ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2020. Випуск 61. Ч. 1. С. 44–51 Visnyk of the Lviv University. Series Chemistry. 2020. Issue 61. Pt. 1. P. 44–51

УДК 546.682+548.734+669.18

СИСТЕМИ LaNiIn_{1- xM_x} (M = Al, Ge)

Н. Заремба, Ю. Щепілов, Г. Ничипорук, І. Муць, В. Павлюк, В. Заремба

Львівський національний університет імені Івана Франка, вул. Кирила і Мефодія, 6, 79005 Львів, Україна e-mail: halyna.nychyporuk@lnu.edu.ua

Взаємодію компонентів у системах LaNiIn_{1-x} M_x (M = Al, Ge) вивчено методами рентгеноструктурного, рентгенівського фазового та, частково, локального рентгеноспектрального аналізів при 870 К у повному концентраційному інтервалі. Визначено обмежену розчинність на основі вихідних сполук еквіатомного складу, визначено межі твердих розчинів й уточнено параметри елементарних комірок для них.

Виявлено існування нової тернарної сполуки еквіатомного складу LaNiGe (структурний тип LaPtSi, просторова група *I*4₁*md*, *a*=0,42068(2), *c*=1,43971(10) нм).

Обговорено особливості взаємодії компонентів у досліджених системах.

Ключові слова: Індій, твердий розчин, метод порошку, кристалічна структура.

DOI: https://doi.org/10.30970/vch.6101.044

1. Вступ

Сполуки еквіатомного складу утворюються у переважній більшості систем P3M–Ni–X (X - p-елемент III–V групи) і володіють цікавими магнітними та транспортними властивостями в широкому інтервалі температур [1]. Кристалічні структури таких сполук з індієм та більшості з алюмінієм належать до гексагонального типу ZrNiAl [2–4], тоді як сполука LaNiAl кристалізується у власному структурному типі [5].

Згідно з літературними даними [6, 7] у системі La–Ni–Ge існування сполуки еквіатомного складу не визначено, проте існує фаза змінного складу La(Ni,Ge)₂ зі структурою типу AlB₂ [8], для якої проводили дослідження фізичних властивостей, і визначено перехід у надпровідний стан при $T_C = 0.394$ K [9, 10].

Мета нашої праці — дослідження взаємодії компонентів у системах LaNiIn_{1-x}Al_x та LaNiIn_{1-x}Ge_x при 870 К у повному концентраційному інтервалі на предмет взаємного заміщення *p*-елементів та вплив такого заміщення на структурні характеристики цих систем.

2. Матеріали та методика експерменту

Синтез зразків проведено сплавлянням шихти із металів високої чистоти (усі близько 0,998 масової частки основного компонента) в електродуговій печі в атмосфері очищеного аргону. Поверхню лантану механічним способом очищали від оксидів безпосереднью перед зважуванням. Однорідності сплавів досягали кількаразовим переплавлянням з подальшим гомогенізуючим відпалом у вакуумованих

[©] Заремба Н., Щепілов Ю., Ничипорук Г. та ін., 2020

кварцових ампулах в електричній муфельній печі СНОЛ з автоматичним регулюванням температури ±2 К протягом місяця за температури 870 К. Сплави загартовували у холодній воді без попереднього розбивання ампул. Зразки, як литі, так і відпалені, стійкі до дії атмосферного середовища протягом тривалого часу.

Масиви дифракційних даних отримано з використанням порошкових дифрактометрів ДРОН–2.0М (Fe Kα-випромінювання), PANalytical X'Pert Pro, (Cu Kα-випромінювання) та Stoe Stadi P (Cu Kα₁-випромінювання). Поверхні мікрошліфів окремих сплавів досліджували на скануючому електронному мікроскопі PEMMA–102–02 у міжфакультетській лабораторії низькотемпературних досліджень Львівського національного університету імені Івана Франка. Фазовий аналіз та структурні розрахунки виконано з використанням програм Powder Cell [11], STOE WinXPOW [12] та FullProf [13].

