним періодом ґратки та з дефектним заповненням атомами Ег кристалографічного положення 4(*a*).

Ключові слова: потрійна система, фазові рівноваги, інтерметалічні сполуки, кристалічна структура.

DOI: https://doi.org/10.30970/vch.6201.005

1. Вступ

Дослідження фазових рівноваг системи Er–Zr–Ni є частиною систематичного вивчення взаємодії компонентів у потрійних системах R–T–M (R = рідкісноземельний метал, T = d-метал IV групи, M = метал родини феруму) з метою пошуку нових сплавів і сполук, які можна використовувати як перспективні магнітні матеріали та ефективні акумулятори водню [1, 2].

Серед потрійних систем R–{Ti, Zr, Hf}–{Fe, Co, Ni} діаграми фазових рівноваг побудовано у повному концентраційному інтервалі лише для систем La–Ti–Ni при 400 °C [3]; Y–Ti–Ni при 500 °C [4]; Y–Ti–Fe [5] та Y–Zr–Ni [6] при 600 °C; Er–Ti–{Fe, Co} при 700 °C [7]; {Y, Ho}–Hf–Fe [8, 9] та Gd–Zr–Fe [10] при 800 °C. В інших системах

[©] Бабіжецький В., Левицький В., Мякуш О. та ін., 2021

досліджували лише структуру і фізичні властивості окремих сполук [11] та області існування, магнітні та воденьсорбційні властивості твердих розчинів на основі бінарних сполук RM₂ [12–15], RM₃ [16–18], R₂M₁₇ [19].

Для подвійних систем, що обмежують досліджувану потрійну, побудовано діаграми стану у повному концентраційному інтервалі.

У системі Ег–Zr бінарні сполуки не утворюються [20]. Розчинність Zr в Ег становить 20 ат. % при 1 300 °C, за зменшення температури знижується до 12,5 ат. %. Розчинність Ег в α -Zr становить 2,8 ат. % при ~ 925 °C, в β -Zr 43 ат. % при 1 300 °C і за зниження температури до 863 °C різко зменшується.

Діаграму стану системи Ег–Ni вперше побудовано у праці [21], де виявлено існування одинадцяти бінарних сполук постійного складу, для семи з яких визначено кристалічну структуру, а для фаз Er_5Ni_3 , $ErNi_4$, Er_4Ni_{17} , Er_5Ni_{22} визначили лише періоди кристалічної гратки. Пізніше автори праці [22] уточнили склад сполуки Er_5Ni_3 до Er_3Ni_2 і визначили її кристалічну структуру. Для фази $ErNi_2$ виявили дещо відмінний від стехіометричного склад ($Er_{0.98}Ni_2$) [23] та уточнили її структуру як надструктуру до кубічної типу MgCu₂ з подвоєним періодом елементарної комірки та частковим заповненням атомами Er положення 4(*a*). Для сполуки Er_2Ni_7 визначили наявність двох модифікацій: ромбоедричної (CT Gd_2Co_7) та гексагональної (CT Ce_2Ni_7) [24]. Температуру фазового переходу визначали лише за зміною відносних кількостей цих двох модифікацій у сплавах, оскільки спроби отримати однофазні зразки, що містили б лише одну із двох модифікацій Er_2Ni_7 , виявилися безуспішними [24, 25]. У літературі немає даних щодо кристалічної структури сполук Er_4Ni_{17} та Er_5Ni_{22} . Кристалографічні характеристики сполук у системі наведено у табл. 1.

Граничні склади та параметри комірки твердих розчинів на основі бінарних сполук Er–Zr–Ni *Table 1*

CHOMMO	СТ	ПГ	Періоди ґратки, Å			Л-
Сполука			а	b	С	pa
1	2	3	4	5	6	7
Er ₂ Ni ₁₇	Th ₂ Ni ₁₇	P63/mmc	8,287–	_	8,017–	21,2
*Er _{2-x} Zr _x Ni ₁₇ (x=0,16)			8,267(2)		8,016(3)	6
ErNi ₅	CaCu ₅	P6₃/mmm	4,854–	_	3,964–	21,
*Er _{1-x} Zr _x Ni ₅ (x=0,63)			4,802(4)		4,001(6)	27
ErNi ₄	PuNi ₄	C2/m	4,855	8,444	10,231	21,
**Er1-xZrxNi4(x=0,30)				β=99,54°		28
Er4Ni17	_	_	4,869	_	8,407	21
Er ₅ Ni ₂₂	_	-	4,862	_	7,177	21
α–Er ₂ Ni ₇	Er ₂ Co ₇	$R\overline{3}m$	4,909-	_	36,067–	24,
*α-Er2-,Zr _x Ni7(x=0,05)			4,9546(4)		36,022(6)	25
β –Er ₂ Ni ₇	Ce ₂ Ni ₇	P63/mmc	4,928		24,11	25
ErNi ₃	PuNi ₃	$R\overline{3}m$	4,948 –	_	24,270-	21,
$^{*}\text{Er}_{1-x}\text{Zr}_{x}\text{Ni}_{3}$ (x =0,18)			4,946(1)		24,266(4)	24
Er _{0,98-x} Ni ₂	TmNi ₂	$E\overline{A}$ 3m	14,350 -	_	_	23
*Er0.98-xZrxNi2(x=0,34)		1 - 511	14,0603(5)			
ErNi	FeB	Pnma	6,99–	4,12-	5,41–	21,
*Er _{1-x} Zr _x Ni (x=0,5)			6,4866(3)	4,2387(2)	5,1912(2)	29
Er ₃ Ni ₂	Er ₃ Ni ₂	R3	8,472	_	15,680	22

Limit composition and cell parameters of the solid solutions based on binary compounds

Таблиця 1

Бабіжецький В., Левицький В., Мякуш О. та ін. ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2021. Випуск 62

