ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2020. Випуск 61. Ч. 1. С. 125–134 Visnyk of the Lviv University. Series Chemistry. 2020. Issue 61. Pt. 1. P. 125–134

УДК 546.561:547.821

СИНТЕЗ ТА КРИСТАЛІЧНА СТРУКТУРА КУПРО(І)ГАЛОГЕНІДНИХ КОМПЛЕКСІВ З КАТІОНОМ 1-АЛІЛ-4-ЦІАНОПІРИДИНІЮ

О. Павлюк¹*, М. Миськів¹, Є. Горешнік²

¹ Львівський національний університет імені Івана Франка, вул. Кирила і Мефодія, 6, 79005 Львів, Україна;

> ² Jožef Stefan Institute, Jamova, 39, SI-1000 Ljubljana, Slovenia e-mail: pavalex@gmail.com

Під час взаємодії 1-аліл-4-ціанопіридиній галогенідів з відповідним купрум(II) галогенідом добуго та рентгеноструктурно досліджено сполуки складу [NCC₅H₄NC₃H₅]CuBr₂ (I) та [CNC₅H₄NC₃H₅]₂CuCl_{3,75}Br_{0,25} (II): для I – просторова група *I*2/*a*, Z = 8, *a* = 12,589(1), *b* = 11,8615(7), *c* = 15,574(1) Å, β = 105,495(8), V = 2241,1(4) Å³, $\rho_{05^{4}.}$ = 2,185 г/см³, μ (Mo K_{α}) = 9,40 мм⁻¹, $\theta_{max.}$ = 29,4°, 5 188 виміряних рефлексів, 2 388 використано, $R(F^2) = 0,050$, S = 1,06; для II – просторова група $P\overline{1}$, *a* = 8,2365(2), *b* = 11,5828(3), *c* = 11,7746(3) Å, α = 90,719(2)°, β = 99,423(2)°, γ = 102,379(2)°, V = 1081,1(1) Å³, $\rho_{05^{4}.} = 1,557$ г/см³, μ (Mo K_{α}) = 1,94 мм⁻¹, $\theta_{max.} = 29,0°$, 25 242 виміряні рефлекси, 5 061 використано, $R(F^2) = 0,023$, S = 1,05.

У кристалічній структурі сполуки I атоми купруму(I) розташовано у деформованому тетраедричному координаційному оточенні з атомів брому. Завдяки зв'язуванню Вг⁻ з двома атомами металу утворюються нескінченні неорганічні ланцюги {CuBr₂}nⁿ⁻, розташовані вздовж осі *а* елементарної комірки, в порожнинах між якими перебувають катіони 1-аліл-4-ціанопіридинію. В кристалічній структурі сполуки II ізольовано змішаногалогенідні деформовані тетраедри CuHal4²⁻, додатково зв'язані з катіонами алільного похідного слабкими водневими контактами C–H…Hal.

Ключові слова: 1-аліл-4-ціанопіридиній, купрум(І), змішаногалогенідні сполуки, кристалічна структура.

DOI: https://doi.org/10.30970/vch.6101.125

1. Вступ

Відомо, що перехідні метали є добрими комплексоутворювачами, а купрум(I) вирізняється можливістю координації як з класичними донорними лігандами, так і з ненасиченими сполуками [1]. Каркасні структури на основі металоорганічних каркасів (MOF) уже широко використовують у галузі металокомплексного каталізу [2–4]. Разом із тим, показано багато нових способів використання купрумвмісних сполук [5]. Галогенокупратні каркаси завдяки можливості реалізації великої кількості топологічно відмінних способів побудови структури [6] привертають значну увагу наукової спільноти. Введення до складу таких сполук одночасно кількох різновидів галогенідів-іонів не мало б мати експериментальних перешкод, однак могло б докорінно змінити їх оптичні властивості [7–8].

[©] Павлюк О., Миськів М., Горешнік Є., 2020

У такому контексті цікаво було б добути змішаногалогенідні комплекси Cu(I) з катіоном 1-аліл-4-ціанопіридинію, визначити та проаналізувати особливості побудови їх кристалічної структури.

