ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2020. Випуск 61. Ч. 1. С. 22–35 Visnyk of the Lviv University. Series Chemistry. 2020. Issue 61. Pt. 1. P. 22–35

УДК 546.[46,82,811-121]+548.1.02+548.31+669.1

ІЗОТЕРМІЧНИЙ ПЕРЕРІЗ ДІАГРАМИ СТАНУ СИСТЕМИ Mg–Ti–Sn ПРИ 400 °C

В. Кордан^{1*}, О. Зелінська¹, І. Тарасюк¹, А. Зелінський¹, Р. Серкіз², В. Павлюк¹

¹Львівський національний університет імені Івана Франка, вул. Кирила і Мефодія, 6, 79005 Львів, Україна;

²Львівський національний університет імені Івана Франка, вул. Драгоманова, 50, 79005 Львів, Україна e-mail: kordan50@gmail.com

Методами рентгенівської дифракції порошку й енергодисперсійної рентгенівської спектроскопії вивчено взаємодію компонентів потрійної системи Mg–Ti–Sn за температури 400 °C та побудовано ізотермічний переріз системи. За температури відпалу на основі бінарної сполуки Ti₅Sn₃ (структурний тип Mn₅Si₃) виявлено утворення надструктури типу Hf₅CuSn₃ зі складом Ti₅Sn₃Mg_x ($0 < x \le 0,4$) шляхом упорядкованого включення атомів Mg в октаедричні пустоти структури правильної системи точок 2*b*. Визначено, що нестабільна модифікація бінарної сполуки Mg₂Sn (структурний тип "Mg₃Sn_{1,67}" або "Mg₉Sn₅") стабілізується невеликими кількостями титану і переважає у литих та відпалених сплавах. Виявлено тверді розчини невеликої протяжності на основі бінарних сполук, а саме Mg₂Sn_{1-x}Ti_x (5 ат. % Ti), Ti₂Sn₃Mg_x (6 ат. % Mg), β -Ti₆Sn_{5-x}Mg_x (6 ат. % Mg) і Ti₃SnMg_x (5 ат. % Mg). Сполука Ti₂Sn розчиняє не більше 2 ат. % Mg. Утворення твердих розчинів заміщення зі статистичною сумішшю (Sn, Mg) є характерним через близькість атомних радіусів компонентів.

Ключові слова: рентгенівська порошкова дифракція, енергодисперсійна рентгенівська спектроскопія, ізотермічний переріз, твердий розчин, інтерметалічна сполука.

DOI: https://doi.org/10.30970/vch.6101.022

1. Вступ

Сплави на основі магнію та титану є відомими як корисні та затребувані конструкційні матеріали. Обидва метали мають хімічну спорідненість до Гідрогену та здатність до гідрування, тому є цікавими для пошуку нових гідрогенсорбційних матеріалів на їхній основі. Доцільним також буде отримання інформації про спосіб та умови кристалізації таких фаз, адже синтез зразків є доволі складним. Кристалохімічний аналіз споріднених сполук показав, що співвідношення атомних радіусів компонентів, електронегативність, електронна будова атомів (визначають тип хімічного зв'язку у сполуках і твердих розчинах) найбільше впливають на тип кристалізованих фаз. У системах з великою кількістю бінарних сполук справджується закономірність утворення багатьох тернарних інтерметалідів. Якщо компоненти мають подібні між собою фізико-хімічні властивості, то варто очікувати більшого утворення твердих розчинів, ніж індивідуальних сполук. Огляд літератури про системи Mg-T-P (T – перехідні 3d-елементи; P – металоїди ІІІ або IV, або V

[©] Кордан В., Зелінська О., Тарасюк І. та ін., 2020

головної підгрупи) показав, що здебільшого дослідження проводилися на предмет пошуку нових тернарних сполук. Вони найчастіше кристалізуються у структурних типах (CT) MgAgAs, PbClF, MgCu₄Sn, MgFe₆Ge₆, а також у структурах фаз Лавеса (MgCu₂, MgZn₂, MgNi₂) [1]. Структура MgAgAs є досить поширеною у системах зі Sn та Sb, однак у дослідженій потрійній системі фаз такого типу у литих і відпалених сплавах знайдено не було. Складність синтезу сплавів у системах Mg-T-P пояснює, чому їх вивчено несистематично.

Серед близькоспоріднених систем, які містять перехідний метал, є система Mg– Cu–Sn, досліджена у повному концентраційному інтервалі методом моделювання [2] на основі експериментальних даних авторів [3–5]. У системі кристалізуються дві сполуки: MgCuSn (CT MgAgAs) та MgCu4Sn (власний CT), тверді розчини мають невелику протяжність, оскільки компоненти не є близькоспоріднені.

Результати дослідження взаємодії компонентів у потрійній системі Mg–Ti–Sn при 400 °С наведено у цій праці вперше. У табл. 1 підсумовано кристалографічні характеристики бінарних фаз систем Ti–Sn, Mg–Sn та Mg–Ti, одержані з літературних джерел. У системі Ti–Sn [6] утворюється шість бінарних сполук, тоді як система Mg–Ti характеризується відсутністю сполук та суттєвої розчинності компонентів, що пояснюється особливістю взаємодії (розплав титану перебуває у рівновазі з газоподібним магнієм) [7]. У системі Mg–Sn виявлено існування однієї стабільної бінарної фази Mg₂Sn та багатьох метастабільних її похідних.

2. Матеріали та методика експерименту

Для синтезу зразків використовували метали із вмістом основного компонента: титан – 99,9 мас. %; олово – 99,98 мас. %; магній – 99,8 мас. %. Уміст домішок у магнію впливає на кристалізацію нерівноважних фаз: так, за використання для синтезу порошку магнію з невеликою часткою його оксиду MgO (< 0,5 мас. %) під час синтезу бінарного інтерметаліду Mg2Sn отримуємо також стабілізовану високотискову фазу Mg3Sn_{1.67} (див. Розділ 3).

Зразки з вмістом магнію до 30 ат. % масою 1 г готували шляхом сплавляння пихти, що складалась з наважок чистих компонентів (точність зважування $\pm 0,001$ г), в електродуговій печі з вольфрамовим електродом на мідному водоохолоджуваному поді в атмосфері очищеного аргону під тиском $1,1\cdot10^5$ Па. Як гетер використовували пористий титан. Контроль складу сплавів проводили шляхом порівняння маси шихти з масою сплаву. Якщо втрати під час плавлення не перевищували 2 мас. %, то склад сплаву вважали рівним складу шихти. Зразки з вмістом магнію більше 30 ат. % синтезували в електродуговій печі, сплавляючи пресовану таблетку, у якій наважку Mg було розміщено в центрі та оточено зверху і знизу компонентами з вищою температурою плавлення. Завдяки кількаразовому сплавлянню з перевертанням таблетки отримані сплави були гомогенні та сферичної форми. Сплави відпалювали за температури 400 °C.