					Закінчення п	пабл.1
1	2	3	4	5	6	7
Er ₃ Ni	Fe ₃ C	Pnma	6,804	9,430	6,245	30
ZrNi5	AuBe ₅	F 1 2m	6,687–	_	—	6,
*Zr1-xErxNi5 (x=0,30)		r 4 5m	6,966(3)			36
Zr ₂ Ni ₇	Zr_2Ni_7	C2/m	4,698	8,235	12,193	32
$**Zr_{2-x}Er_xNi_7(x=0,14)$				β=95,83		
ZrNi ₃	SnNi ₃	P63/mmc	5,309	_	4,303	33
Zr ₈ Ni ₂₁	Hf8Ni21	рĪ	6,4721	8,0645	8,5878	33
		11	$\alpha = 85,19$	$\beta = 68,04$	γ=72,26	
Zr7Ni10	Zr_7Ni_{10}	Pbca	12,497–	9,210-	9,325-	34
*Zr7-xErxNi10(x=0,18)			12,401(2)	9,188(1)	9,202(2)	
Zr9Ni11	Zr_9Pt_{11}	I4/m	9,88	_	6,61	33
ZrNi	CrB	Cmcm	3,268–	9,937–	4,101-	35
*Zr _{1-x} Er _x Ni (x =0,32)			3,351(1)	9,903(2)	4,189(1)	
Zr ₂ Ni	Al ₂ Cu	I4/mcm	6,4875–	_	5,2656-	35
*Zr _{2-x} Er _x Ni (x =0,30)			6,491(1)		5,279(1)	

*Результати цього дослідження.

**Область гомогенності, визначена за результатами ЕДХ аналізу.

Фазові рівноваги та кристалічні структури сполук системи Zr–Ni детально вивчали у працях [31–35], результати цих досліджень узагальнено у [36]. У системі Zr–Ni утворюється вісім бінарних інтерметалідів, кристалографічні характеристики яких подано у табл. 1. Кристалічну структуру сполуки ZrNi₅, яку раніше досліджували методом порошку [31], уточнено методом монокристала у нашій попередній праці [6]. Фази ZrNi₅ та Zr₇Ni₁₀ мають невеликі області гомогенності 15– 18 та 41,1–43,5 ат. % Zr, відповідно.

Мета цієї праці – визначити особливості взаємодії компонентів у потрійній системі Er–Zr–Ni при 800 °C і дослідити кристалічну структуру сполук та твердих розчинів, що утворюються у цій системі.

2. Матеріали та методика експерименту

Для уточнення і перевірки літературних відомостей і проведення фазового аналізу синтезовано 22 подвійні та 37 потрійних сплавів. Зразки готували сплавлянням шихти з вихідних компонентів високої чистоти (≥99,9 мас. % основного компонента) в електродуговій печі на мідному охолоджуваному водою поді з вольфрамовим електродом в атмосфері очищеного аргону. Втрати під час сплавляння не перевищували 1 % від маси вихідної шихти. Для гомогенізації сплавів їх відпалювали у вакуумованих кварцових ампулах за температури 800 °С протягом 30 діб з подальшим гартуванням ампул у холодній воді.

Фазовий аналіз сплавів виконували за масивом даних дифракції Х- випромінювання, одержаних за допомогою порошкових дифрактометрів ДРОН-2,0М (Fe K_{α} випромінювання) та STOE STADI Р (Cu $K_{\alpha 1}$ -випромінювання). Кристалічну структуру сполук уточнювали методом порошку з використанням пакета програм WinCSD [37].

Для підтвердження атомного співвідношення елементів у кожній фазі використовували метод енергодисперсійної Х-променевої спектроскопії (ЕДРС) у поєднанні з растровим електронним мікроскопом Tescan Vega 3 LMU, обладнаним детектором Oxford Si-detector X-Max N 60 LTE. Точність вимірювань ЕДРС аналізу становить 1 ат. % визначуваного елемента.

7

3. Результати досліджень та їх обговорення

За результатами дослідження відпалених зразків методами Х-променевого фазового, структурного та ЕДРС аналізів побудовано ізотермічний переріз діаграми стану системи Er–Zr–Ni при 800 °C, який наведено на рис. 1. Оскільки сплави з області концентрацій Er–Zr–ErNi під час відпалювання оплавилися, то цю область відокремлено на рис. 1 хвилястою лінією, літерою "L" позначено область розплавів, виявлених при 800 °C. Результати дослідження характеру взаємодії компонентів в області Er–Zr–ErNi за нижчих температур будуть опубліковані у наших наступних працях.

сполука: $1 - \text{Er}_x \text{Zr}_{1-x} \text{Ni}_2$ (0,12 $\leq x \leq$ 0,24) Fig. 1. Part of the phase equilibria of Er–Zr–Ni phase diagram at 800 °C. $1 - \text{Er}_x \text{Zr}_{1-x} \text{Ni}_2$ (0,12 $\leq x \leq$ 0,24) ternary compound

Взаємна розчинність компонентів Er, Zr та Ni за температури 800 °C є незначною: Zr розчиняє до 3 ат. % Er і практично не розчиняє Ni; Ni практично не розчиняє Er та Zr; Er розчиняє до 13 ат. % Zr та практично не розчиняє Ni.

У системі Ег–Ni у досліджуваній області підтверджено утворення бінарних сполук Er_2Ni_{17} (CT Th_2Ni_{17}), $ErNi_5$ (CT $CaCu_5$), $ErNi_4$ (CT $PuNi_4$), α - Er_2Ni_7 (CT Er_2Co_7), $ErNi_3$ (CT $PuNi_3$), $Er_{0.98}Ni_2$ (CT $TmNi_2$), ErNi (CT FeB). Методами ЕДРС аналізу виявлено фазу складу $Er_{18,6}Ni_{81,4}$ – (рис. 2, а), яка може належати до структур Er_5Ni_{22} або Er_4Ni_{17} , для яких у праці [21] наведено лише періоди кристалічної гратки.