2. Матеріали та методика експерименту

Вихідний 1-аліл-4-ціанопіридиній хлорид синтезували взаємодією 4-ціанопіридинію з алілом хлористим [9]. У льодяній оцтовій кислоті розчинили 0,05 моль CNC_5H_4N та додали 0,05 моль алілу хлористого. Отриману суміш нагрівали (60–70 °C) впродовж 30 год та перемішували магнітною мішалкою. Оцтову кислоту відігнали, отримали 9 г червоної кристалічної маси (вихід 99 %). Своєю чергою, 1-аліл-4-ціанопіридиній бромід синтезували взаємодією 0,05 моль 4-ціанопіридинію з 0,05 моль алілу бромистого в бензені. Отриману суміш нагрівали за кип'ятіння зі зворотним холодильником упродовж 20 год та перемішували магнітною мішалкою. Розчинник відігнали, отримали 8 г темно-червоної кристалічної маси (вихід 90 %).

Темно-червні призматичні кристали сполуки [NCC₅H₄NC₃H₅]CuBr₂ (**I**) утворилися в умовах змінно-струмного електрохімічного синтезу [10] через дві доби з н-пропанольного розчину Cu(NO₃)₂·3H₂O та 1-аліл-4-ціанопіридиній броміду. Під час взаємодії етанольного розчину купрум(ІІ) броміду з надлишком 1-аліл-4-ціанопіридиній хлориду в присутності мідного дроту впродовж кількох діб з'являлися оранжеві призматичні кристали комплексу [CNC₅H₄NC₃H₅]2CuCl_{3,75}Br_{0,25} (**II**). Якість кристалів, наближені параметри ґратки та дифракційний клас визначали з рентгенограм обертання та вайсенбергограм. Масив інтегральних інтенсивностей відбить для монокристалів досліджених сполук отримано на монокристальному дифрактометрі *Agilent Gemini A*, обладнаному детектором *Atlas CCD*. Дифракційні дані опрацьовано за допомогою програми *CrysAlisPro* (табл. 1) [11]. Структури розв'язано й уточнено за допомогою програм SHELXT [12] та SHELXL-2014 [13] з використанням відповідного графічного інтерфейсу програми OLEX² [14].

Позиції більшості негідрогенових атомів знайдено прямими методами, а решти – з різницевих синтезів Фур'є. Атоми гідрогену уточнювали в моделі "наїзника" з використанням відповідних обмежень [15]. Координати атомів і параметри теплового зміщення наведено в табл. 2, основні довжини зв'язків та валентні кути – у табл. 3.

3. Результати досліджень та їх обговорення

У кристалічній структурі сполуки [CNC₃H₄NC₃H₅]CuBr₂ атом купруму(I) розташовано у деформованому тетраедричному координаційному оточенні з атомів брому (відстань Cu–Br в межах 2,474–2,490 Å, τ_4 '= 0,88 [16]). Завдяки містковій функції атомів галогену, що входять до координаційних многогранників двох атомів металу кожен, окремі піраміди з'єднуються у нескінченні полімерні фрагменти {CuBr₂}n⁻, розташовані вздовж осі *а* елементарної комірки (рис. 2). В порожнинах між купробромідними поліаніонами розташовано катіони 1-аліл-4-ціанопіридинію, що додатково до електростатичної взаємодії з аніонами утворюють слабкі водневі зв'язки С–Н…Br (рис. 2, табл. 4).

У кристалічній структурі сполуки [CNC₅H₄NC₃H₅]₂CuCl_{3,75}Br_{0,25} атоми купруму(I) розташовані у деформованому тетраедричному координаційному оточенні з атомів галогенів (відстань Cu–Cl* в межах 2,250–2,264 Å, Cu–Br – 2,18–2,39, τ₄'(Cl)= 0,61, τ₄'(Br)= 0,44). Для атомів хлору та брому проведено незалежне визначення їх кристалографічних координат. Зважаючи на малий вміст брому у сполуці **II**, виконано спільне уточнення теплових параметрів для просторово близьких позицій, а сумарна заселеність дорівнювала одиниці.