3. Результати досліджень та їх обговорення

У результаті фазового аналізу зразків системи LaNiIn_{1-x}Al_x у повному концентраційному інтервалі при 870 К визначено існуванням двох обмежених твердих розчинів заміщення на основі вихідних сполук: LaNiIn_{1,0-0,8}Al_{0-0,2} (CT ZrNiAl; ПГ *P*-62*m*; a = 0,7613-0,7556(1); c = 0,4035-0,4054(1) нм) та LaNiAl_{1,0-0,6}In_{0-0,4} (CT LaNiAl; ПГ *Pnma*; a = 0,7199-0,7254(2); b = 0,4203-0,4214(1); c = 1,6085-1,6186(4) нм). Зразки системи є мультифазовими, у рівновазі з вихідними фазами у всій області концентрацій існує фаза зі структурою типу Nd₁₁Pd₄In₉ [14], а в окремих зразках з високим вмістом алюмінію – фаза La(Ni,Al)₅ зі структурою типу CaCu₅ [15]. На рис. 1. зображено дифрактограми, а на рис. 2 – фотографії поверхонь мікрошліфів окремих зразків системи LaNiIn_{1-x}Al_x.

Рис. 1. Експериментальна (точки), розрахована (суцільна лінія) та різницева (знизу) дифрактограми зразків: *a* – LaNiIn_{0,7}Al_{0,3}; *б* – LaNiIn_{0,3}Al_{0,7} (дифрактометр STOE Stadi P, Cu Кα₁-випромінювання)
 Fig. 1. Experimental (circles), calculated (continuous line), and difference (bottom) X-ray patterns of the *a* – LaNiIn_{0,7}Al_{0,3}; *b* – LaNiIn_{0,3}Al_{0,7}

(Stoe Stadi P, Cu Kα₁-radiation) alloys

Рис. 2. Фотографії поверхонь мікрошліфів сплавів системи LaNiIn_{1-x}Al_x: *a* – LaNiIn_{0.7}Al_{0.3} (сіра фаза – La_{0.32}Ni_{0.35}In_{0.29}Al_{0.04}; світла фаза – La_{0.45}Ni_{0.19}In_{0.36}; темна фаза – Ni_{0.55}Al_{0.45}); *б* – LaNiIn_{0.4}Al_{0.6} (сіра фаза – La_{0.32}Ni_{0.34}In_{0.05}Al_{0.28}; світла фаза – La_{0.43}Ni_{0.20}In_{0.33}Al_{0.03}; темна фаза – La_{0.23}Ni_{0.33}In_{0.04}Al_{0.39})

Fig. 2. Electron microphotographs of the LaNiIn_{1-x}Al_x system alloys: a – LaNiIn_{0.7}Al_{0.3} (gray phase – La0.32Ni0.35In0.29Al0.04; light phase – La0.45Ni0.19In0.36; dark phase – Ni0.55Al0.45); b – LaNiIn0.4Al0.6 (grey phase – La0.32Ni0.34In0.05Al0.28; light phase – La0.43Ni0.20In0.33Al0.03; dark phase – La0.23Ni0.33In0.04Al0.39)

У системі LaNiIn_{1-x}Ge_x при 870 К визначено незначну розчинність Ge у сполуці LaNiIn з утворенням обмеженого твердого розчину заміщення складу LaNiIn_{1,0-0,8}Ge_{0-0,2} (CT ZrNiAl, ПГ *P*-62*m*, a = 0,7613-0,75828(7), c = 0,4035-0,40662(4) нм). Незначна кількість In (до 6 ат. %) розчиняється у сполуці LaNiGe (CT LaPtSi, ПГ *I*4*1md*), існування якої визначено вперше. Твердий розчин заміщення існує при складі LaNiGe_{1,0-0,8}In_{0-0,2} з такими параметрами елементарної комірки: a = 0,42068(2)-0,42079(3), c = 1,43693(7)-1,43720(6) нм. На рис. 3 і 4 зображено дифрактограми та фотографії поверхонь мікрошліфів окремих зразків системи LaNiIn_{1-x}Ge_x, відповідно.