Бабіжецький В., Левицький В., Мякуш О. та ін. ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2021. Випуск 62

Рис 2. Фотографії мікрошліфів та морфологія поверхні сплавів: Er₁₈Ni₈₂ (*a*) (сіра фаза Er_{18,6}Ni_{81,4} – Er₅Ni₂₂; темна фаза Er_{16,7}Ni_{83,3} – ErNi₅); Er₁₅Zr₅Ni₈₀ (*b*) (світла фаза Er_{19,3}Zr_{4,7}Ni₇₆ – Er_{1-x}Zr_xNi₃; темна фаза Er_{14,0}Zr_{6,0}Ni_{80,0} – Er_{1-x}Zr_xNi₄); Er₃₀Zr₂₀Ni₅₀ (*c*) (сіра фаза Er_{28,6}Zr₂₀Ni_{51,4} – Er_{1-x}Zr_xNi; чорна фаза Er_{7,3}Zr_{34,5}Ni_{58,2} – Zr_{7-x}Er_xNi₁₀), Er₁₆Zr₁₂Ni₇₂ (*d*) (сіра фаза Er_{23,4}Zr_{11,2}Ni_{65,4} – Er_{0,98,x}Zr_xNi; темна фаза Er_{7,3}Zr_{10,5}Ni_{82,2} – Er_{1-x}Zr_xNi₅) Fig. 2. SEM-images of the allovs:

 $\begin{array}{l} {\rm Er_{18}Nis_2} \left(a\right) ({\rm gray \ phase \ Er_{18,6}Nis_{1,4} - Er_5Ni_{22}; \ dark \ phase \ Er_{16,7}Nis_{3,3} - ErNi_5); \ Er_{15}Zr_5Nis_0} \left(\delta\right) ({\rm light \ phase \ Er_{19,3}Zr_{4,7}Ni_{76} - Er_{1-x}Zr_xNi_3; \ dark \ phase \ Er_{14,0}Zr_{6,0}Nis_{0,0} - Er_{1-x}Zr_xNi_4); \ Er_{30}Zr_{20}Nis_{0} \left(\theta\right) ({\rm gray \ phase \ Er_{28,6}Zr_{20}Nis_{1,4} - Er_{1-x}Zr_xNi_3; \ dark \ phase \ Er_{7,3}Zr_{34,5}Nis_{8,2} - Er_{7-x}Zr_xNi_4); \ Er_{16}Zr_{12}Nir_{2} \left(e\right) ({\rm gray \ phase \ Er_{23,4}Zr_{11,2}Ni_{65,4} - Er_{0,98-x}Zr_xNi_2; \ dark \ phase \ Er_{7,3}Zr_{10,5}Nis_{2,2} - Er_{1-x}Zr_xNi_5) \end{array}$

Утворення твердих розчинів заміщення на основі ербієвих сполук добре узгоджується зі взаємною розчинністю Er i Zr у двокомпонентній системі Er–Zr. Довжина твердого розчину цирконію в ербії становить до 13 ат. % при 800 °C, у той час як ербію у цирконії – не перевищує 3 ат. %.

Найбільшу протяжність серед виявлених твердих розчинів на основі бінарних сполук системи Er–Ni має Er_{1-x}Zr_xNi ($0 \le x \le 0.5$; CT β –FeB; a = 6.99-6.4866(3), b = 4.12-4.2387, c = 5.41-5.1912(2) Å). Граничну розчинність цирконію підтверджено методами ЕДРС (рис. 2, δ) та порошку. Результати уточнення кристалічної структури фази Er_{1-x}Zr_xNi для граничного складу x = 0.5 за дифрактограмою зразка складу Er₂₈Zr₂₅Ni₄₇ (рис. 3) наведено у табл. 2. У цьому зразку також виявлено домішкову фазу (\downarrow) з недослідженої області концентрацій. Її структуру додатково вивчатимемо. У межах області гомогенності Er_{1-x}Zr_xNi простежується закономірне зменшення об'єму елементарної комірки зі збільшенням вмісту Zr (рис. 4.). Стиснення елементарної комірки пояснюють заміщенням атомів Er ($r_{Er} = 1.78$ Å) на менші атоми Zr ($r_{Zr} = 1.60$ Å).

9

Рис. 3. Експериментальний (•), розрахунковий (–) та різницевий (внизу) рентгенівські дифракційні профілі у зразку складу Er₂₈Zr₂₅Ni₄₇

Fig. 3. Experimental (•), calculated (–) and differential (bottom line) XRD profiles for Er₂₈Zr₂₅Ni₄₇ Таблиця 2

Результати ХФА фази Er_{1-x}Zr_xNi у зразку складу Er₂₈Zr₂₅Ni₄₇

Table 2

The results of XRD analysis of Er_{1-x}Zr_xNi phase for Er₂₈Zr₂₅Ni₄₇ composition

твердого розчину $Er_{1-x}Zr_xNi$ (β-FeB) Fig. 4. Variation of the lattice parameters within the homogeneity range of $Er_{1-x}Zr_xNi$ (β-FeB) solid solution Бінарні сполуки Er₂Ni₁₇, ErNi₅, ErNi₄, ErNi₃ та Er_{0.97}Ni₂ у потрійній системі розчиняють 1,7; 10,5; 6,0; 1,1; 4,7 та 11,2 ат. % Zr, відповідно, (рис. 2), утворюючи тверді розчини заміщення: Er_{2-x}Zr_xNi₁₇ ($0 \le x \le 0,16$; CT Th₂Ni₁₇); Er_{1-x}Zr_xNi₅ ($0 \le x \le 0,63$; CT CaCu₅); Er_{1-x}Zr_xNi₄ ($0 \le x \le 0,30$; CT PuNi₄); α -Er_{2-x}Zr_xNi₇ ($0 \le x \le 0,05$; CT Er₂Co₇); Er_{1-x}Zr_xNi₃ ($0 \le x \le 0,18$; CT PuNi₃); Er_{0.97-x}Zr_xNi₂ ($0 \le x \le 0,34$; CT TmNi₂). Зміну періодів кристалічної ґратки у межах області гомогенності твердих розчинів наведено у табл. 1.