Для зразків, що містили понад 60 ат. % Mg, синтез проводили методом порошкової металургії. Для цього шихту, що складалася з порошків металів чи порошку магнію з розтертим сплавом лігатури на основі Ті зі Sn, спресовували під тиском 3 000–9 500 кг/см² (залежно від вмісту магнію) та поміщали у кварцову ампулу, тоді створювали вакуумне середовище та запаювали. Спікання порошків металів проводили впродовж 800 год за 400 °C у муфельній печі типу МП-60 з автоматичним регулюванням температури. За температур вище 450 °C простежували активну взаємодію магнію зі сплаву з поверхнею кварцової ампули.

Сплави, синтезовані електродуговим способом, гартували в холодній воді, не розбиваючи ампул. Контроль гомогенності і рівноважності зразків проводили рентгенографічно та за допомогою енергодисперсійної рентгенівської спектроскопії (ЕДРС). Ефективність модифікації традиційних методів синтезу магнієвих сплавів без використання танталових тиглів також експериментально випробувано під час дослідження сплавів системи La–Mg–Sn [8]. Рентгенівські масиви даних одержали на автоматичному дифрактометрі ДРОН-2.0М ($20^{\circ} \le 2\theta \le 100^{\circ}$, крок сканування – 0,025°). Фазовий аналіз виконували з використанням програми PowderCell [9]. Уточнення параметрів елементарних комірок проводили методом найменших квадратів за допомогою програми LATCON [10]. СЕМ-зображення мікрошліфів та ЕДРС зразків отримували на електронному мікроскопі РЕММА-102-02.

3. Результати дослідження

24

У системі Mg–Ti–Sn синтезовано шість подвійних та 32 потрійні сплави. Кількісний склад сплавів та ізотермічний переріз діаграми стану Mg–Ti–Sn за 400 °C наведено на рис. 1. Результати рентгенофазового аналізу вибраних сплавів наведено у табл. 2 (фазовий склад наведено для моделей бінарних сполук без урахування розчинності третього компонента; також у побудові ізотермічного перерізу не брали до уваги "нерівноважні сплави").

Виявлено впорядкований твердий розчин Ti₅Sn₃Mg_x (0 < $x \le 0,4$), стабілізовану невеликим вмістом титану "високотискову" модифікацію бінарної сполуки Mg₂Sn – Mg₃Sn_{1,67}Ti_x (0 < $x \le 0,2$) і тверді розчини невеликої протяжності на основі бінарних сполук Mg₂Sn_{1-x}Ti_x (0 ≤ x < 0,16), Ti₂Sn₃Mg_x (0 ≤ $x \le 0,3$), β -Ti₆Sn_{5-x}Mg_x (0 ≤ $x \le 0,7$) та Ti₃SnMg_x (0 ≤ $x \le 0,2$). Сполука Ti₂Sn розчиняє до 2,0 ат. % Mg.

Тверді розчини Ti₅Sn₃Mg_x, Ti₂Sn₃Mg_x і Ti₃SnMg_x утворюються шляхом включення атомів магнію в октаедричні пустоти структур бінарних сполук. Щодо чистих компонентів, то помітну розчинність Sn та Mg виявили у α -Ti (до 12 та 2 ат. %, відповідно), магній розчиняє близько 1 ат. % Ti та 6–7 ат. % Sn, у β -Sn розчинність Ti та Mg є меншою за 1 ат. % (згідно з ЕДРС).

Таблиця 1

Table 1

Кристалографічні характеристики бінарних фаз системи Mg-Ti-Sn

Crystallographic	characteristics of the	binary phases	of the system Mg_Ti_Sn
orystanographic	characteristics of the	onnui j phuses	of the system high if on

Сполита	ПГ	СП СТ		Параметри комірки, Å			Пim
Сполука	111	CII	CI	а	b	С	J111.
Ti0,9Sn0,1	P6 ₃ /mmc	hP2	Mg	2,956	-	4,736	11
Ti ₂ Sn	$P6_3/mmc$	hP6	Co _{1,75} Ge	4,658	-	5,700	11
Ti ₂ Sn ₃	Cmce	oS40	Ti ₂ Sn ₃	5,9541	19,948	7,021	11,12
Ti ₃ Sn (hp)	$Pm \overline{3} m$	cP4	Au ₃ Cu	4,176	-	-	13
Ti ₃ Sn	P63/mmc	hP8	Mg ₃ Cd	5,9162	-	4,7627	13
Ti ₅ Sn ₃	P6 ₃ /mcm	hP16	Mn ₅ Si ₃	8,017	-	5,421	14
β -Ti ₆ Sn ₅	P6 ₃ /mmc	hP22	Ti ₆ Sn ₅	9,253	_	5,718	14
a-Ti ₆ Sn ₅	Immm	<i>oI</i> 44	Nb_6Sn_5	5,735	9,144	16,930	11,14
Mg ₂ Sn	$Fm\overline{3}m$	cF12	CaF ₂	6,7645	-	-	15
Mg ₃ Sn _{1,67} (<i>hp</i>)	$R\overline{3}$	hR90	Mg ₃ Sn _{1,67}	13,21	-	13,32	16
$Mg_9Sn_5(hp)$	$R\overline{3}$	hR84	Mg9Sn5	13,222	_	13,15	16,17
$Mg_{0,15}Sn_{0,85}(m)$	P6/mmm	hP1	$Hg_{0,1}Sn_{0,9}$	3,186	_	3,011	18

hp – високотискова модифікація; *m* – метастабільна фаза.

Рис. 1. Кількісний склад с системи Mg–плавівТі–Sn та ізотермічний переріз діаграми стану системи Mg–Ti–Sn за 400 °C Fig. 1. Compositions of the alloys of the Mg–Ti–Sn system and isothermal section of the Mg–Ti–Sn phase diagram at 400 °C

Упорядкований твердий розчин включення Ti₅Sn₃Mg_x

На основі бінарної сполуки Ti₅Sn₃ (СТ Mn₅Si₃, ПГ *P*6₃/*mcm*) утворюється впорядкований твердий розчин включення Ti₅Sn₃Mg_x, $0 < x \le 0,4$. На рис. 2 наведено дифрактограму зразка складу Mg₄Ti₆₀Sn₃₆, в якому основною фазою є твердий розчин Ti₅Sn₃Mg_x. Параметри елементарної комірки для твердого розчину Ti₅Sn₃Mg_x ($0 \le x \le 0,4$) змінюються в межах: a = 7,996(3)-8,0708(7) Å, c = 5,420(3)-5,4902(9) Å, V = 300,1(2)-309,71(6) Å³. Твердий розчин утворюється шляхом включення атомів Mg в октаедричні пустоти правильної системи точок 2*b* (0, 0, 1/2), утворені шістьма атомами Ti.