Рис. 3. Експериментальна (точки), розрахована (суцільна лінія) та різницева (знизу) дифрактограми зразків: *a* – LaNiIn_{0.7}Ge_{0.3}; *б* – LaNiIn_{0.2}Ge_{0.8} (дифрактометр PANalytical X'Pert Pro, Cu Кα-випромінювання)
Fig. 3. Experimental (circles), calculated (continuous line) and difference (bottom) X-ray patterns of the alloys: *a* – LaNiIn_{0.7}Ge_{0.3}; *b* – LaNiIn_{0.2}Ge_{0.8} (PANalytical X'Pert Pro, Cu Kα-radiation)

46

Н. Заремба, Ю. Щепілов, Г. Ничипорук та ін. ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2020. Випуск 61. Ч. 1

Рис. 4. Фотографії поверхонь мікрошліфів сплавів системи LaNiIn_{1-x}Ge_x: *a* – LaNiIn_{0.7}Ge_{0.3} (сіра фаза – La_{0.30}Ni_{0.36}In_{0.31}Ge_{0.03}; темна фаза –La_{0.29}Ni_{0.34}In_{0.02}Ge_{0.35}); *б* – LaNiIn_{0.5}Ge_{0.5} (сіра фаза – La_{0.31}Ni_{0.35}In_{0.31}Ge_{0.02}; темна фаза – La_{0.28}Ni_{0.35}In_{0.01}Ge_{0.35}); *в* – LaNiIn_{0.3}Ge_{0.7} (сіра фаза – La_{0.31}Ni_{0.36}In_{0.30}Ge_{0.04}; темна фаза – La_{0.29}Ni_{0.34}In_{0.01}Ge_{0.36})

Fig. 4. Electron microphotographs of the LaNiIn_{1-x}Ge_x system alloys: $a - LaNiIn_{0.7}Ge_{0.3}$ (gray phase $- La_{0.30}Ni_{0.36}In_{0.31}Ge_{0.03}$; dark phase $- La_{0.29}Ni_{0.34}In_{0.02}Ge_{0.35}$); $b - LaNiIn_{0.5}Ge_{0.5}$ (gray phase $- La_{0.31}Ni_{0.35}In_{0.31}Ge_{0.02}$; dark phase $- La_{0.28}Ni_{0.35}In_{0.01}Ge_{0.35}$); $c - LaNiIn_{0.3}Ge_{0.7}$ (gray phase $- La_{0.31}Ni_{0.36}In_{0.30}Ge_{0.04}$; dark phase $- La_{0.29}Ni_{0.34}In_{0.01}Ge_{0.36}$)

Кристалічну структуру сполуки LaNiGe досліджено методом порошку (рис. 5) й уточнено в рамках моделі структурного типу LaPtSi [16] (просторова група $I4_1md$, a = 0,42068(2), c = 1,43971(10) нм, $R_p = 0,0183$, $R_{wp} = 0,0245$, $R_{Bragg} = 0,0162$). Детальний опис синтезу монокристалів і структурних досліджень цієї сполуки, а також її фізичних властивостей є предметом окремої публікації.

Рис. 5. Експериментальна (точки), розрахована (суцільна лінія) та різницева (знизу) дифрактограми сполуки LaNiGe

(дифрактометр PANalytical X'Pert Pro, Cu Ка-випромінювання)

Fig. 5. Experimental (circles), calculated (continuous line) and difference (bottom) X-ray patterns of the LaNiGe compound (PANalytical X'Pert Pro, Cu Kα-radiation)

З огляду на подібність електронної будови атомів індію й алюмінію та відмінність структур вихідних сполук, у системі LaNiIn_{1-x}Al_x утворюються два обмежені тверді розчини, зміна параметрів елементарної комірки яких добре корелює з розмірами атомів In ($r_{In} = 0,163$ нм) і Al ($r_{Al} = 0,143$ нм) [17]. Зі збільшенням концентрації алюмінію в межах твердого розчину зі структурою типу ZrNiAl простежується зменшення періоду *a* й незначне зростання періоду *c* та зі зменшенням вмісту алюмінію в межах твердого розчину зі структурою типу LaNiAl усі параметри комірки зростають (рис. 6, *a*).

47

Утворення обмежених твердих розчинів незначної протяжності у системі LaNiIn_{1-x}Ge_x, як і в системі LaNiIn_{1-x}Al_x, було прогнозованим, оскільки структурний (атоми індію і германію мають різну електронну будову) і розмірний фактор ($r_{\rm ln} = 0,166$ нм; $r_{\rm Ge} = 0,137$ нм) [17] атомів поряд з різними структурами вихідних сполук вагомо впливають на протяжність твердих розчинів заміщення (рис. 6, δ).

