ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2020. Випуск 61. Ч. 1. С. 15–21 Visnyk of the Lviv University. Series Chemistry. 2020. Issue 61. Pt. 1. P. 15–21

# Неорганічна хімія

УДК 544:(344.3+015.35):546:(663'27'26):548.734

# ФАЗОВІ РІВНОВАГИ ПРИ 800 °С СИСТЕМИ Sc–Ni–Si ЗА УЧАСТЮ ТЕРНАРНИХ СПОЛУК Sc6Ni<sub>18</sub>Si<sub>11</sub> ТА Sc6Ni<sub>16</sub>Si<sub>7</sub>

#### Б. Котур\*, В. Бабіжецький

Львівський національний університет імені Івана Франка, вул. Кирила і Мефодія, 6, 79005 Львів, Україна e-mail: bohdan.kotur@lnu.edu.ua

За допомогою методів Х-променевого фазового та структурного аналізів (метод порошку) та енергодисперсійної Х-променевої спектроскопії у поєднанні з електронним мікроскопом вивчено сплави потрійної системи Sc–Ni–Si складів Sc<sub>15</sub>Ni<sub>55</sub>Si<sub>30</sub>, Sc<sub>22,5</sub>Ni<sub>47,5</sub>Si<sub>30</sub>. Не підтверджено існування при 800 °C тернарної сполуки ~Sc<sub>2</sub>Ni<sub>5</sub>Si<sub>3</sub>. Уточнено частину фазових рівноваг системи Sc–Ni–Si за участю тернарних сполук Sc<sub>6</sub>Ni<sub>18</sub>Si<sub>11</sub> та Sc<sub>6</sub>Ni<sub>16</sub>Si<sub>7</sub>. Підтверджено належність тернарних сполук Sc<sub>6</sub>Ni<sub>18</sub>Si<sub>11</sub>, Sc<sub>6</sub>Ni<sub>16</sub>Si<sub>7</sub>, ScNiSi та бінарної Ni<sub>2</sub>Si до структурних типів Sc<sub>6</sub>Ni<sub>18</sub>Si<sub>11</sub>, Mg<sub>6</sub>Cu<sub>16</sub>Si<sub>7</sub>, TiNiSi та Co<sub>2</sub>Si, відповідно, та уточнено періоди їхніх елементарних комірок, координати та ізотропні температурні параметри атомів. Для сполуки Sc<sub>6</sub>Ni<sub>16</sub>Si<sub>7</sub> ипрошку та уточнено координати та ізотропні температурні параметри зміщення атомів.

*Ключові слова:* потрійна система, фазові рівноваги, інтерметалічні сполуки, кристалічна структура.

DOI: https://doi.org/10.30970/vch.6101.015

1. Вступ

У працях [1, 2] досліджували окремі сплави системи Sc-Ni-Si з метою виявлення тернарних сполук зі структурами типів (СТ) Mg<sub>6</sub>Cu<sub>16</sub>Si<sub>7</sub> та CeGa<sub>2</sub>Al<sub>2</sub> (ThCr<sub>2</sub>Si<sub>2</sub>), знайдених у споріднених потрійних системах. Такі сполуки були синтезовані та визначені періоди їхніх ґраток. Ці дані наведено у табл. 1. Ізотермічний переріз діаграми стану системи Sc-Ni-Si при 800 °C опубліковано у [3]. Дослідження фазових рівноваг проведено за допомогою Х-променевого і мікроскопічного аналізів 376 потрійних та 20 подвійних сплавів, виготовлених в електродуговій печі в атмосфері аргону та гомогенізованих при 800 °С протягом 350 год. Синтезовано 15 тернарних сполук. Серед них підтверджено сполуки Sc6Ni16Si7 та ScNi2Si2 та виявлено уперше 13 інших сполук. Методами монокристала і порошку визначено кристалічну структуру сполуки ScNiSi (CT TiNiSi, результати структурного дослідження детально наведено у [4]), а методом порошку – структуру силіциду Sc<sub>3</sub>Ni<sub>4</sub>Si<sub>4</sub> (СТ Gd<sub>6</sub>Cu<sub>8</sub>Ge<sub>8</sub>). Для двох сполук  $Sc_{15}Ni_{50}Si_{35}$  та  $Sc_{20}Ni_{20}Si_{60}$  рентгеноструктурним методом монокристала (перший етап) визначено ромбічну сингонію та періоди комірки. Для ще двох сполук Sc<sub>10</sub>Ni<sub>45</sub>Si<sub>45</sub> та Sc<sub>32</sub>Ni<sub>8</sub>Si<sub>60</sub> автори [3] орієнтовно визначили сингонію. Структуру семи інших виявлених тернарних силіцидів скандію не вивчали.