У системі Zr–Ni підтверджено існування бінарних сполук: ZrNi₅ (CT AuBe₅), Zr₂Ni₇ (CT Zr₂Ni₇), ZrNi₃ (CT SnNi₃), Zr₈Ni₂₁ (CT Hf₈Ni₂₁), Zr₇Ni₁₀ (CT Zr₇Ni₁₀), ZrNi (CT CrB) і Zr₂Ni (CT Al₂Cu). Сполуку Zr₉Ni₁₁ (CT Zr₉Pt₁₁), яка згідно з [36] існує у вузькому температурному інтервалі (978–1 170°С), за температури відпалу у досліджених зразках не виявлено. Бінарні сполуки ZrNi₅, Zr₂Ni₇, Zr₇Ni₁₀, ZrNi та Zr₂Ni розчиняють 5,0; 3,0; 7,3; 16,0 та 20,0 ат. % Ег, відповідно, (рис. 5), утворюючи тверді розчини заміщення: Zr_{1-x}Er_xNi₅ ($0 \le x \le 0,30$; CT AuBe₅); Zr_{2-x}Er_xNi₇ ($0 \le x \le 0,14$; CT Zr₂Ni₇); Zr_{7-x}Er_xNi₁₀ ($0 \le x \le 0,18$; CT Zr₇Ni₁₀); Zr_{1-x}Er_xNi ($0 \le x \le 0,32$; CT CrB) та Zr_{2-x}Er_xNi ($0 \le x \le 0,30$; CT Al₂Cu). Зміну періодів кристалічної гратки у межах області гомогенності твердих розчинів подано у табл. 1.

Рис. 5. Фотографії мікроппліфів та морфологія поверхні сплавів: Er5Zr₁₈Ni77 (*a*) (сіра фаза Er4,9Zr_{12.4}Ni_{82,7} – Zr_{1-x}Er_xNi5; біла фаза Er7,4Zr_{25,3}Ni_{67,3} – Er_xZr_{1-x}Ni₂ (0,12≤ x ≤0,24); чорна фаза Er5,2Zr_{18,6}Ni_{76,2} – Zr_{2-x}Er_xNi7); Er₁₀Zr₅₀Ni₄₀ (*b*) (сіра фаза ErZrNi – Zr_{1-x}Er_xNi; біла фаза Er_{19,6}Zr_{47,7}Ni_{32,7} – Zr_{2-x}Er_xNi) Fig. 5. SEM-images of the alloys: Er5Zr₁₈Ni77 (*a*) (gray phase Er4,9Zr_{12,4}Ni_{82,7} – Zr_{1-x}Er_xNi5;

white phase $Er_{7,4}Zr_{25,3}Ni_{67,3} - Er_xZr_{1-x}Ni_2$ (0,12 $\leq x \leq 0,24$); black phase $Er_{5,2}Zr_{18,6}Ni_{76,2} - Zr_{2-x}Er_xNi_7$); $Er_{10}Zr_{50}Ni_{40}$ (δ) (gray phase $ErZrNi - Zr_{1-x}Er_xNi$; white phase $Er_{19,6}Zr_{47,7}Ni_{32,7} - Zr_{2-x}Er_xNi$)

У потрійній системі Er–Zr–Ni виявлено одну тернарну сполуку Er_xZr_{1-x}Ni₂ (0,12 \leq x \leq 0,24), що є у двофазній рівновазі з твердим розчином Er_{0.98-x}Zr_xNi₂ (0 \leq x \leq 9,5) (CT TmNi₂).

Кристалічну структуру сполуки $\text{Er}_x \text{Zr}_{1-x} \text{Ni}_2$ (0,12 $\leq x \leq$ 0,24) уточнено методом порошку для зразка складу $\text{Er}_{0,17} \text{Zr}_{0,83} \text{Ni}_2$: структурний тип MgCu₂ просторова група *Fd-3m*, *Z* = 8, *a* = 6,987 (5) Å, *R_I* =0,0915 для восьми незалежних відбить, $I_o > 2\sigma$ (I_o). Дифрактограму зразка складу $\text{Er}_{0,17} \text{Zr}_{0,83} \text{Ni}_2$ показано на рис. 6, експериментальні умови одержання масиву дифракційних даних та результати уточнення кристалічної структури подано у таблиці 3, координати атомів та їхні ізотропні параметри зміщення наведено у табл. 4.

Рис. 6. Експериментальний (•), розрахунковий (–) та різницевий (внизу) рентгенівські дифракційні профілі сполуки Er_{0,17}Zr_{0,83}Ni₂

Fig. 6. Experimental (•), calculated (–) and differential (bottom line) XRD profiles for $Er_{0,17}Zr_{0,83}Ni_2$

Таблиця 3 Table 3

Результати уточнення кристалічної структури Er_{0,17}Zr_{0,83}Ni₂

Crystal structure data and structure refinement for Er0,17Zr0.83Ni2

Уточнений склад	Er _{0,17} Zr _{0,83} Ni ₂				
Символ Пірсона, Z	<i>cF</i> 24, 8				
Просторова група	Fd–3m				
Структурний тип	$MgCu_2$				
Параметри комірки:					
a, Å	6,971(1)				
<i>V</i> , Å ³	338,7(3)				
Обчислена густина, г/см ³	8,547(4)				
Коефіцієнт абсорбції, 1/см	29,225				
Випромінювання і довжина хвилі, Å	FeKα, 1,93736				
Межі hkl	$2 \le h \le 5; 0 \le k \le 4; 0 \le l \le 3$				
Фактори розбіжності (%): <i>R</i> _l ; <i>R</i> _P	0,031; 0,042				

Таблиця 4

Координати атомів та їхні ізотропні параметри зміщення (B_{iso} , Å²) для $Er_{0,17}Zr_{0,83}Ni_2$ *Table 4*

Positional and isotropic displacement parameters (B₁₃₀, Å²) for Er_{0,17}Zr_{0,83}Ni₂

	Атом	ПСТ	x	у	z	$B_{i_{30}}$	
	М	8 <i>a</i>	0	0	0	0,98(4)	
	Ni	16 <i>d</i>	5/8	5/8	5/8	1,2(1)	
M =	0,17Er+0,83Z	r.					