Кристалічну структуру твердого розчину Ti₅Sn₃Mg_x, $0 < x \le 0,4$ наведено на рис. 3, координаційним многогранником для атомів Mg є октаедр [**Mg**Ti₆]. Впорядковане включення Mg у пустоти призводить до утворення надструктури типу Hf₅CuSn₃. Аналогічно утворюються надструктури типу Zr₅Sn₃Mg_{0,4} [19], Y₅Sn₃Mg_{0,8} і Gd₅Sn₃Mg_{0,8} [20]. На рис. 5, *а* зображено фотографію мікрошліфа зразка Mg₄Ti₆₀Sn₃₆, у якому темній фазі відповідає склад Ti_{59,7}Sn_{35,8}Mg_{4,5} з області гомогенності твердого розчину Ti₅Sn₃Mg_x, а сірій – склад Ti_{54,7}Sn_{44,1}Mg_{1,2} з області гомогенності твердого розчину β -Ti₆Sn_{5-x}Mg_x.

Стабілізована високотискова модифікація сполуки Mg₂Sn

У деяких трикомпонентних сплавах системи Mg–Ti–Sn виявлено фазу Mg₃Sn_{1,67} (CT Mg₃Sn_{1,67} або Mg₉Sn₅, ПГ $R\overline{3}$), яка є високотисковою модифікацією бінарної сполуки Mg₂Sn. На рис. 4, *а* зображено стабілізовану високотискову модифікацію Mg₃Sn_{1,67} у трикомпонентному сплаві складу Mg₅₀Ti₁₀Sn₄₀, у якому в рівновазі перебувають фази Ti₂Sn₃, β -Ti₆Sn₅ та Mg₂Sn.

26

Рис. 2. Порошкова дифрактограма сплаву Mg₄Ti₆₀Sn₃₆ Fig. 2. XRD powder pattern of the Mg₄Ti₆₀Sn₃₆ alloy

Рис. 3. Кристалічна структура твердого розчину $Ti_5Sn_3Mg_x$, $0 < x \le 0,4$ Fig. 3. Crystal structure of the $Ti_5Sn_3Mg_x$, $0 < x \le 0.4$ solid solution

Невеликий вміст фази β -Sn (до 3 мас. %) завдяки високому значенню функції атомного розсіювання створює піки досить великої інтенсивності. Зміна параметрів елементарної комірки для бінарної фази та легованої невеликим вмістом Ti (5 ат. %): a = 13,2150(9)-13,252(1) Å, c = 13,3391(8)-13,3901(9) Å, V = 2017,4(3)-2036,7(3) Å³. Варто зауважити, що зі збільшенням вмісту Ti зростають параметри елементарної комірки для високотискової фази, отже, відбувається включення атомів титану у пустоти структури. На рис. 4, δ зображено дифрактограму сплаву Mg₆₇Sn₃₃, синтезованого із магнію, який містив невелику кількість його оксиду. Основною фазою у цьому сплаві є бінарна сполука Mg₂Sn (CT CaF₂, ПГ *Fm* $\overline{3}$ *m*), другою фазою – високотискова модифікація цієї сполуки Mg₃Sn_{1,67}. Припускаємо, що високотискова модифікація стабілізується невеликою кількістю домішки (~0,5 %) або Ti, що включається у пустоти структури. За повторного синтезу з використанням магнію (99,9 мас. %) утворювалися лише Mg₂Sn та сліди β -Sn.

Рис. 4. Дифрактограми сплавів складу Mg₅₀Ti₁₀Sn₄₀ (*a*) і Mg₆₇Sn₃₃ (б) Fig. 4. XRD patterns of Mg₅₀Ti₁₀Sn₄₀ (*a*) and Mg₆₇Sn₃₃ (б) alloys

Твердий розчин на основі β-Ті₆Sn₅

Бінарний інтерметалід зі стехіометрією 6:5 кристалізується у двох структурних типах – ромбічному типу Nb₆Sn₅ і гексагональному типу Ti₆Sn₅ (низько- і високотемпературна модифікації, відповідно). Автори [21] стверджують, що ці поліморфні модифікації можуть співіснувати. За температури відпалу 400 °C ми простежували утворення лише сполуки з гексагональною симетрією комірки. На основі бінарного інтерметаліду β -Ti₆Sn₅ утворюється твердий розчин заміщення невеликої протяжності β -Ti₆Sn_{5-x}Mg_x, $0 \le x \le 0,7$. Внаслідок часткового заміщення у

структурі атомів Sn на Mg простежуємо закономірне зменшення параметрів елементарної комірки: a = 9,2259(3)-9,201(1) Å, c = 5,7047(3)-5,684(2) Å, V = 420,52(3)-416,8(1) Å³. Склад сплаву Mg₁₀Ti₄₀Sn₅₀ визначений методом ЕДРС (рис. 5, δ): світла фаза (основна) – Ti_{39,0}Mg_{3,4}Sn_{57,6}, що відповідає твердому розчину Ti₂Sn₃Mg_x; сіра фаза – Ti_{54,6}Sn_{40,7}Mg_{4,7}, що відповідає твердому розчину Ti₆Sn_{5-x}Mg_x.