Рис. 6. Зміна параметрів елементарної комірки твердих розчинів систем: $a - \text{LaNiIn}_{1-x}\text{Al}_x$; $\delta - \text{LaNiIn}_{1-x}\text{Ge}_x$ ($\circ - \text{CT ZrNiAl}$; $\Box - \text{CT LaNiAl}$; $\Delta - \text{CT LaPtSi}$) Fig. 6. Variation of the unit cell parameters of the solid solutions in the systems: $a - \text{LaNiIn}_{1-x}\text{Al}_x$; $b - \text{LaNiIn}_{1-x}\text{Ge}_x$ ($\circ - \text{ZrNiAl}$ -type structure; $\Box - \text{LaNiAl}$ -type structure; $\Delta - \text{LaPtSi}$ -type structure)

взаємного заміщення атомів *p*-елементів системах Піл час y $CeNiAl_{1,x}Ga_x$ [18], $CeNiIn_{1,x}M_x$ (M = Al, Ga) [19], $RNiIn_{1,x}Al_x$ (R = Y, Gd, Tb) [20–22] i YCuIn_{1-x}Al_x [23] простежується утворення неперервних рядів твердих розчинів зі структурою типу ZrNiAl та з подібним характером зміни параметрів елементарної комірки. У системах RNiIn_{1-x}Ga_x (R = Y, Gd) [20, 21], YCuIn_{1-x}Ga_x [23] і CeNiIn_{1-x}M_x (*M* = Ge, Sb) [24] простежується обмежена розчинність на основі сполук еквіатомного складу RNiIn, RNiGa (R = Y, Gd) і RNiSb (R = Y, Ce) з різним типом кристалічної структури. Варто зазначити, що параметри елементарних комірок твердих розчинів зі структурою типу ZrNiAl у системах CeNiAl_{1-x}Ga_x, CeNiIn_{1-x}M_x $(M = Al, Ga), GdCuIn_{1-x}Al_x$ і YCuIn_1-xAl_x змінюються із незначним відхиленням від правила Вегадра, тоді як під час заміщення індію галієм або стибієм простежується практично лінійна зміна параметрів.

4. Висновки

Методами рентгенівського фазового та, частково, EDX аналізів вивчено взаємодію компонентів у системах LaNiIn_{1-x}Al_x та LaNiIn_{1-x}Ge_x при 870 К у повному концентраційному інтервалі.

За температури дослідження в кожній системі визначено часткову розчинність четвертого компонента у вихідних сполуках з утворенням обмежених твердих розчинів, визначено їхні межі та уточнено параметри елементарних комірок.

Уперше виявлено існування нової сполуки еквіатомного складу LaNiGe зі структурою типу LaPtSi.

48

5. Подяка

Автори вдячні працівнику університету Серкізу Роману Ярославовичу, старшому науковому співробітнику Міжфакультетської лабораторії низькотемпературних досліджень ЛНУ ім. І. Франка за допомогу у дослідженні мікрошліфів окремих сплавів.