Сполука $Er_xZr_{1-x}Ni_2$ характеризується невеликою областю гомогенності $(0,12 \le x \le 0,24;$ a = 6,959(6) - 6,983(1) Å). Фаза $Er_xZr_{1-x}Ni_2 \in y$ рівновазі з твердим розчином $Er_{0.98-x}Zr_xNi_2$ (структурний тип TmNi₂, просторова група F–43m – надструктура до структурного типу MgCu₂ з подвоєним періодом елементарної комірки та частковим заповненням атомами Ег положення 4(a) [23]). Кристалічні структури згаданого твердого розчину та тернарної сполуки належать до кубічних фаз Лавеса TmNi₂ та MgCu₂, відповідно. Дифрактограму зразка складу $Er_{0.39}Zr_{0.61}Ni_2$, яка підтверджує існування двофазної області між $Er_{0.98-x}Zr_xNi_2$ та $Er_xZr_{1-x}Ni_2$, наведено на рис. 7.

²ис. 7. Дифрактограма $\text{Er}_{0,39}\text{Zr}_{0,61}\text{Ni}_2$. Рефлекси від $\text{Er}_x\text{Zr}_1\text{-}_x\text{Ni}_2$ (0,12≤ x ≤ 0,24) (структура типу MgCu₂) (●) і $\text{Er}_{0,98-x}\text{Zr}_x\text{Ni}_2$ (*) (структура типу TmNi₂) Fig. 7. XRD profile of $\text{Er}_{0,39}\text{Zr}_{0,61}\text{Ni}_2$. Reflections of $\text{Er}_x\text{Zr}_1\text{-}_x\text{Ni}_2$ (0,12≤ x ≤ 0,24) (MgCu₂ structure type) (●) and $\text{Er}_{0,98-x}\text{Zr}_x\text{Ni}_2$ (*) (TmNi₂ structure type)

Сполука $Er_xZr_{1-x}Ni_2$ (0,12 $\le x \le 0,24$) є ізоструктурною до раніше дослідженої сполуки $Y_xZr_{1-x}Ni_2$ (0,12 $\le x \le 0,20$) [6]. Аналогічно до фази $Y_xZr_{1-x}Ni_2$ вивчена тернарна сполука є у рівновазі з бінарною $Er_{0,98}Ni_2$. Цей факт засвідчує існування морфотропного ряду кубічних структур MgCu₂ \rightarrow TmNi₂ – надструктура до структурного типу MgCu₂ [23], виявленого раніше у працях [6, 11, 38, 39].

Дослідження властивостей сплаву $Er_{0,12}Zr_{0,88}Ni_2$ [11] з області гомогенності сполуки $Er_xZr_{1-x}Ni_2$ (0,12 $\le x \le 0,24$) показали, що цей інтерметалід виявляє магнітні та електричні властивості, подібні до бінарної сполуки $Er_{0,98}Ni_2$ [40, 41] та досліджених раніше фаз на основі $Er_{0,98}Ni_2$, легованих третім компонентом Y чи Fe [42]. Усі заміщені інтерметаліди аналогічно до $Er_{0,98}Ni_2$ мають металічний тип провідності. Заміщення ербію цирконієм так само, як і заміщення Er/Y, практично не впливає на температуру феромагнітного впорядкування, тоді як заміщення Ni/Fe (5 ат. % Fe) суттєво підвищує температуру Кюрі T_C з 14 до 118 K [42].

4. Висновки

1. Досліджено взаємодію компонентів у системі Er–Zr–Ni при 800 °C та побудовано ізотермічний переріз діаграми стану в області Zr–Ni–ErNi.

2. Визначено існування твердих розчинів заміщення: $Er_{2-x}Zr_xNi_{17}$ ($0 \le x \le 0,16$ CT Th₂Ni₁₇); $Er_{1-x}Zr_xNi_5$ ($0 \le x \le 0,63$; CT CaCu₅); $Er_{1-x}Zr_xNi_4$ ($0 \le x \le 0,30$; CT PuNi₄); α – $Er_{2-x}Zr_xNi_7$ ($0 \le x \le 0,05$; CT Er_2Co_7); $Er_{1-x}Zr_xNi_3$ ($0 \le x \le 0,18$; CT PuNi₃); $Er_{0,98-x}Zr_xNi_2$ ($0 \le x \le 0,34$; CT TmNi₂); $Er_{1-x}Zr_xNi$ ($0 \le x \le 0,5$; CT β -FeB), $Zr_{1-x}Er_xNi_5$ ($0 \le x \le 0,30$; CT AuBe₅); $Zr_{2-x}Er_xNi_7$ ($0 \le x \le 0,18$; CT Zr₂Ni₁₀); $Zr_{1-x}Er_xNi_7$ ($0 \le x \le 0,32$; CT CrB) та $Zr_{2-x}Er_xNi$ ($0 \le x \le 0,30$; CT Al₂Cu).