Рис. 5. Фотографії мікрошліфів та морфологія поверхні сплавів: $Mg4Ti_{60}Sn_{36}(a)$ (темна фаза $Ti_{59,7}Sn_{35,8}Mg_{4,5} - Ti_5Sn_3Mg_{x};$ сіра фаза $Ti_{54,7}Sn_{44,1}Mg_{1,2} - Ti_6Sn_{5-x}Mg_{x}$), $Mg_{10}Ti_{40}Sn_{50}(\delta)$ (світла фаза $Ti_{39,0}Sn_{57,6}Mg_{3,4} - Ti_2Sn_3Mg_{x};$ сіра фаза $Ti_{54,6}Sn_{40,7}Mg_{4,7} - Ti_6Sn_{5-x}Mg_{x}$), $Mg_{60}Ti_{20}Sn_{20}(b)$ (світла фаза $Ti_{55,0}Sn_{40,3}Mg_{4,7} - Ti_6Sn_{5-x}Mg_{x};$ сіра фаза $Mg_{67,4}Sn_{29,4}Ti_{3,2} - Mg_2Sn_{1-x}Ti_{x};$ темна фаза - Mg), $Mg_{60}Ti_{10}Sn_{30}(c)$ (основна фаза $Mg_{66,1}Sn_{29,8}Ti_{4,1} - Mg_2Sn_{1-x}Ti_{x};$ світлі ділянки – Sn) Fig. 5. SEM-images of the alloys: $Mg_4Ti_{60}Sn_{36}(a)$ (dark phase $Ti_{59,7}Sn_{35,8}Mg_{4,5} - Ti_5Sn_3Mg_{x};$ gray phase $Ti_{54,6}Sn_{40,7}Mg_{4,7} - Ti_6Sn_{5-x}Mg_{x}$), $Mg_{10}Ti_{40}Sn_{50}(\delta)$ (light phase $Ti_{39,0}Sn_{57,6}Mg_{3,4} - Ti_2Sn_3Mg_{x};$ gray phase $Ti_{54,6}Sn_{40,7}Mg_{4,7} - Ti_6Sn_{5-x}Mg_{x}$), $Mg_{60}Ti_{20}Sn_{20}(b)$ (light phase $Ti_{59,0}Sn_{4,5} - Ti_5Sn_3Mg_{4,7} - Ti_6Sn_{5-x}Mg_{x}$), $Mg_{60}Ti_{20}Sn_{20}(b)$ (light phase $Ti_{59,0}Sn_{57,6}Mg_{3,4} - Ti_2Sn_3Mg_{4,7} - Ti_6Sn_{5-x}Mg_{x}$), $Mg_{60}Ti_{20}Sn_{20}(b)$ (light phase $Ti_{55,0}Sn_{40,3}Mg_{4,7} - Ti_6Sn_{5-x}Mg_{x}$; gray phase $Mg_{67,4}Sn_{29,4}Ti_{3,2} - Mg_2Sn_{1-x}Ti_{x}$; dark phase - Mg),

Mg60Ti10Sn30 (2) (main phase Mg66.1Sn29.8Ti4.1 - Mg2Sn1-xTix; light area - Sn)

Твердий розчин на основі Mg₂Sn

На основі бінарного інтерметаліду Mg₂Sn утворюється твердий розчин заміщення невеликої протяжності Mg₂Sn_{1-x}Ti_x, $0 \le x \le 0,16$, максимальна розчинність Титану сягає 5 ат. %. Параметри елементарної комірки зі збільшенням вмісту титану закономірно зменшуються (a = 6,7585(1)-6,7272(7) Å, V = 308,71(1)-304,45(9) Å³), оскільки атомний радіус Ті є меншим за атомний радіус Sn. Кількісний склад фази та протяжність твердого розчину визначали за результатами ЕДРС. На рис. 5, *в* зображено фотографію мікрошліфа сплаву, а на рис. 5 *г* – порошкоподібного зразка, що містили згадану вище фазу.

Твердий розчин на основі Ті₂Sn₃

На основі бінарного інтерметаліду Ti₂Sn₃ утворюється твердий розчин включення невеликої протяжності Ti₂Sn₃Mg_x, $0 \le x \le 0,3$. Максимальна розчинність Mg сягає 6 ат. %. Зміна параметрів елементарної комірки: a = 5,9422(4)-5,978(4) Å, b = 19,907(1)-20,01(1) Å, c = 7,0130(9)-7,050(7) Å, V = 829,6(1)-843,5(9) Å³. Кількісний склад фази та протяжність твердого розчину визначали за результатами ЕДРС та зміною параметрів елементарної комірки. Фазовий склад сплавів, що містять цей твердий розчин, був таким: Mg₁₀Ti₄₅Sn₄₅ (рис. 6, a): сіра фаза – Ti_{37,2}Sn_{54,1}Mg_{5,7}, яка є твердим розчином включення атомів магнію у структуру Ti₂Sn₃; світла фаза – Ti_{1,6}Sn_{98,4}, (Sn_{1-x}Ti_x). Ti₂₀Mg₃₀Sn₅₀ (рис. 6, δ): сіра фаза – Ti_{37,0}Sn_{58,5}Mg_{4,5} з області гомогенності твердого розчину MgSn_{2-x}Ti_x; світла фаза – Ti_{37,0}Sn_{58,5}Mg_{4,5} з

Таблиця 2

Результати рентгеноф	азового аналізу	/ для вибраних	сплавів сист	еми Mg–Ti–Sn	
					Table 2

Мария	Склад сплаву,	(
ме спл. ат. %		I II		III	
1	$Mg_3Ti_{40}Sn_{57}$	Ti ₂ Sn ₃ $a = 5,969(3)$ Å, $b = 20,02(1)$ Å, $c = 7,044(4)$ Å, $V = 842,1(7)$ Å ³	$\beta-Ti_6Sn_5a = 9,216(4) Å,c = 5,700(2) Å,V = 419,3(3) Å^3$	_	
2	Mg4Ti60Sn36	TisSn3 $a = 8,038(1)$ Å, $c = 5,435(1)$ Å, $V = 304,13(9)$ Å ³	Ti ₂ Sn $a = 4,6614(8)$ Å, $c = 5,692(1)$ Å, $V = 107,11(4)$ Å ³	_	
4	Mg4Ti40Sn56	Ti ₂ Sn ₃ $a = 5,969(3)$ Å, $b = 20,02(1)$ Å, $c = 7,044(4)$ Å, $V = 842,1(7)$ Å ³	$\beta-Ti_6Sns$ a = 9,216(4) Å, c = 5,700(2) Å, $V = 419,3(3) \text{ Å}^3$	_	
5	Mg5Ti62,5Sn32,5	Ti ₅ Sn ₃ $a = 8,050(2)$ Å, $c = 5,442(2)$ Å, $V = 305,4(1)$ Å ³	Ti ₂ Sn $a = 4,657(1)$ Å, $c = 5,707(5)$ Å, $V = 107,2(1)$ Å ³	$\beta-Ti_6Sn_5*$ a = 9,247(1) Å, c = 5,706(2) Å, $V = 422,5(1) \text{ Å}^3$	
6	Mg5Ti40Sn55	β-Ti ₆ Sn ₅ a = 9,244(1) Å, c = 5,709(2) Å, V = 422,5(1) Å ³	Ti2Sn3 $a = 5,967(1)$ Å, $b = 20,031(5)$ Å, $c = 7,034(2)$ Å, $V = 840,8(3)$ Å ³	$Mg_2Sn a = 6,734(2) Å, V = 305,4(2) Å^3$	
7	Mg5Ti55Sn40	TisSn3 $a = 8,024(2)$ Å, $c = 5,442(2)$ Å, $V = 303,5(2)$ Å ³	$\begin{array}{c} \beta\text{-Ti}_{6}\text{Sns}\\ a = 9,234(1) \text{ Å},\\ c = 5,707(2) \text{ Å},\\ V = 421,4(1) \text{ Å}^{3} \end{array}$	$ Mg_2Sn a = 6,730(1) Å, V = 304,9(1) Å3 $	