- Gupta S., Suresh K. G. Review on magnetic and related properties of RTX compounds // J. Alloys Compd. 2015. Vol. 618. P. 562–606. DOI: https://doi.org/10.1016/j.jallcom.2014.08.079
- Ferro R., Marazza R., Rambaldi G. Equiatomic Ternary Phases in the Alloys of the Rare Earths with Indium and Nickel or Palladium // Z. Metallkd. 1974. Vol. 65. P. 37–39.
- Kalychak Ya. M., Zaremba V. I., Pöttgen R., Lukachuk M., Hoffmann R.-D. Rare Earth–Transition Metal–Indides // In: K. A. Gschneidner, Jr., J.-C. Bünzli, V. K. Pecharsky (Eds.). Handbook on the Physics and Chemistry of Rare Earths. Elsevier, Amsterdam. 2005. Vol. 34. P. 1–133. DOI: https://doi.org/10.1016/S0168-1273(04)34001-8
- 4. *Oesterreicher H.* Structural and magnetic studies on rare-earth compounds *R*NiAl and *R*CuAl // J. Less-Common Met. 1973. Vol. 30. P. 225–236.
- Cordier G., Dörsam G., Knip R. New intermediate phases in the ternary systems rare earth-transition element-aluminium // J. Magn. Magn. Mater. 1988. Vol. 76, 77. P. 653–654.
- Salamakha P., Sologub O. L., Bodak O. I. Ternary rare-earth-germanium systems // In: K. A. Gschneidner, Jr., J.-C. Bünzli, V. K. Pecharsky (Eds.). Handbook on the Physics and Chemistry of Rare Earths. Elsevier, Amsterdam. 1999. Vol. 27. P. 1–223.
- Zhuang Y., Hu Z., Liu J., Lü J., Yan J. The 523 K isothermal section of La–Ni–Ge ternary system phase diagram // J. Alloys and Compd. 2005. Vol. 387. P. 239–242. DOI: https://doi.org/10.1016/j.jallcom.2004.06.065
- 8. *Gladyshevskii E. I., Bodak O. I.* Compounds with structures of the AlB₂ type in the system Ce–Ni–Si and in related systems // Dopov. Akad. Nauk Ukr. RSR. 1965. No. 5. P. 601–604 (in Ukrainian).
- Chen J. W., Guan S. Y., Wang C. H. Electrical and magnetic properties of the Ni based ternary compounds R₂NiGe₃ (R = rare earth ions) // J. Phys. Conf. Ser. 2011. Vol. 266. P. 012006(5). DOI: https://doi.org/10.1088/1742-6596/266/1/012006
- Chen J. W., Guan S. Y., Wang C. H., Ho S. P. Superconductivity of the Ni-based ternary compounds with AlB₂-type structure Y₂NiGe₃ and La₂NiGe₃ // Physica C (Amsterdam). 2012. Vol. 477. P. 63–65.
 DOL human (10) 1016 (and page 2012) 02 020

DOI: https://doi.org/10.1016/j.physc.2012.02.028

- 11. Kraus W., Nolze G. Powder Cell for Windows. Berlin, 1999.
- 12. STOE WinXPOW, Version 1.2, STOE & CIE GmbH. Darmstadt, 2001.
- 13. *Rodríguez-Carvajal J.* Recent Developments of the Program FULLPROF // Commission on Powder Diffraction (IUCr). Newsletter. 2001. Vol. 26. P. 12–19.
- Pustovoychenko M., Tyvanchuk Yu., Hayduk I., Kalychak Ya. Crystal structure of the RE₁₁Ni₄In₉ compounds (RE = La, Ce, Pr, Nd, Sm, Gd, Tb and Y) // Intermetallics. 2010. Vol. 18. P. 929–932. DOI: https://doi.org/10.1016/j.intermet.2010.01.003