3. Виявлено тернарну сполуку $\text{Er}_x \text{Zr}_{1-x} \text{Ni}_2$ та методами X-променевого структурного аналізу вивчено її область гомогенності та кристалічну структуру: $0,12 \le x \le 0,24$, структурний тип MgCu₂, просторова група *Fd*-3*m*, *Z*= 8, *a* = 6,971(5) Å, (*R*_{*i*}= 0,031 для восьми незалежних відбить, *Io* > 2 σ (*Io*)) для $\text{Er}_{0,17} \text{Zr}_{0,83} \text{Ni}_2$). Доведено, що ця сполука

є у рівновазі із твердим розчином $\text{Er}_{0,98-x}Zr_x\text{Ni}_2$ (структурний тип TmNi₂, просторова група *F*-43*m* — надструктура до структурного типу MgCu₂ з подвоєним періодом кубічної елементарної комірки та частковим заповненням атомами Ег положення 4(*a*) [23]).

4. З'ясовано існування у потрійній системі на квазібінарному перетині "ZrNi2"–Er_{0,98}Ni₂ морфотропного ряду кубічних структур MgCu₂ → TmNi₂, виявленого раніше у працях [52, 54, 55].

Автори вдячні молодшим науковим співробітникам О. В. Мацелко та В. М. Кордану (Центр колективного користування науковим обладнанням "Лабораторія матеріалознавства інтерметалічних сполук") за проведений елементарний аналіз зразків.

- 1. *Wiesinger G., Hilscher G.* Magnetism of Hydrides, in: K-H-J Buschow (Ed.), Handbook on Magnetic Materials Vol. 17. Elsevier B. V., 2007. Ch 5. P. 293–456.
- Yvon K., Fischer P. Crystal and Magnetic Structures of Ternary Metal Hydrides: A Comprehensive Review, in: Topics in Applied Physics, Vol. 63. Hydrogen in Intermetallic Compounds I. Electronic, Thermodynamic and Crystallographic Properties, Preparation, Springer–Verlag, Berlin, 1988. P. 87–138.
- Jingqi L., Ke G. The isothermal section of the phase diagram of the La–Ni–Ti ternary system at 673 K // J. Alloys Compd. 2000. Vol. 312. P. 121–123. DOI: https://doi.org/10.1016/S0925-8388(00)01072-0
- Zuang Y., Luo Y., He W. The 773 K isothermal section of the phase diagram of ternary Ni–Ti–Y system // J. Alloys Compd. 2000. Vol. 298. P. 135–137. DOI: https://doi.org/10.1016/S0925-8388(99)00573-3
- Liu Z., Jin Z., Xia C. 873 K Isothermal section of phase diagram for Y–Fe–Ti ternary system // Scripta Mat. 1997. Vol. 37. P. 1129–1134. DOI: https://doi.org/10.1016/S1359-6462(97)00234-0
- Babizhetskyy V., Myakush O., Simon A., Kotur B. X-ray investigation of the Y–Zr–Ni system at 870 K // Intermetallics. 2013. Vol. 38. P. 44–48. DOI: https://doi.org/10.1016/j.intermet.2013.02.017
- Kotur B., Myakush O., Zavaliy I. The Er-{Fe, Co}-{Ti, V} systems and hydrogenation properties of the ErFe_{2-x}M_x (M=Ti, V, Cr, Mn, Co, Ni, Cu, Mo) alloys // J. Alloys Compd. 2007. Vol. 442. P. 17–21. DOI: https://doi.org/10.1016/j.jallcom.2007.01.126
- 8. *Levytskyy V., Babizhetskyy V., Myakush O., Koval'chuck I., Riabov A., Kotur B.* Phase equilibria and hydrogenation properties of the Ho–Hf–Fe alloys // Phys.-Chem. Mechan. Mater. 2011. No. 6. P. 94–100.
- 9. Lukyanova A., Levytskyy V., Myakush O., Babizhetskyy V., Kotur B. Interaction of the components in Ho–Hf–Fe system and hydrogen-storage ability of the solid solution alloys $H_{0_2x}H_xFe_2$ ($0 \le x \le 0.51$) // Visnyk Lviv Univ. Ser. Chem. 2012. Iss. 53. P. 28–35.
- Zinkevich M., Mattern N., Bacher I. Experimental and thermodynamic assessment of the Fe–Gd–Zr system // Z. Metallkd. 2002. Bd. 93. S. 186–198. DOI: https://doi.org/10.3139/146.020186
- Babizhetskyy V., Myakush O., Levytskyy V., Köhler J., Simon F., Michor H., Kotur B. Homogeneity ranges and physical properties of ternary Laves phases R_xZr_{1-x}Ni₂ (R=Gd-Lu)// J. Alloys Compd. 2016. Vol. 661. P. 490–494. DOI: https://doi.org/10.1016/j.jallcom.2015.11.136

Бабіжецький В., Левицький В., Мякуш О. та ін. ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2021. Випуск 62