Results of the X-ray phase analysis for the selected alloys of the system Mg-Ti-Sn

В. Кордан, О. Зелінська, І. Тарасюк та ін. ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2020. Випуск 61. Ч. 1

				Продовження табл. 1
				Continuation of the Table 1
		Ti3Sn	a-Ti	Mg2Sn
0	M 575:000 15	a = 5,911(1) Å,	a = 2,965(1) Å,	a = 6.746(1) Å,
8	Mg51180Sn15	c = 4,755(1) Å,	c = 4,745(2) Å,	$V = 307.1(2) \text{ Å}^3$
		$V = 143.9(1) \text{ Å}^3$	$V = 36,1(1) \text{ Å}^3$	
		Ti3Sn	a-Ti	_
0	M 577.759 00	a = 5,9266(9) Å,	a = 2,9588(5) Å,	
9	Mg511/5Sn20	c = 4,7712(8) Å,	c = 4,749(1) Å,	
		$V = 145, 14(5) \text{ Å}^3$	$V = 36,00(1) \text{ Å}^3$	
		Ti ₂ Sn ₃	β-Ti ₆ Sn ₅	Mg ₂ Sn
		a = 5,970(2) Å,	a = 9,234(1) Å,	a = 6,746(1) Å,
10	Mg6Ti40Sn54	b = 20,045(5) Å,	c = 5,704(1) Å,	$V = 307.0(1) \text{ Å}^3$
	8	c = 7.033(4) Å.	$V = 421.2(1) \text{ Å}^3$	
		$V = 841.7(3) \text{ Å}^3$		
		Ti ₂ Sn	Ti ₃ Sn	Mg ₂ Sn
		a = 4,657(4) Å,	a = 5,959(3) Å,	a = 6,752(2) Å,
11	Mg6T164Sn30	c = 5.708(3) Å.	c = 4.751(3) Å.	$V = 307.8(2) \text{ Å}^3$
		$V = 107.2(2) \text{ Å}^3$	$V = 146.1(1) \text{ Å}^3$	
		Ti ₅ Sn ₃	Mg ₂ Sn	Ti ₂ Sn
		a = 8.046(1) Å.	a = 6.7526(9) Å.	a = 4.6623(8) Å,
13	Mg7T165Sn28	c = 5.438(1) Å.	$V = 307.9(1) \text{ Å}^3$	c = 5.693(1) Å.
		$V = 304.96(9) \text{ Å}^3$		$V = 107.18(4) \text{ Å}^3$
		B-Ti6Sn5	Ti ₅ Sn ₃	
		a = 420.06(7) Å.	a = 8.1026(8) Å.	
14	Mg7Ti55Sn42	c = 5.7028(7) Å	c = 5.5059(8) Å.	-
		$V = 420.06(7) \text{ Å}^3$	$V = 313.05(6) \text{ Å}^3$	
		Ti ₃ Sn	<i>a</i> -Ti	Mg2Sn
		a = 5.9290(8) Å.	a = 2.9588(5) Å.	a = 6.7272(7) Å.
15	Mg10Ti80Sn10	c = 4.7595(7) Å.	c = 4.747(1) Å.	$V = 304.45(9) Å^3$
		$V = 144.89(4) \text{ Å}^3$	$V = 35.99(1) \text{ Å}^3$	
		Ti ₂ Sn ₃	B-Ti6Sn5	Mg2Sn
		a = 5.952(1) Å.	a = 9.211(1) Å.	a = 6.7396(9) Å.
19	Mg10Ti45Sn45	b = 19.978(4) Å.	c = 5.682(2) Å.	$V = 306.1(1) Å^3$
		c = 7.032(3) Å.	$V = 417.5(1) \text{ Å}^3$	
		$V = 836.3(3) \text{ Å}^3$, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
		Ti ₂ Sn	Ti ₅ Sn ₃	Mg2Sn
		a = 4.660(4) Å.	a = 8.058(8) Å.	a = 6.752(1) Å.
22	Mg ₂₀ T ₁₄₅ Sn ₃₅	c = 5.685(6) Å.	c = 5.454(1) Å.	$V = 307.9(1) Å^3$
		$V = 106.9(2) \text{ Å}^3$	$V = 306.7(7) \text{ Å}^3$	
		Mg2Sn	Mg3Sn1 67	Ti ₅ Sn ₃
		a = 6.7518(2)Å	a = 13252(1) Å	a = 8.0708(7) Å
26	Mg34Ti33Sn33	$V = 307.98(6) \text{ Å}^3$	c = 13,3901(9) Å.	c = 5.4902(9) Å.
			$V = 2036.7(3) \text{ Å}^3$	$V = 309.71(6) \text{ Å}^3$: Sn*
	1	Ti ₂ Sn ₃	Mg ₃ Sn _{1.67}	B-TicSn5
		a = 5.9621(5) Å	a = 13.223(1) Å	a = 9.2147(8) Å.
27	Mg50Ti10Sn40	b = 19.981(1) Å	c = 13.3516(9) Å	c = 5.690(1) Å.
	1.1850 111001140	c = 7.0490(8) Å	$V = 2021.9(3) Å^3$	$V = 418.43(8) \text{ Å}^3$: Mg ₂ Sn [*]
		$V = 839.78(9) \text{ Å}^3$		· · · · · · · · · · · · · · · · · · ·

30

В. Кордан, О. Зелінська, І. Тарасюк та ін.	
ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2020. Випуск 61. Ч. 1	