<sup>©</sup> Б. Котур, В. Бабіжецький, 2020

Пізніші дослідження до 2000 року дали змогу уточнити склади та визначити кристалічну структуру дев'яти сполук, синтезованих у праці [3]: "Sc<sub>15</sub>Ni<sub>62,5</sub>Si<sub>22,5</sub>" – Sc<sub>3</sub>Ni<sub>11</sub>Si<sub>4</sub>[5]; "Sc<sub>17,5</sub>Ni<sub>30</sub>Si<sub>52,5</sub>" – ScNi<sub>2</sub>Si<sub>3</sub>[6]; "Sc<sub>15</sub>Ni<sub>50</sub>Si<sub>35</sub>" – Sc<sub>6</sub>Ni<sub>18</sub>Si<sub>11</sub>[7]; "Sc<sub>20</sub>Ni<sub>20</sub>Si<sub>60</sub>" – ScNiSi<sub>3</sub> [8]; "Sc<sub>33,3</sub>Ni<sub>51,7</sub>Si<sub>15</sub>" – ScNi<sub>1,52-1,49</sub>Si<sub>0,48-0,51</sub> [9]; "Sc<sub>35</sub>Ni<sub>20</sub>Si<sub>45</sub>" – Sc<sub>3</sub>Ni<sub>2</sub>Si<sub>4</sub> [10]; "Sc<sub>32</sub>Ni<sub>8</sub>Si<sub>60</sub>" – ScNi<sub>0,25</sub>Si<sub>1,75</sub> [4]; "Sc<sub>37,5</sub>Ni<sub>25</sub>Si<sub>37,5</sub>" – Sc<sub>3</sub>Ni<sub>2</sub>Si<sub>3</sub> [11]; "Sc<sub>44</sub>Ni<sub>12</sub>Si<sub>44</sub>" – Sc<sub>3</sub>NiSi<sub>3</sub> [12]. Кристалографічні характеристики тернарних сполук наведено у табл. 1.

Таблиця 1

#### Кристалографічні характеристики тернарних сполук системи Sc–Ni–Si та бінарної сполуки Ni<sub>2</sub>Si

Table 1

Crystallographic data of the ternary compounds of the Sc-Ni-Si system and the binary compound Ni<sub>2</sub>Si

|                                                   |                                                  |               |            | Параметри комірки, нм |                          |            | Літ.  |
|---------------------------------------------------|--------------------------------------------------|---------------|------------|-----------------------|--------------------------|------------|-------|
| Сполука                                           | *CT                                              | **СП          | ***∏Γ      | а                     | b                        | С          |       |
| ScNi <sub>6</sub> Si <sub>6</sub>                 | YCo <sub>6</sub> Ge <sub>6</sub>                 | hP7           | P6/mmm     | 0,49208               | -                        | 0,38056    | 14    |
| Sc3Ni11Si4                                        | Sc <sub>3</sub> Ni <sub>11</sub> Si <sub>4</sub> | hP36          | $P6_3/mmc$ | 0,8024                | —                        | 0,8429     | 5, 3  |
| ScNi <sub>2</sub> Si <sub>3</sub>                 | ScNi <sub>2</sub> Si <sub>3</sub>                | <i>tI</i> 24  | I4/mmm     | 0,3830                | —                        | 2,350      | 6, 3  |
| Sc <sub>6</sub> Ni <sub>18</sub> Si <sub>11</sub> | $Sc_6Ni_{18}Si_{11}$                             | <i>oI</i> 140 | Immm       | 1,7945                | 1,2223                   | 0,8029     | 7,3   |
|                                                   |                                                  |               |            | 1,7925(2)             | 1,2231(1)                | 0,80368(7) | #     |
| Sc <sub>6</sub> Ni <sub>16</sub> Si <sub>7</sub>  | Mg6Cu16Si7                                       | cF116         | Fm3m       | 1,146                 | —                        | —          | 1, 3  |
|                                                   |                                                  |               |            | 1,14405(2)            |                          |            | #     |
| ScNi <sub>2</sub> Si <sub>2</sub>                 | CeGa <sub>2</sub> Al <sub>2</sub>                | <i>tI</i> 10  | I4/mmm     | 0,372                 | —                        | 0,950      | 2, 3  |
|                                                   |                                                  |               |            | 0,3818                |                          | 0,9567     | 13    |
| ScNiSi3                                           | ScNiSi3                                          | oS20          | Amm2       | 0,3815                | 0,3825                   | 2,062      | 8, 3  |
| Sc <sub>3</sub> Ni <sub>4</sub> Si <sub>4</sub>   | Gd <sub>6</sub> Cu <sub>8</sub> Ge <sub>8</sub>  | oI22          | Immm       | 1,268                 | 0,638                    | 0,389      | 3, 3  |
| ScNi1,52-1,49Si0,48-0,51                          | MgZn <sub>2</sub>                                | hP12          | $P6_3/mmc$ | 0,4989–               | —                        | 0,7730-    | 9, 3  |
|                                                   |                                                  |               |            | 0,5000                |                          | 0,7719     |       |
| ScNiSi                                            | TiNiSi                                           | oP12          | Pnma       | 0,6383                | 0,4011                   | 0,6868     | 4, 3  |
|                                                   |                                                  |               |            | 0,64116(7)            | 0,40256(4)               | 0,69484(7) | #     |
| Sc3Ni2Si4                                         | Sc <sub>3</sub> Ni <sub>2</sub> Si <sub>4</sub>  | oP36          | Pnma       | 1,1678                | 0,3976                   | 1,1940     | 10, 3 |
| ScNi0,25Si1,75                                    | ZrSi <sub>2</sub>                                | oS12          | Cmcm       | 0,3843                | 1,468                    | 0,3727     | 4, 3  |
| Sc <sub>3</sub> Ni <sub>2</sub> Si <sub>3</sub>   | Hf <sub>3</sub> Ni <sub>2</sub> Si <sub>3</sub>  | oS32          | Cmcm       | 0,39812               | 0,9688                   | 1,3111     | 11, 3 |
| Sc <sub>3</sub> NiSi <sub>3</sub>                 | Sc <sub>3</sub> NiSi <sub>3</sub>                | mS28          | C2/m       | 0,9801                | 0,3974                   | 1,3193     | 12, 3 |
|                                                   |                                                  |               |            |                       | $\beta = 114,16^{\circ}$ |            |       |
| Ni <sub>2</sub> Si                                | Co <sub>2</sub> Si                               | oP12          | Pnma       | 0,5001                | 0,3727                   | 0,7054     | 15    |
|                                                   |                                                  |               |            | 0,50039(1)            | 0,37331(1)               | 0,70665(2) | #     |