126

О. Павлюк, М. Миськів, Є. Горешнік

Таблиця 1

Основні кристалографічні параметри та умови рентгенівського експерименту для сполук І та ІІ

Table 1

127

Selected crystal data and structure refinement parameters of I and II compounds				
Параметр	I*	II*		
CCDC	1962852	1962853		
Брутто формула	[CNC-II-NC-II-]CyPr-	[CNC5H4NC3H5]2		
	[CNC5H4INC3H5]CuBr2	CuCl _{3,75} Br _{0,25}		
М, ат. од.	368,54	506,82		
Т, К	150	150		
Колір, форма	темно-червоні призми	оранжеві призми		
Дифрактометр	Agilent Gemini	A (Xcalibur)		
Символ просторової групи, номер	<i>I</i> 2/ <i>a</i> , 15	$P\overline{1}, 2$		
<i>a</i> , Å	12,589(1)	8,2365(2)		
b, Å	11,8615(7)	11,5828(3)		
<i>c</i> , Å	15,574(1)	11,7746(3)		
α , °	90	90,719(2)		
β, \circ	105,495(8)	99,423(2)		
y, °	90	102,379(2)		
$V, Å^3$	2241,1(4)	1081,1(1)		
Z	8	2		
р _{обч.} , г/см ³	2,185	1,557		
F(000)	1408	511		
λ, Å	0,71073	0,71073		
μ , mm ⁻¹	9,04	1,94		
	-17 < h < 16	$-10 \le h \le 10$		
hkl	$-14 \le k \le 15$	-15 < k < 15		
	-20 < 1 < 80	-15 < l < 15		
Число відбить:	5188	25242		
виміряних				
використано при уточненні	2388	5061		
$ heta_{ ext{макс}}$., град,	29,4	29,0		
Число уточнених параметрів	129	260		
Вагова схема**	0,073	0,0242		
$[\sigma^2(F_{\text{BHM.}}^2) + (AP)^2 + BP]^{-1}$	10,578	0,4967		
$R(F^2)$	0,050	0,023		
$Rw(F^2)$	0,134	0,058		
Goof	1,06	1,05		

*Основні характеристики структур депоновано у Кембриджську базу структурних даних. Доступ: https://www.ccdc.cam.ac.uk/structures/

** $P = (F_{\text{вим.}}^2 + 2F_{\text{обч.}}^2).$

Ізольовані координаційні многогранники атомів металу оточені катіонами 1-аліл-4-ціанопіридинію. Останні беруть участь у зв'язуванні [CuHal₄]²⁻ не тільки внаслідок електростатичного притягання, а й утворення кожним катіоном слабких водневих контактів С–Н…Наl з кількома аніонами (рис. 3, табл. 4).

Цікавою особливістю структур сполук [NCC₅H₄NC₃H₅]CuBr₂ (I) та [NCC₅H₄NC₃H₅]₂CuCl_{3,75}Br_{0,25} (II) є відсутність координації атомів купруму(I) з ненасиченим зв'язком C=C алільної групи катіона 1-аліл-4-ціанопіридинію. Якщо у випадку комплексу I таку особливість побудови кристалічної гратки можна пояснити

стеричними перешкодами від атомів брому (див. структуру топологічно подібного купробромідного комплексу з катіоном 1-алілхінолінію [C₉H₇NC₃H₅]CuBr₂ [17]), то у випадку комплексу **II** незначна домішка бромід-іонів не мала б заважати реалізації взаємодії Cu(I)–(C=C) (як це простежувалося у змішаногалогенідній сполуці 1-алілізохінолінію складу [C₉H₇NC₃H₅]CuCl_{1,43}Br_{0,57}·H₂O [18]).

128

Рис. 1. Схема нумерації атомів у межах формульної одиниці структури [CNC5H4NC3H5]CuBr2 (a) та [CNC5H4NC3H5]2CuCl3,75Br0,25 (б) Fig. 1. Scheme of atoms numbering within the formula unit of structure [CNC5H4NC3H5]CuBr2 (a) and [CNC5H4NC3H5]2CuCl3,75Br0,25 (b)

Рис. 2. Упаковка топологічних одиниць, розподіл водневих контактів у структурі I Fig. 2. Topological units packaging and hydrogen contacts net in structure of I

Рис. 3. Упаковка топологічних одиниць, розподіл водневих контактів у структурі **II** Fig. 3. Topological units packaging and hydrogen contacts net in the **II** structure

Таблиця 2

Координати атомів та їхні параметри теплових зміщень у структурах сполук І та ІІ *Table 2*