- Al-Omari I., Aich S. Magnetic and structural studies of GdFe_{2-x}Hf_x alloys // J. Alloys Compd. 2004. Vol. 375. P. 31–33. DOI: https://doi.org/10.1016/j.jallcom.2003.11.029
- Koval'chuck I., Riabov A., Myakush O., Myronenko P., Kotur B. Hydrogenation of pseudo-binary Ho_{1-x}M_xFe₂ compound (M = Zr, Hf; 0<x<0.2) // Coll. Abstr. Int. Symp. "Metal-Hydrogen Systems. Fundamentals and Applications". Moskow; Russia, 2010. P.180.
- Kobayashi K., Kanematsu K. Magnetic properties and crystal structure of Laves phase (Y_xZr_{1-x})Fe₂ and their hydrides // J. Phys. Soc. Jpn. 1986. Vol. 55. P. 1336–1340. DOI: https://doi.org/10.1143/JPSJ.55.1336
- Kesavan T.R., Ramaprabhu S., Rama Rao K.V.S., Das T.P. Hydrogen absorption and kinetic studies in Zr_{0.2}Ho_{0.8}Fe₂ // J. Alloys Compd. 1996. Vol. 244. P. 164–169. DOI: https://doi.org/10.1016/S0925-8388(96)02413-9
- Burzo E., Teteanu R. Magnetic properties of (Y_{1-x}Zr_x)Co₃ compounds // Solid State Comm. 1993. Vol. 86. P. 493–496. DOI: https://doi.org/10.1016/0038-1098(93)90095-5
- Kobayashi K., Kanematsu K. Magnetic properties of PuNi₃ type intermetallic compounds Y_xZr_{1-x}Co_{2.9} and their hydrides // J. Magn. Magn. Mater. 1987. Vol. 70. P.271–272. DOI: https://doi.org/10.1016/0304-8853(87)90435-5
- Burnasheva V., Tarasov B. The Influence of the partial replacement of Nickel or Yttrium by other metals on the absorption of Hydrogen by the compound YNi₃ // Rus. J. Inorg. Chem. 1984. Vol. 29. P. 651–655.
- Fujii H., Wallace W. Magnetic characteristics of hexagonal Sm_{2-x}R_xCo₁₆₄Zr_{0.6} // J. Magn. Magn. Mater. 1985. Vol. 50. P. 64–68. DOI: https://doi.org/10.1016/0304-8853(85)90088-5
- 20. *Okamoto H.* Desk Handbook: Phase diagrams for Binary Alloys. Materials Park, OH: American Society for Metals, 2000. 828 p.
- Buschow K. Crystal structures, magnetic properties and phase relations of erbium nickel intermetallic compounds // Less–Common Met. 1968. Vol. 16. P. 45–53. DOI: https://doi.org/10.1016/0022-5088(68)90155-0
- Moreau J., Paccard D., Gignoux D. The crystal structure of Er₃Ni₂ // Acta Crystallogr. 1974. Vol. 30. P. 2122–2126. DOI: https://doi.org/10.1107/S0567740874006583
- Latroche M., Paul-Boncour V., Percheron-Guegan A. Structural instability in R_{1-x}Ni₂ compounds and their hydrides (R=Y, rare earth) // Z. Phys. Chem. 1993. Vol. 179. P.261–268. DOI: https://doi.org/10.1524/zpch.1993.179.Part_1_2.261
- Virckar A., Raman A. Crystal structures of AB₃ and A₂B₇ rare earth nickel phases // J.Less–Common Met. 1969. Vol. 18, P. 59–66. DOI: https://doi.org/10.1016/0022-5088(69)90120-9
- 25. Buschow K. H. J., van der Goot A. The crystal structure of rare-earth nickel compounds of the type Y₂Ni₇ // J. Less-Common Met. 1970. Vol. 22. P. 419–428. DOI: https://doi.org/10.1016/0022-5088(70)90129-3
- Pop I., Andrecut M., Burda I., Crisan V. Structural and magnetic properties of the intermetallic compounds Er₂Ni₁₇ and Er₂Al₁₇ // J. Mater. Lett. 1992. Vol. 15. P. 171–174. DOI: https://doi.org/10.1016/0167-577X(92)90139-B
- Dwight A. Factors Controlling the Occurrence of Laves Phases and AB₅ Compounds Among Transition Elements. Trans. Am. Soc. Met. 1961. Vol. 53. P. 479–500.

- 28. *Barrick J., James W.* Crystal Structure of ErNi₄ // Acta Crystallogr. 1975. Vol. 31A. P.96–100.
- 29. *Klepp K., Parthe E.* Phase relationship of ternary rare earth-transition metal alloys with CrB and FeB structures or stacking variants // J. Less–Common Met. 1982. Vol. 85. P.181–194. DOI: https://doi.org/10.1016/0022-5088(82)90069-8
- Gignoux D., Lemaire R., Paccard D. Etude des structures magnetiques composes Er₃Co et Er₃Ni par diffraction neutronique // Solid State Comm. 1970. Vol. 8. P. 391–399. DOI: https://doi.org/10.1016/0038-1098(67)90125-1
- Forey P., Glimois J. L., Feron J. L. Etude structurale des alliages ternaires (Ni_{1-x}Cu_x)Zr // J. Less-Common Met. 1986. Vol. 124. P. 21–27. DOI: https://doi.org/10.1016/0022-5088(86)90473-X
- 32. *Eshelman F., Smith J.* The structure of Zr₂Ni₇ // Acta Crystallogr. 1972. Vol.28. DOI: P.1594–1600. https://doi.org/10.1107/S0567740872004649
- Bsenko L. The Hf–Ni and Zr–Ni systems in the region at 65-80% Ni // J. Less-Common Met. 1979. Vol. 63. P. 171–179. DOI: https://doi.org/10.1016/0022-5088(79)90241-8
- Janbert M., R. Cerný R., Yvon K., Latroche M., Percheron-Guéganet A. Zr₇Ni₁₀: Space group revision for stoichiometric phase // Acta Crystallogr. C. 1997. Vol. 53. P. 1536–1538. DOI: https://doi.org/10.1107/S0108270197007142
- Kirckpatrick M., Bailey D., Smith J. The structures of Zr₂Ni, ZrNi and their hafnium analogues // Acta Crystallogr. 1962. Vol. 15. P. 252–255. DOI: https://doi.org/10.1107/S0365110X62000602
- Ghosh G. Thermodynamics and kinetics of stable and metastable phases in the Ni-Zr system// J. Mater. Res. 1994. Vol. 9. P. 598–616. DOI: https://doi.org/ 10.1557/JMR.1994.0598
- Akselrud L., Grin Yu. WinCSD: Software package for crystallographic calculations (Version 4) // J. Appl. Cryst. 2014. Vol. 47. P. 803–805. DOI: https://doi.org/10.1107/S1600576714001058
- Kotur B., Myakush O., Michor H., Bauer E. Influence of doping elements (Y and Fe) on crystal structure and electrical resistivity of the RNi₂ (R=Gd, Er) compounds // J. Alloys Compd. 2010. Vol. 499. P. 135–139. DOI: https://doi.org/10.1016/j.jallcom.2010.03.187
- Myakush O., Babizhetskyy V., Myronenko P., Michor H., Bauer E., Kotur B. Influence of doping elements (Cu and Fe) on the crystal structure and electrical resistivity of YNi₃ and Y_{0.95}Ni₂/// J. Chem. Met. Alloys. 2011. Vol. 4. P. 152–159.
- Gratz E., Bauer E., Nowotny H. Transport properties in rare earth intermetallics // J. Magn. Magn. Mater. 1987. Vol. 70. P. 118–125. DOI: https://doi.org/10.1016/0304-8853(82)90238-4
- Michor H., Kotur B., Myakush O., Hilscher G. Influence of doping elements (Y, Fe, V) on magnetic properties of RM₂ (R= Gd, Er; M= Fe, Co, Ni) Laves phases and their hydrides // J. Phys.: Conf. Ser. 2011. Vol. 289. 012018. DOI: https://doi.org/10.1088/1742-6596/289/1/012018
- Kotur B., Myakush O., Michor H., Bauer E. Influence of doping elements (Y and Fe) on crystal structure and electrical resistivity of the RNi₂ (R=Gd, Er) compounds // J. Alloys Compd. 2010. Vol. 499. P. 135–139. DOI: https://doi.org/10.1016/j.jallcom.2010.03.187