				Закінчення табл. 1
				End of the Table .
		Mg2Sn	Mg3Sn1,67	β-Ti6Sn5
20	MacOT: 108-20	a = 6,7559(5) Å,	<i>a</i> =13,212(1) Å,	a = 9,211(1) Å,
20	MgouIII05050	$V = 308,35(6) \text{ Å}^3$	c = 13,302(2) Å,	c = 5,688(2) Å,
			$V = 2011,0(4) \text{ Å}^3$	$V = 417,9(1) \text{ Å}^3$; Ti2Sn3*
		Mg3Sn1,67*	Mg2Sn	Ti2Sn3
		$a = \bar{1}3,185(3)$ Å,	a = 6,749(1) Å,	a = 5,947(2) Å,
20	M-(0T:000-00	c = 13,300(3) Å,	$V = 307,4(1) \text{ Å}^3$	b = 19,946(5) Å,
29	Mg6011205n20	$V = 2002, 5(9) \text{ Å}^3$		c = 7,024(2) Å,
				$V = 833,2(3) \text{ Å}^3;$
				β-Ti6Sn5*
		Mg	Mg ₂ Sn	Ti ₃ Sn
20	Martinger	a = 3,2021(4) Å,	a = 6,7470(8) Å,	a = 5,930(1) Å,
30	WIG7511205115	c = 5,198(1) Å,	$V = 307,1(1) \text{ Å}^3$	c = 4,7678(9) Å,
		$V = 46,16(1) \text{ Å}^3$		V = 145,20(5) Å ³
		Mg	Mg ₂ Sn	$\mathbf{Mg_3Sn_{1,67}}^*$
31	MassTicsSpie	a = 3,2075(4) Å,	a = 6,7420(5) Å,	<i>a</i> = 13,2352(9) Å,
51	wig80111051110	c = 5,193(1) Å,	V = 306,46(7) Å,	c = 13,3620(9) Å,
		$V = 46,27(1) \text{ Å}^3$		V = 2027,0(3) Å ³
		β-Ti6Sn5		
35	TisesSpece	a = 9,2259(3) Å,		
55	1154,551145,5	c = 5,7047(3) Å,	_	_
		$V = 420,52(3) \text{ Å}^3$		
		Ti ₅ Sn ₃	β-Ti6Sn5*	α-Ti [*]
36	Ti62 5 Sn27 5	a = 7,998(3) Å,	a = 9,210(2) Å,	a = 2,940(6) Å,
50	1162,551137,5	c = 5,420(3) Å,	c = 5,697(2) Å,	c = 4,696(1) Å,
		V = 300,3(2) Å ³	V = 418,6(2) Å ³	$V = 35,1(5) \text{ Å}^3$
		Ti ₃ Sn	α-Ti*	
38	Tizs Snos	a = 5,901(1) Å,	a = 2,949(1) Å,	
50	11/501/25	c = 4,745(1) Å,	c = 4,709(2) Å,	_
		$V = 143,1(1) \text{ Å}^3$	$V = 35,5(2) \text{ Å}^3$	

* Фази, які є стабілізованими або не є у стані рівноваги.

Твердий розчин на основі Ті₃Sn

Бінарний інтерметалід Ті₃Sn хоч і характеризується щільною укладкою атомів, однак утворює невеликої протяжності твердий розчин включення атомів Mg у структуру сполуки – Ті₃SnMg_x, $0 \le x \le 0,2$; кількість Mg сягає 5 ат. %. Зміна параметрів елементарної комірки для бінарної та тернарної фази: a = 5,901(1) - 5,959(3) Å, c = 4,745(1)-4,751(3) Å, V = 143,1(1)-146,1(1) Å³. Включення магнію, ймовірно, відбувається у деформовані октаедри, що є у положенні 6g, з утворенням поліедрів складу [MgTi₄Sn₂]. Аналогічної будови тернарна фаза утворюється за електрохімічного літування бінарної сполуки Ti₃Sn – [LiTi₄Sn₂] [22, 23]. На фотографії мікрошліфа зразка складу Mg₅Ti₈₀Sn₁₅ (рис. 6, e) цей твердий розчин характеризується світлими ділянками (Ti_{74,5}Sn_{22,3}Mg_{2,7}), тоді як сіра і темна фази підтверджують розчинність Mg та Sn у α -Ti (Ti_{88,3}Sn_{10,9}Mg_{0,8} та Ti_{95,1}Sn_{4,2}Mg_{0,7}, відповідно).

Розчинність магнію у сполуці Ti₂Sn

Бінарний інтерметалід Ti₂Sn (CT Co_{1,75}Ge, ПГ *P*6₃/*mmc*) не розчиняє багато магнію – до 2 ат. %. Внаслідок незначної розчинності параметри елементарної комірки

31

закономірно зменшуються, оскільки утворюється статистична суміш (Mg,Sn), типова для досліджених систем. Зміна параметрів елементарної комірки для бінарної (Ti₂Sn) і тернарної (Ti₂Sn_{1-x}Mg_x) фаз: a = 4,6596(3)-4,655(1) Å, c = 5,6918(6)-5,687(1)Å, V = 107,02(2)-106,7(3)Å³. На рис. 6, c зображено фотографію мікроструктури шліфа сплаву Mg₆Ti₆₄Sn₃₀. ЕДРС демонструє невелику розчинність Mg у сполуці Ti₂Sn, що підтверджує склад основної фази – Ti_{66,9}Sn_{31,5}Mg_{1,6}; темні точки (вкраплення) складу Ti_{74,8}Sn_{24,5}Mg_{0,7} відповідають твердому розчину на основі Ti₃Sn [24].

Рис. 6. Фотографії мікрошліфів сплавів Mg10Ti45Sn45 (a) (сіра фаза Ti37.2Sn54.1Mg5.7 – Ti2Sn3Mgx; світла фаза Sn98.4Ti1.6, – Sn1-xTix), Mg30Ti20Sn50 (δ) (cipa φa3a Mg67,2Sn32,4Ti0,4 – MgSn2-xTix; світла фаза Ті_{37,0}Sn_{58,5}Mg_{4,5} – Ті₂Sn₃Mg_x), Mg5Ti80Sn15 (в) (світла фаза Ті74,5Sn22,3Mg2,7 – Ті3SnMgx; сіра фаза Ті_{88,3}Mg_{0,8}Sn_{10,9} – Ті_{1-х-у}Mg_xSn_y; темна фаза Ті_{95,1}Mg_{0,7}Sn_{4,2} – Ті_{1-х-у}Mg_xSn_y), $Mg_{6}Ti_{64}Sn_{30}$ (2) (основна фаза $Ti_{66,9}Sn_{31,5}Mg_{1,6} - Ti_{2}Sn_{1-x}Mg_{x}$; темні точки Ті_{74,8}Sn_{24,5}Mg_{0,7} – Ті₃SnMg_x) Fig. 6. SEM-images of alloys Mg10Ti45Sn45 (a) (gray phase Ti37.2Sn54.1Mg5.7 - Ti2Sn3Mgx; light phase Sn98.4Ti1.6 - Sn1-xTix), Mg30Ti20Sn50 (6) (gray phase Mg67.2Sn32.4Ti0.4 - MgSn2-xTix; light phase $Ti_{37.0}Sn_{58.5}Mg_{4.5} - Ti_2Sn_3Mg_x$), Mg5Ti80Sn15 (6) (light phase Ti74.5Sn22.3Mg2.7 - Ti3SnMgx; gray phase $Ti_{88,3}Mg_{0.8}Sn_{10.9} - Ti_{1-x-y}Mg_xSn_y$; dark phase $Ti_{95,1}Mg_{0.7}Sn_{4,2} - Ti_{1-x-y}Mg_xSn_y$), $Mg_6Ti_{64}Sn_{30}$ (2) (main phase $Ti_{66.9}Sn_{31.5}Mg_{1.6} - Ti_2Sn_{1-x}Mg_x$; dark points Ti_{74.8}Sn_{24.5}Mg_{0.7} – Ti₃SnMg_x)