Атом	x/a	y/b	z/c	$U_{ m ekb.}/U_{ m i30.},{ m \AA}^{2*}$
		Ι		
Cu(1)	0,37738(7)	0,49328(6)	0,50041(5)	0,0200(2)
Br(1)	0,45674(5)	0,48478(5)	0,37134(4)	0,0159(2)
Br(2)	1⁄4	0,33293(6)	1/2	0,0138(2)
Br(3)	1⁄4	0,65402(7)	1//2	0,0189(2)
C(21)	0,5050(5)	0,6935(5)	0,1135(4)	0,016(1)
C(31)	0,5939(5)	0,6505(5)	0,0897(4)	0,016(1)
C(41)	0,6836(5)	0,6106(5)	0,1556(4)	0,016(1)
C(51)	0,6823(5)	0,6195(5)	0,2445(4)	0,018(1)
C(61)	0,5922(5)	0,6633(5)	0,2647(4)	0,016(1)
C(71)	0,7757(5)	0,5617(5)	0,1310(4)	0,021(1)
C(81)	0,4026(5)	0,7371(5)	0,2238(4)	0,021(1)
C(91)	0,4258(5)	0,8288(5)	0,2908(4)	0,019(1)
C(101)	0,4037(6)	0,8198(5)	0,3682(4)	0,024(1)
N(11)	0,5043(4)	0,6982(4)	0,1999(3)	0,013(1)
N(21)	0,8456(5)	0,5193(5)	0,1087(4)	0,033(1)
H(21)	0,444424	0,719816	0,069771	0,019*
H(31)	0,594248	0,647984	0,030098	0,019*
H(51)	0,742555	0,595698	0,289599	0,022*
H(61)	0,591151	0,669293	0,323986	0,019*
H(81A)	0,349320	0,763564	0,170480	0,026*

Fractional atomic coordinates and thermal displacement parameters in the structures of **I** and **II** compounds

О. Павлюк, М. Миськів, Є. Горешнік ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2020. Випуск 61. Ч. 1

				Продовження г	пабл. 2
Атом	x/a	y/b	z/c	U _{екв.} /U _{ізо.} , Å ² *	
H(81B)	0,370206	0,673871	0,247143	0,026*	
H(91)	0,457283	0,895242	0,277535	0,023*	
H(10A)	0,372292	0,754046	0,382768	0,029*	
H(10B)	0.419543	0.879291	0.408587	0.029*	
	,	Í	,	,	
Cu(1)	0.75483(2)	0.25422(2)	0.59968(2)	0.01461(6)	
Cl(1)**	0,6904(1)	0,36952(4)	0,45457(4)	0,028(1)	
Br(1)**	0.7491(1)	0.3743(8)	0.4587(7)	0.028(1)	
Cl(2)**	0.6148(2)	0.1287(2)	0.7144(2)	0.0187(2)	
Br(2)**	0.636(3)	0.127(2)	0.720(2)	0.0187(2)	
Cl(3)**	0.8817(8)	0.4009(4)	0.7344(5)	0.0201(3)	
Br(3)**	0.889(5)	0.408(3)	0.734(3)	0.0201(3)	
Cl(4)**	0.8381(7)	0.1200(4)	0.4952(4)	0.0219(3)	
Br(4)***	0.845(2)	0.112(1)	0.491(1)	0.0219(3)	
N(11)	0.2452(2)	0.8527(1)	0.8610(1)	0.0177(2)	
N(12)	0.7584(1)	0.7118(1)	0.5058(1)	0.0168(2)	
N(21)	0,1909(2)	0,4193(1)	1,0161(1)	0.0341(3)	
N(22)	0,6352(2)	0,8663(1)	0,9025(1)	0.0316(3)	
C(21)	0,2256(2)	0,7614(1)	0,7846(1)	0,0215(3)	
C(22)	0,7817(2)	0,6477(1)	0,5992(1)	0,0221(3)	
C(31)	0,2083(2)	0,6473(1)	0,8205(1)	0,0225(3)	
C(32)	0,7528(2)	0,6858(1)	0,7039(1)	0,0225(3)	
C(41)	0,2109(2)	0,6287(1)	0,9374(1)	0,0214(3)	
C(42)	0,6991(2)	0,7914(1)	0,7102(1)	0,0189(3)	
C(51)	0,2305(2)	0,7239(2)	1,0150(1)	0,0263(3)	
C(52)	0,6769(2)	0,8568(1)	0,6132(1)	0,0221(3)	
C(61)	0,2478(2)	0,8358(1)	0,9746(1)	0,0247(3)	
C(62)	0,7081(2)	0,8144(1)	0,5110(1)	0,0205(3)	
C(71)	0,1980(2)	0,5104(1)	0,9795(1)	0,0252(3)	
C(72)	0,6648(2)	0,8334(1)	0,8186(1)	0,0234(3)	
C(81)	0,2694(2)	0,9764(1)	0,8201(1)	0,0217(3)	
C(82)	0,7866(2)	0,6671(1)	0,3927(1)	0,0213(3)	
C(91)	0,1047(2)	1,0103(2)	0,7809(1)	0,0263(3)	
C(92)	0,6227(2)	0,6146(1)	0,3173(1)	0,0255(3)	
C(101)	0,0519(3)	1,0899(2)	0,8360(2)	0,0407(5)	
C(102)	0,5907(3)	0,6336(2)	0,2077(2)	0,0443(5)	
H(21)	0,223726	0,775453	0,706870	0,026*	
H(22)	0,817504	0,577405	0,593078	0,027*	
H(31)	0,195082	0,584126	0,767813	0,027*	
H(32)	0,768846	0,641996	0,768787	0,027*	
H(51)	0,231922	0,712055	1,093075	0,032*	
H(52)	0,641747	0,927673	0,617156	0,027*	
H(61)	0,261456	0,900332	1,025754	0,030*	
H(62)	0,694344	0,857125	0,445079	0,025*	
H(81A)	0,334839	1,031111	0,882297	0,026*	
H(81B)	0,332458	0,982500	0,756938	0,026*	
H(82A)	0,848530	0,731782	0,354627	0,026*	
H(82B)	0,853834	0,607696	0,405458	0,026*	
H(91)	0.036470	0,972914	0,714054	0.032*	