\*CT – структурний тип; \*\*CП – символ Пірсона; \*\*\*ПГ – просторова група.

# – дані цього дослідження.

Узагальнивши ці дані, Котур і Грац опублікували уточнений ізотермічний переріз діаграми стану системи Sc–Ni–Si при 800 °C [13]. З 15 тернарних сполук кристалічна структура двох силіцидів ~Sc<sub>2</sub>Ni<sub>9</sub>Si<sub>9</sub> та ~Sc<sub>2</sub>Ni<sub>5</sub>Si<sub>3</sub> залишалась невідомою. Нещодавно, досліджуючи емпіричне правило для ізоструктурних рядів тернарних сполук систем R– Ni–Si (R = рідкісноземельний елемент, P3M), автори [14] виготовили сплав складу ScNi<sub>6</sub>Si<sub>6</sub> (електродугова плавка з наступною гомогенізацією зразка при 1 070 К упродовж 200–240 год) і за допомогою X-променевого фазового та спектрального аналізу порошку з'ясували, що за такого складу існує сполука зі структурою типу YCo<sub>6</sub>Ge<sub>6</sub>. Структурні характеристики сполуки наведено у табл. 1. Ймовірно, автори [14] уточнили склад сполуки ~Sc<sub>2</sub>Ni<sub>9</sub>Si<sub>9</sub>, уперше синтезованої у [3].

З наведених літературних даних бачимо, що у системі Sc-Ni-Si залишається одна тернарна сполука з невідомою структурою. Мета нашої праці – повторно вивчити зразки та фазові рівноваги в області утворення можливої сполуки ~Sc<sub>2</sub>Ni<sub>5</sub>Si<sub>3</sub>.

16

#### 2. Матеріали та методика експерименту

Методом електродугової плавки наважок вихідних компонентів високої чистоти (99,9 мас. % Sc; 99,92 мас. % Ni; 99,99 мас. % Si) в атмосфері аргону синтезовано два сплави складів *la*. Sc<sub>15</sub>Ni<sub>55</sub>Si<sub>30</sub>; 2a. Sc<sub>22,5</sub>Ni<sub>47,5</sub>Si<sub>30</sub>. Зразки гомогенізували у запаяній під вакуумом кварцовій ампулі при 800 °С упродовж 350 год. Після відпалу ампули зі зразками гартували у холодній воді. Склади зразків обрано таким способом, щоб перевірити літературні дані [3] щодо існування сполуки приблизного складу ~Sc<sub>2</sub>Ni<sub>5</sub>Si<sub>3</sub>.