4. Обговорення результатів та висновки

Система Mg-Ti-Sn характеризується утворенням твердих розчинів на основі бінарних інтерметалідів. Якщо октаедрична пустота має достатній розмір для включення атома магнію, як, наприклад, у структурах бінарних сполук типу Mn₅Si₃, Mg₃Cd чи Ti₂Sn₃, то це призводить до утворення твердих розчинів включення. Якщо ж розмір пустоти є меншим, ніж потрібно для включення атома магнію, то утворюються тверді розчини заміщення, наприклад, на основі сполук β -Ti₆Sn₅ і Ti₂Sn. Утворення статистичної суміші (Mg,Sn) є досить характерним для систем R-Mg-Sn (R – перехідний d- або f-метал). Різниця в атомних радіусах є незначною (r_{Mg} = 1,60 Å; r_{Sn} = 1,62 Å), що мало б сприяти утворенню твердих розчинів значної протяжності. Однак тип хімічного зв'язку у сполуках цих систем є не завжди повністю металічний, а з часткою ковалентного зв'язування, що призводить до перерозподілу електронної густини у структурі. Літій як метал є дуже подібним до магнію і, відповідно, типи утворених твердих розчинів є аналогічними, як і з магнієм. Наприклад, за електрохімічного літування утворюються тверді розчини включення Ti₅Sn₃Li_x i Ti₃SnLi_x [22, 23] та заміщення β-Ti₆Sn_{5-x}Li_x [24]. Закономірно, що фази з більшим вмістом стануму можуть характеризуватися напівпровідниковим типом провідності. Якщо порівняти ковалентні радіуси цих елементів (R_{Mg} = 1,36 Å; R_{Sn} = 1,41 Å) для характеристики фаз зі змішаним типом хімічного зв'язку, то бачимо вже більшу різницю в значеннях. Додатковим фактором слугує значна різниця у значеннях електронегативності (дмg = 1,31; дті = 1,54; дsn = 1,96, за Полінгом), що демонструє зміщення електронної густини до атомів Стануму, яке унеможливлює утворення твердих розчинів заміщення великої протяжності. Наприклад, у структурі LaMgSn (CT TiNiSi) електронна густина зміщена до пари атомів Mg i Sn, а в сполуці з більшим вмістом Стануму LaMgSn₂ (власний СТ) електронна густина сконцентрована переважно між парами атомів Sn [25]. Щодо пошуку нових тернарних сполук у подібних системах, то доцільним є використання диференціального термічного аналізу, оскільки такі сполуки можуть існувати в обмеженому температурному інтервалі та утворюватися за склалними твердофазними реакціями.

Роботу виконано в рамках теми ХН-64Нр (номер державної реєстрації 0117U007192).

^{1.} *Villars P., Cenzual K.* (Eds.). Pearson's Crystal Data – Crystal Structure Database for Inorganic Compounds. Materials Park: ASM International (OH), Release 2017/18.

Miettinen J., Vassilev G. Thermodynamic re-optimization of the Cu–Mg–Sn system at the Cu–Mg side // J. Min. Metall. Sect. B-Metall. 2012. Vol. 48(1). P. 53–62. DOI: https://doi.org/10.2298/JMMB110731008M

Gladyshevsky E. I., Kripyakevich P. I., Teslyuk M. Yu. The crystal structure of the Cu₄MgSn ternary phase // Dokl. Akad. Nauk SSSR. 1952. Vol. 85(1). P. 81–84 (in Russian).

Gladyshevsky E. I., Kripyakevich P. I. Position of the Cu and Mg atoms in the structure of CuMgSn // Dokl. Akad. Nauk SSSR. 1955. Vol. 102(4). P. 743–746 (in Russian).

Cherkashin E. E., Gladyshevsky E. I., Teslyuk M. Yu. Investigation of the Cu–Mg–Sn system in the Cu–Cu₂Mg–CuMgSn region // Izv. Sekt. Fiz.-Khim. Anal., Akad. Nauk SSSR. 1956. Vol. 27. P. 212–216 (in Russian).

- Okamoto H. Sn-Ti (Tin-Titanium) // J. Phase Equilib. Diffus. 2010. Vol. 31(2). P. 202–203. DOI: https://doi.org/10.1007/s11669-010-9663-2
- Fincher L. C., Desy D. H. The magnesium-titanium phase diagram to 1.0 % titanium // Trans. AIME. 1968. Vol. 242. P. 2069–2073.
- Кордан В. Синтез, структурні та електрохімічні характеристики інтерметалідів систем {La, Tb, Ti, Zr}–Mg–{Sn, Sb} та твердих розчинів на основі Tb₂Ni₁₇: дис. канд. хім. наук: 02.00.01 / ЛНУ імені Івана Франка. Львів, 2018. 249 с.
- 9. Kraus W., Nolze G. Powder Cell for Windows. Berlin, 1999.