130

О. Павлюк, М. Миськів, Є. Горешнік ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2020. Випуск 61. Ч. 1 131

			Закінчення табл
x/a	y/b	z/c	$U_{ m ekb}/U_{ m i30.},{ m \AA}^{2*}$
0,539069	0,566003	0,349911	0,031*
0,672301	0,681910	0,173084	0,053*
0,486401	0,598845	0,164252	0,053*
0,117837	1,128448	0,902974	0,049*
-0,051631	1,107882	0,808026	0,049*
	x/a 0,539069 0,672301 0,486401 0,117837 -0,051631	x/a y/b 0,539069 0,566003 0,672301 0,681910 0,486401 0,598845 0,117837 1,128448 -0,051631 1,107882	x/a y/b z/c 0,539069 0,566003 0,349911 0,672301 0,681910 0,173084 0,486401 0,598845 0,164252 0,117837 1,128448 0,902974 -0,051631 1,107882 0,808026

 ^{*} Для негідрогенових атомів, для Н – U_{ізо}.
 ^{**} У змішаногалогенідному комплексі II позиції атомів галогенів мають такі заселеності: Cl(1) – 0.971(1), Br(1) – 0.029(1), Cl(2) – 0.962(2), Br(2) – 0.038(2), Cl(3) – 0.934(2), Br(3) -0.066(2), Cl(4) -0.884(2), Br(4) -0.116(2).

Таблиця 3

Основні довжини зв'язків (d) та валентні (ω) кути у структурах сполук I та II	
	Table 3
ected bond distances (d) and valence angles (ω) in the structures of I and II compound	ds

Selected bond	distances (d)	and valence	angles (a) in the st	ructures of l	and II o	compound
Delected colla	anstances (a)	una varenee	ungies (0	synn une su	actures or i		compound