- Liao J., Wang H., Chen T.-Yu Experimental investigation and thermodynamic calculation of Ni–Al–La ternary system in Nickel-rich region: a new intermetallic compound Ni₂AlLa // Materials (Basel). 2018. Vol. 11(12). P. 2396(15). DOI: https://doi.org/10.3390/ma11122396
- 16. *Klepp K., Parthé E. R*PtSi phases (*R* = La, Ce, Pr, Nd, Sm and Gd) with an ordered ThSi₂ derivative structure // Acta Cryst. B. 1982. Vol. B38. P. 1105–1108.
- 17. Emsley J. The Elements: 2nd ed. Oxford: Clarendon Press, 1991. 251 p.
- 18. *Grin Yu. N., Hiebl K., Rogl P.* Valence behavior of cerium in ternary gallides // J. Less-Comm. Met. 1985. Vol. 110. P. 299–305.
- 19. Zaremba N., Nychyporuk G., Schepilov Yu., Panakhyd O., Muts I., Hlukhyy V., Pavlyuk V. The CeNiIn_{1-x} M_x (M = Al, Ga) systems at 873 K // Ukr. Chem. Jorn. 2018. Vol. 84, No. 12. P. 76–84 (in Ukrainian).
- Horiacha M., Savchuk I., Nychyporuk G., Serkiz R., Zaremba V. The Chemistry. 2018. Is. 59. Pt. 1. P. 67–75 (in Ukrainian). DOI: https://doi.org/10.30970/vch.5901.067
- 21. Horiacha M., Zinko L., Nychyporuk G., Serkiz R., Zaremba V. The GdTIn_{1-x} M_x (T = Ni, Cu; M = Al, Ga; 0<x<1) systems // Visnyk of the Lviv University. Series
- Ni, Cu; M = Ai, Ga; 0 < x < 1) systems // Visnyk of the LVIV University. Se Chemistry. 2017. Is. 58. Pt. 1. P. 77–85 (in Ukrainian).
- Klicpera M., Javorský P., Daniš S. The change of anisotropy in TbNi (Al, In) compounds studied by low temperature x-ray diffraction // J. Phys. Conf. Ser. 2011. Vol. 303. P. 012031(6). DOI: https://doi.org/10.1088/1742-6596/303/1/012031
- Horiacha M., Rinylo N., Nychyporuk G., Serkiz R., Pöttgen R., Zaremba V. The interaction of the components in YCuIn_{1-x}M_x (M = Al, Ga) systems // Ukr. Chem. Jorn. 2018. Vol. 84, No. 11. P. 31–37 (in Ukrainian).
- 24. Zaremba N., Nychyporuk G., Schepilov Yu., Serkiz R., Hlukhyy V., Pavlyuk V. The interaction of the components in the CeNiIn_{1-x} M_x (M = Ge, Sb) systems // Visnyk of the Lviv University. Series Chemistry. 2019. Is. 60. Pt. 1. P. 82–90 (in Ukrainian). DOI: https://doi.org/10.30970/vch.6001.082

THE LaNiIn_{1-x} M_x (M = Al, Ge) SYSTEMS

N. Zaremba, Yu. Schepilov, G. Nychyporuk, I. Muts, V. Pavlyuk, V. Zaremba

Ivan Franko National University of Lviv, Kyryla i Mefodiya Str., 6, 79005 Lviv, Ukraine e-mail: halyna.nychyporuk@lnu.edu.ua

Interaction of the components in LaNiIn_{1-x} M_x (M = Al, Ge) systems at 870 K was investigated by means of X-ray phase and partially EDX analysis in full concentration range. The samples for the investigation were synthesized by arc-melting of purity metals with subsequent annealing at 873 K for a month. Phase analysis was carried out by X-ray powder diffraction (DRON-2.0M, Fe K α -radiation, PANalytical X'Pert Pro, Cu K α -radiation and Stoe Stadi P, Cu K α 1-radiation) and EDX analysis (REMMA-102-02). The solubility of Indium, Germanium and Aluminum in the ternary equiatomic compounds determined. The existence of two limited solid solutions in the system with Aluminum: LaNiIn_{1.0-0.8}Al_{0.0.2} (ZrNiAl-type structure, space group *P*-62*m*, a = 0.7613-0.7556(1), c = 0.4035-0.4054(1) nm) and LaNiAl_{1.0-0.6}In_{0.0.4} (LaNiAl structure type, space group *Pnma*, a = 0.7199-0.7254(2), b = 0.4203-0.4214(1), c = 1.6085-1.6186(4)) were observed. Two limited solid solutions are formed in the system with Germanium: LaNiIn_{1.0-0.8}Ge_{0-0.2} (ZrNiAl-type structure, space group *P*-62*m*, a=0.42075(2)-0.75828(7), c=0.4035-0.40662(4) HM) and LaNiGe_{1.0-0.8}In_{0-0.2} (LaPtSi-type structure, space group *I*41*md*, a = 0.42068(2)-0.42079(3), c = 1.43693(7)-1.43720(6) nm).

The existence of a new ternary compound LaNiGe was established for the first time and its crystal structure was determined using X-ray powder diffraction: LaPtSi-type structure (space group $I4_1md$, a=0.42068(2), c=1.43971(10) nm, $R_p = 0.0183$, $R_{wp} = 0.0245$, $R_{Bragg} = 0.0162$.

The formation of solid solutions and the character of the unit cell parameters variation in the studied and related systems briefly discussed.

Keywords: indium, solid solution, powder data, crystal structure.

Стаття надійшла до редколегії 31.10.2019 Прийнята до друку 14.01.2020