16

PHASE EQUILIBRIA IN Er-Zr-Ni SYSTEM AT 800 °C IN ErNi-Zr-Ni REGION

V. Babizhetskyy¹, V. Levytskyy¹, O. Myakush^{2*}, B. Kotur¹

 ¹ Ivan Franko National University of Lviv, Kyryla i Mefodiya Str., 6, 79005 Lviv, Ukraine;
² National University of Forest and Wood Technology of Ukraine, Chuprynky Str., 103, 79057 Lviv, Ukraine e-mail: oksmyakush@gmail.com.ua

The isothermal section of the Er-Zr-Ni phase diagram in the ErNi-Zr-Ni region at 800 °C has been studied by means of X-ray phase and structural analyzes and energy-dispersive X-ray spectroscopy.

The mutual solubility of the components Er, Zr and Ni at 800 ° C is insignificant: Zr dissolves up to 3 at. % Er and practically does not dissolve Ni; Ni practically does not dissolve Er and Zr; Er dissolves up to 13 at. % Zr and practically does not dissolve Ni.

The existence of the binary compounds Er_2Ni_{17} , $ErNi_5$, $ErNi_4$, α - Er_2Ni_7 , $ErNi_3$, $Er_{0.98}Ni_2$, ErNi, ZrNi₅, Zr₂Ni₇, ZrNi₃, Zr₈Ni₂₁, Zr₇Ni₁₀, ZrNi and Zr₂Ni has been confirmed in ErNi–Zr–Ni region. The following solid solutions of substitution based on the binary Er–Ni and Zr–Ni compounds were detected: $Er_{2-x}Zr_xNi_{17}$ ($0 \le x \le 0,16$; str. type Th₂Ni₁₇); $Er_{1-x}Zr_xNi_5$ ($0 \le x \le 0,63$; str. type CaCu₅); $Er_{1-x}Zr_xNi_4$ ($0 \le x \le 0,30$; str. type PuNi₄); α – $Er_{2-x}Zr_xNi_7$ ($0 \le x \le 0,05$; str. type Er₂Co₇); $Er_{1-x}Zr_xNi_3$ ($0 \le x \le 0,18$; str. type PuNi₃); $Er_{0.98-x}Zr_xNi_2$ ($0 \le x \le 0,34$; str. type TmNi₂); $Er_{1-x}Zr_xNi$ ($0 \le x \le 0,55$; str. type), $Zr_{1-x}Er_xNi_5$ ($0 \le x \le 0,30$; str. type AuBe₅); $Zr_{2-x}Er_xNi_7$ ($0 \le x \le 0,14$; str. type Zr₂Ni₇); $Zr_{7-x}Er_xNi_10$ ($0 \le x \le 0,18$; str. type Zr₇Ni₁₀); $Zr_{1-x}Er_xNi$ ($0 \le x \le 0,32$; str. type CrB); ra $Zr_{2-x}Er_xNi$ ($0 \le x \le 0,30$; str. type Al₂Cu). Other binary compounds don't dissolve any significant amount of the third component.

One ternary compound $\text{Er}_x \text{Zr}_{1-x} \text{Ni}_2(0, 12 \le x \le 0, 24)$ with the narrow homogeneity range at 800 °C occurs in the system. It crystallizes in the cubic MgCu₂ type of structure. It's crystal structure has been refined for $\text{Er}_{0,17} \text{Zr}_{0,83} \text{Ni}_2$ composition using powder X-ray diffraction data: MgCu₂ str. type, *Fd*-3*m* space group, *Z* = 8, *a* = 6,987 (5) Å, *R_I* =0,0915 for 8 independent reflections, *I_o* > 2 σ (*I_o*). The ternary compound $\text{Er}_x \text{Zr}_{1-x} \text{Ni}_2(0, 12 \le x \le 0, 24)$ coexists with the solid solution $\text{Er}_{0,98-x} \text{Zr}_x \text{Ni}_2(0 \le x \le 9, 5)$ (CT TmNi₂).

The morphotropic row of cubic Laves phases $MgCu_2 \rightarrow TmNi_2 - a$ defect superstructure of the $MgCu_2$ type with doubled *a*-lattice parameter has been defined along the pseudo-binary "ZrNi₂"- Er_{0.98}Ni₂ cross section.

Keywords: ternary system, phase equilibria, intermetallic compounds, crystal structure.

Стаття надійшла до редколегії 01.11.2020 Прийнята до друку 18.05.2021