Зв'язок	d,Å	Кут	ω,°
		I	,
Cu(1)– $Br(1)$	2,474(1)	$Br(1)-Cu(1)-Br(1)^{i}$	102,83(3)
$Cu(1)$ – $Br(1)^i$	2,488(1)	Br(1)-Cu(1)-Br(2)	111,52(3)
Cu(1)– $Br(2)$	2,487(1)	$Br(1)^{i}-Cu(1)-Br(3)$	108,89(3)
$Cu(1)$ – $Br(2)^{ii}$	2,487(1)	Br(1)-Cu(1)-Br(3)	115,38(3)
Cu(1)– $Br(3)$	2,490(1)	$Br(2)-Cu(1)-Br(1)^{i}$	118,98(3)
$Cu(1)$ – $Br(3)^{ii}$	2,490(1)	Br(2)-Cu(1)-Br(3)	99,86(3)
N(11)-C(21)	1,348(7)	C(21)–N(11)–C(61)	120,8(5)
N(11)–C(61)	1,348(7)	C(21)–N(11)–C(81)	119,6(5)
N(11)–C(81)	1,499(7)	C(61)–N(11)–C(81)	119,5(5)
C(81)–C(91)	1,481(9)	C(91)–C(81)–N(11)	112,4(5)
C(91)–C(101)	1,312(9)	C(101)–C(91)–C(81)	122,5(6)
N(21)-C(71)	1,145(8)	C(51)–C(41)–C(71)	121,3(5)
		П	
Cu(1)-Cl(1)	2,2469(5)	Cl(1)– $Cu(1)$ – $Cl(2)$	137,3(1)
Cu(1)– $Br(1)$	2,18(1)	Cl(1)-Cu(1)-Cl((3)	97,5(2)
Cu(1)-Cl(2)	2,260(2)	Cl(1)– $Cu(1)$ – $Cl(4)$	97,3(1)
Cu(1)–Br(2)	2,24(3)	Cl(2)– $Cu(1)$ – $Cl(3)$	98,1(2)
Cu(1)–Cl(3)	2,264(5)	Br(1)-Cu(1)-Br(2)	154,0(6)
Cu(1)– $Br(3)$	2,33(3)	Br(1)-Cu(1)-Br(3)	92,2(9)
Cu(1)-Cl(4)	2,255(4)	Br(1)-Cu(1)-Br(4)	92,8(5)
Cu(1)– $Br(4)$	2,39(1)	Br(2)-Cu(1)-Br(3)	98,0(1)
N(11)-C(81)	1,501(2)	C(91)–C(81)–N(11)	111,8(1)
C(81)–C(91)	1,495(2)	C(101)–C(91)–C(81)	123,2(2)
C(91)–C(101)	1,307(3)	C(92)–C(82)–N(12)	110,7(1)
N(12)–C(82)	1,495(2)	C(102)–C(92)–C(82)	123,2(2)
C(82)–C(92)	1,491(2)	C(21)–N(11)–C(81)	119,5(1)
C(92)–C(102)	1,305(2)	C(22)–N(12)–C)82)	119,3(1)

Коди симетрії: (*i*) -x+1, -y+1, -z+1; (*ii*) -x+1/2, y, -z+1.

Таблиця 4

Table 4

Основні водневі контакти С-Н...Наl у структурі сполук I та II

The main hydrogen C–H Hal contacts in the structure of compounds I and II						
D–H…A	D–H, Å	H…A, Å	D…A, Å	D−H…A, °		
		Ι				
C(101)–H(10A)Br(3)	0,93	2.93	3,734(1)	145		
C(81)–H(81B)Br(1)	0,97	2,97	3,724(6)	135		
C(81)-H(81A)Br(2)	0,93	2,84	3.732(2)	164		
C(21)–H(21)Br(2)	0,93	2.83	3,697(5)	156		
$C(6)-H(6)Br(2)^{iii}$	0,93	2,93	3,673(6)	138		
$C(6)-H(6)Br(3)^{iv}$	0,93	2,93	3,673(6)	138		
II*						
C(21)–H(21)Cl(4)	0,93	2,71	3,58(4)	158		
C(51)–H(21)Cl(3) ⁱⁱⁱ	0,93	2,62	3,52(3)	151		
C(81)–H(81B)Cl(2) ^{iv}	0,97	2,69	3,43(3)	135		
C(22)–H(22)Cl(1)	0,93	2,79	3,50(1)	134		
C(22)–H(22)Cl(3)	0,93	2,79	3,48(5)	138		
C(52)–H(52)Cl(2) ^{iv}	0,93	2,65	3,52(3)	156		

Коди симетрії: (*iii*) -x+1, -y+1, -z+2; (*iv*) x, y+1, z.