34

- 10. *King G., Schwarzenbach D.* Latcon. Xtal3.7 System. University of Western Australia, 2000.
- Chunlei L., Klotz U. E., Uggowitzer P. J., Löffler J. F. Thermodynamic assessment of the Sn–Ti System // Monatsh. Chem. 2005. Vol. 136(11). P. 1921–1930. DOI: https://doi.org/10.1007/s00706-005-0392-x
- Künnen B., Jeitschko W., Kotzyba G., Mosel B. D. Crystal structure and properties of the titanium stannide Ti₂Sn₃ // Z. Naturforsch. 2000. Vol. 55. P. 425–429. DOI: https://doi.org/10.1002/chin.200034006
- Vennström M., Grechnev A., Eriksson O., Andersson Y. Phase relations in the Ti₃Sn-D system // J. Alloys Compd. 2004. Vol. 364(1/2). P. 127–131. DOI: https://doi.org/10.1016/S0925-8388(03)00494-8
- Pietzka M. A. Phase equilibria of the quaternary system Ti–Al–Sn–N at 900 °C // J. Alloys Compd. 1997. Vol. 247. P. 198–201. DOI: https://doi.org/10.1016/S0925-8388(96)02608-4
- Ganguli A. K., Corbett A. M. Concerning the Ca_{2-x}Mg_xTt systems, Tt = Sn, Pb // J. Solid State Chem. 2000. Vol. 152. P. 474–477. DOI: https://doi.org/10.1006/jssc.2000.8715
- Kane R. H., Giessen B. C., Grant N. J. New metastable phases in binary tin alloy systems // Acta Metallurg. 1966. Vol. 14. P. 605–609. DOI: https://doi.org/10.1016/0001-6160(66)90068-X
- Bolotina N. B., Zhurova E. A., Simonov V. I., Dyuzheva T. I., Bendeliani N. A. Crystal structure of the high-pressure Mg₂Sn_{1,1} phase // Crystallogr. Rep. 1996. Vol. 41. P. 614–621. DOI: http://dx.doi.org/10.1134/1.170458
- Range K. J., Grosch G. H., Andratschke M. Studies on AB₂-type intermetallic compounds. Part VI. The crystal structure of Mg₉Sn₅, a supposed high-pressure modification of Mg₂Sn // J. Alloys Compd. 1996. Vol. 244. P. 170–174. DOI: https://doi.org/10.1016/S0925-8388(96)02432-2
- Balińska A., Kordan V., Misztal R., Pavlyuk V. Electrochemical and thermal insertion of lithium and magnesium into Zr₅Sn₃ // J. Solid State Electrochem. 2015. Vol. 19(8). P. 2481–2490. DOI: https://doi.org/10.1007/s10008-015-2895-7
- Kowalczyk G., Kordan V., Stetskiv A., Pavlyuk V. Lithiation and magnesiation of R₅Sn₃ (R = Y and Gd) alloys // Intermetallics. 2016. Vol. 70. P. 53–60. DOI: https://doi.org/10.1016/j.intermet.2015.12.004
- Oni A. A., Hook D., Maria J. P., LeBeau J. M. Phase coexistence in Ti₆Sn₅ intermetallics // Intermetallics. 2014. Vol. 51. P. 48–52. DOI: https://doi.org/10.1016/j.intermet.2014.03.002
- 22. Kordan V., Zelinska O., Pavlyuk V., Oshchapovsky I., Serkiz R. Electrochemical lithiation of the Ti_5M_3 , Ti_3M and Zr_3M (M = Sn, Sb) binary intermetallics // Chem. Met. Alloys. 2016. Vol. 9(1/2). P. 84–91.

- Kordan V. M., Prokoplyuk O. I., Pavlyuk V. V., Zelinska O. Ya., Serkiz R. Ya. Electrochemical insertion of lithium into Ti₃Sn // Book of Abstr. VIII Ukr. Sci. Conf. Stud. PhD-stud. "Karazin's Chemical Reading – 2016". Kharkiv, 2016. P. 15–16.
- Kordan V., Prokoplyuk O., Ganzha D., Zelinska O., Pavlyuk V., Serkiz R. Mg–Ti–Sn system at 400 °C, electrochemical properties of the some binary alloys // Book of Abstr. XV Ukr. Sci. Conf. "Lviv Chemical Reading – 2017", Lviv, 2017. P. U17 (in Ukrainian).
- 25. *Kordan V. M.*, *Zelinska O. Ya.*, *Pavlyuk V. V.* Electronic structure of LaMgSn and LaMgSn₂ compounds // Book of Abstr. XX Ukr. Conf. Inorg. Chem. Int. Particip., Dnipro, 2018. P. 167 (in Ukrainian)

ISOTHERMAL SECTION OF THE Mg-Ti-Sn PHASE DIAGRAM AT 400 °C

V. Kordan¹, O. Zelinska¹, I. Tarasiuk¹, A. Zelinskiy¹, R. Serkiz², V. Pavlyuk¹

¹Ivan Franko National University of Lviv, Kyryla i Mefodiya Str., 6, 79005 Lviv, Ukraine e-mail: kordan50@gmail.com;

²Ivan Franko National University of Lviv, Drahomanova Str., 50, 79005 Lviv, Ukraine

The interaction of the components in the ternary Mg–Ti–Sn system was investigated by means of X-ray powder diffraction and energy dispersive X-ray spectroscopy. The isothermal section of the Mg–Ti–Sn phase diagram was constructed at 400 °C in whole concentration range for the first time.

Synthesis of alloys was complex and consisted of the traditional arc-melting and powder metallurgy procedures depending on the content of magnesium. For the alloys with Mg-content less than 60 at. % the arc-melting with the following annealing at 400 °C prevailed. The alloys with high content of Mg (more than 60 at.%) were synthesized by powder metallurgy (sintering of the powders of Mg and Ti_xSn_y ligature in evacuated silica ampules at 400 °C for 800 h).

Hf₅CuSn₃-type superstructure with the composition $Ti_5Sn_3Mg_x$, $0 < x \le 0.4$ on the basis of the binary compound Ti_5Sn_3 (structure type Mn_5Si_3 , space group $P6_3/mcm$) was detected at annealing temperature. In this structure the atoms of Mg occupy octahedral voids formed by 6 Ti atoms (site 2*b*) forming an ordered solid solution of the inclusion. Stabilized by small amounts Ti phase on the basis of unstable modification of the Mg₂Sn with "Mg₃Sn_{1.67}" or "Mg₉Sn₅" type structure was found. It has a small homogeneity range (4 at. % Ti) and was observed in as-cast and annealed alloys.

On the basis of some binary phases we observed the formation of solid solutions of the substitution with small homogeneity ranges: $Mg_2Sn_{1-x}Ti_x$ (5 at. % Ti, CaF_2 structure type, Fm-3m space group), β -Ti₆Sn_{5-x}Mg_x (6 at. % Mg, own structure type, $P6_3/mmc$ space group); Ti₂Sn_{1-x}Mg_x dissolves no more than 2 at. % Mg (Co_{1.75}Ge structure type, $P6_3/mmc$ space group). On the basis of the binary phases containing large voids for inclusion of Mg-atoms we observed the formation of solid solutions of inclusion: Ti₂Sn₃Mg_x (6 at. % Mg, own structure type, *Cmce* space group), Ti₃SnMg_x (5 at. % Mg, Mg₃Cd structure type, $P6_3/mmc$ space group). Pure components such as Sn and Mg are characterized by small solubility of other components (magnesium dissolves no more than 1 at. % of Ti and 7 at. % of Sn; β -Sn dissolves less than 1 at. % of Ti and Mg). α -Ti forms the solid solution of substitution with Mg and Sn (Ti_{1-x-y}Mg_xSn_y) up to 12 and 2 at. % of the components, respectively.

Key words: X-ray powder diffraction, energy dispersion X-ray spectroscopy, isothermal section, solid solution, intermetallic compound.

Стаття надійшла до редколегії 30.10.2019 Прийнята до друку 19.02.2020