* Для сполуки II наведено тільки контакти типу С-Н...Сl, відповідні взаємодії за участю атомів брому дещо слабші.

4. Висновки

Отже, як в умовах змінно-струмного електрохімічного синтезу, так і за прямого відновлення галогенідних солей купруму(ІІ) металічною міддю в присутності катіонів 1-аліл-4-ціанопіридинію простежується утворення комплексів, у яких координації подвійного зв'язку С=С алільної групи з атомом металу немає. Можливим поясненням таких особливостей структури сполук [CNC₅H₄NC₃H₅]cuBr₂ (I) та [CNC₅H₄NC₃H₅]₂CuCl_{3,75}Br_{0,25} (II) є вплив стеричних перешкод від атомів брому та особливостей розподілу електронної густини в катіоні алільного похідного.

- Slyvka Y., Goreshnik E., Pavlyuk O. et al. Copper(I) π-complexes with allyl derivatives of heterocyclic compounds: structural survey of their crystal engineering // Open Chem. (Central. Eur. J. Chem.). 2013. Vol. 11, No. 12. P. 43–61. DOI: https//doi.org/10.2478/s11532-013-0323-3
- Ma L., Abney C., Lin W. Enantioselective catalysis with homochiral metal–organic frameworks // Chem. Soc. Rev. 2009. Vol. 38, No. 5. P. 1248–1256. DOI: https://doi.org/10.1039/b807083k
- Czaja A. U., Trukhan N., Müller U. Industrial applications of metal–organic frameworks // Chem. Soc. Rev. 2009. Vol. 38, No. 5. P. 1284–1293. DOI: https//doi.org/10.1039/b804680h
- Lee J., Farha O. K., Roberts J. et al. Metal–organic framework materials as catalysts // Chem. Soc. Rev. 2009. Vol. 38, No. 5. P. 1450–1459. DOI: https://doi.org/10.1039/b807080f
- Wang Y., Astruc D., Abd-El-Aziz A. S. Metallopolymers for advanced sustainable applications // Chem. Soc. Rev. 2019. Vol. 48, No. 2. P. 558–636. DOI: https://doi.org/10.1039/c7cs00656j

- Jagner S., Dance I. Questions for crystal engineering of halocuprate complexes: concepts for a difficult system // Cryst. Eng. Commun. 2004. Vol. 6, No. 46. P. 257–275. DOI: https//doi.org/10.1039/b408793c
- Zheng X., Liu Y., Liu G. et al. Crystalline mixed halide halobismuthates and their induced second harmonic generation // Chem. Mater. 2016. Vol. 28, No. 12. P. 4421–4431. DOI: https://doi.org/10.1021/acs.chemmater.6b01622
- Zhang G., Li Y., Jiang K. et al. A new mixed halide, Cs₂HgI₂Cl₂: molecular engineering for a new nonlinear optical material in the infrared region // J. Am. Chem. Soc. 2012. Vol. 134, No. 36. P. 14818–14822. DOI: https://doi.org/10.1021/ja3037299
- Dou H. J., Lynch B. M. Phénylation radicalaire sélective en milieu acide-composés hétéroaromatiques azotes I. Methode et résultats expérimentaux // Bull. Soc. Chim. Fr. 1966. Vol. 12. P. 3815–3820.
- 10. Mykhalichko B. M., Mys'kiv M. G. (1998). Ukraine Patent UA 25450A, Bull. No. 6.
- Sheldrick G. M. SHELXT Integrated space-group and crystal-structure determination // Acta Cryst. A. 2015. Vol. 71, No. 1. P. 3–8. DOI: https://doi.org/10.1107/S2053273314026370
- 12. *Sheldrick G.M.* Crystal structure refinement with SHELXL // Acta Cryst. C. 2015. Vol. 71, No. 1. P. 3–8. DOI: https//doi.org/10.1107/S2053229614024218
- Dolomanov O. V., Bourhis L. J., Gildea R. J. et al. OLEX²: a complete structure solution, refinement and analysis program // J. Appl. Crystallogr. 2009. Vol. 42, No. 2. P. 339–341. DOI: https//doi.org/10.1107/S0021889808042726
- 14. *Muller P., Herbst-Irmer R., Spek A. L.* et al. A Crystallographer's Guide to SHELXL. Oxford University Press, USA, 2006. 213 p.
- Okuniewski A., Rosiak D., Chojnacki J. et al. Coordination polymers and molecular structures among complexes of mercury(II) halides with selected 1-benzoylthioureas // Polyhedron. 2015. Vol. 90. P. 47–57. DOI: https://doi.org/10.1016/j.poly.2015.01.035
- 16. *Pavlyuk A. V., Davydov V. N., Mys'kiv M. G.* Copper(I) complexes with N-allylquinolinium bromide [C₉H₇N(C₃H₅)]CuBr₂ and [C₉H₇N(C₃H₅)]Cu₂Br₃: synthesis and crystal structure // Russ. J. Coord. Chem. 2003. Vol. 29, No. 3. P. 199–202.
- 17. *Filinchuk Ya. E., Pavlyuk A. V., Ciunik L. Z.* et al. Structure of complexes formed in the CuX₂–Cu–N-allylisoquinolinium chloride system (X = Cl, Br) // Russ. J. Coord. Chem. 2004. Vol. 30, No. 11. P. 818–824.

SYNTHESIS AND CRYSTAL STRUCTURE OF COPPER(I) HALIDE COMPLEXES WITH 1-ALLYL-4-CYANOPYRIDINIUM CATION

O. Pavlyuk^{1*}, M. Mys'kiv¹, E. Goreshnik²

¹Ivan Franko National University of Lviv, Kyryla i Mefodiya, Str., 6, 79005 Lviv, Ukraine;

² Jožef Stefan Institute, Jamova, 39, SI-1000 Ljubljana, Slovenia e-mail: pavalex@gmail.com

By reaction of 1-allyl-4-cyanopyridinium halides with copper halogenides under alternating-current electrochemical technique conditions two new compounds of [NCC₅H₄NC₃H₅]CuBr₂ (I) and [NCC₅H₄NC₃H₅]₂CuCl_{3,75}Br_{0,25} (II) composition were obtained and X-ray single crystal method structurally characterized: Agilent Gemini A (Xcalibur) diffractometer, analytic absorption correction, for I – space group *I*2/*a*, *Z* = 8, *a* = 12,589(1), *b* = 11,8615(7), *c* = 15,574(1) Å, β = 105,495(8), *V* = 2241,1(4) Å³, $\rho_{calc.}$ = 2,185 g/cM³, μ (MoK_{α}) = 9,40 mm⁻¹, $\theta_{max.}$ = 29,4°, 5188 measured, 2388 used reflections, *R*(*F*²) = 0,050, *S* = 1,06; for II – *P* $\overline{1}$, *a* = 8,2365(2), *b* = 11,5828(3), *c* = 11,7746(3) Å, α = 90,719(2), β = 99,423(2), γ = 102,379(2)°, *V* = 1081,1(1) Å³, $\rho_{calc.}$ = 1,557 g/cm³, μ (MoK_{α}) = 1,94 mm⁻¹, $\theta_{max.}$ = 29,0°, 25242 measured, 5061 used reflections, *R*(*F*²) = 0,023, *S* = 1,05.

The structures were solved by direct methods and refined by least-squares method on F^2 by SHELXL-2014 with following graphical user interfaces of OLEX².

In the crystal structure of compound **I**, the copper(I) atoms possess a deformed tetrahedral coordination environment formed by bromine atoms only. Due to bonding Br⁻ with two metal atoms, endless inorganic units $\{CuBr_2\}_n^{n-}$ are located along the *a* axis direction. In the cavities between inorganic chains 1-allyl-4-cyanopyridinium cations are placed and additionally anchored by C–H...Br contacts. In the crystalline structure of compound **II**, isolated mixed chloride/bromide tetrahedra CuHal4²⁻ are additionally bonded to the allyl derivative cations by weak hydrogen C – H... Hal contacts.

The allyl group of the organic cation is not coordinated with metal atoms in both complexes. A possible explanation for this lies both in the steric hindrance associated with bromine atoms and in the electronic structure of the 1-allyl-4-cyanopyridinium cation.

Keywords: 1-allyl-cyanopyridinium, copper(I), mixed halides compounds, crystal structure.

Стаття надійшла до редколегії 04.11.2019 Прийнята до друку 14.01.2020