Фазовий склад зразків вивчали за допомогою Х-променевого аналізу дифрактограм, одержаних на порошковому дифрактометрі STOE STADI Р (СиКавипромінювання). Параметри кристалічних структур уточнювали за повнопрофільним аналізом отриманих дифрактограм, використовуючи пакет програм WinCSD [16]. Для визначення елементного складу фаз у відполірованих сплавах використовували метод енергодисперсійної рентгенівської спектроскопії (ЕДХ аналіз) у поєднанні з растровим електронним мікроскопом TESCAN 5130 MM, обладнаним детектором Oxford Instruments AZTEC.

### 3. Результати досліджень та їх обговорення

Результати вивчення дифрактограм обох зразків показали, що кожен з них містить по три відомі фази. Результати повнопрофільного уточнення дифрактограм наведено у табл. 2. Дифрактограму зразка 2а подано на рис. 1, а деталі її уточнення – у табл. 3. Уточнені періоди елементарних комірок тернарних фаз Sc<sub>6</sub>Ni<sub>16</sub>Si<sub>7</sub>, Sc<sub>6</sub>Ni<sub>18</sub>Si<sub>11</sub>, ScNiSi та бінарної фази Ni<sub>2</sub>Si наведено у табл. 1. Їхні значення добре узгоджуються з літературними даними. Отже, наведені експериментальні результати не підтверджують дані [3] про існування тернарної сполуки ~Sc<sub>2</sub>Ni<sub>5</sub>Si<sub>3</sub>. Уточнені фазові рівноваги дослідженої частини ізотермічного перетину при 800 °С потрійної системи Sc-Ni-Si подано на рис. 2. Таблиця 2

Результати Х-променевого фазового аналізу сплавів системи Sc-Ni-Si при 800 °C Table 2 

| Results                                                    | of the X-ray phase analyzis of the SC–N1–S1 alloys at 800    | ч <u>с</u>  |
|------------------------------------------------------------|--------------------------------------------------------------|-------------|
| Склад сплаву                                               | Фазовий склад зразка та вміст фаз у сплаві                   | $R_{\rm p}$ |
| 1a. Sc15Ni55Si30                                           | $1 - Sc_6Ni_{16}Si_{7}, 24\%$                                |             |
|                                                            | 2 – Sc <sub>6</sub> Ni <sub>18</sub> Si <sub>11</sub> , 59 % | 0,17        |
|                                                            | $3 - Ni_2Si$ , 17%                                           |             |
| 2a. Sc <sub>22,5</sub> Ni <sub>47,5</sub> Si <sub>30</sub> | $1 - Sc_6Ni_{16}Si_7, 70\%$                                  |             |
|                                                            | 2 – ScNiSi, 12 %                                             | 0,12        |

. . ...

3 - Sc<sub>6</sub>Ni<sub>18</sub>Si<sub>11</sub>, 18%

Таблиия 3

Деталі уточнення дифрактограми зразка складу 2a. Sc22,5Ni47,5Si30

Table 3

| Re | finement | detail | s of the | X-ray | <sup>v</sup> diffraction | pattern | tor 2 | 2a. S | $sc_{22.5}$ | N147.5 | S130 | sampl | 6 |
|----|----------|--------|----------|-------|--------------------------|---------|-------|-------|-------------|--------|------|-------|---|
|----|----------|--------|----------|-------|--------------------------|---------|-------|-------|-------------|--------|------|-------|---|

| Фаза                                                | Sc6Ni16Si7   | ScNiSi       | Sc6Ni18Si11 |  |  |
|-----------------------------------------------------|--------------|--------------|-------------|--|--|
| Вміст фази у зразку (за дифрактограмою), мас. %     | 69,95(9)     | 12,30(5)     | 17,7(1)     |  |  |
| Фактори розбіжності, %: R <sub>b(I)</sub>           | 2,3          | 3,4          | 8,9         |  |  |
| $R_{\mathrm{P}}; R_{\mathrm{Pw}}; R_{\mathrm{exp}}$ | 1            | 2,2; 15,0; 1 | ,1          |  |  |
| Дифрактометр                                        | STOE STADI P |              |             |  |  |
| Випромінювання і довжина хвилі, Å                   | CuKa, 1,5406 |              |             |  |  |
| $2\theta_{\rm max}; sin\theta/\lambda_{\rm max}$    | 110,0; 0,522 |              |             |  |  |
| Крок сканування (град.), час експозиції за крок (с) |              | 0,015; 120   |             |  |  |

17



Рис. 1. Експериментальна, теоретична та різницева (внизу) дифрактограми зразків складу Sc<sub>15</sub>Ni<sub>55</sub>Si<sub>30</sub> (*a*) та Sc<sub>22,5</sub>Ni<sub>47,5</sub>Si<sub>30</sub> (*б*). Уточнені положення піків позначені вертикальними лініями для фаз: *1* – Sc<sub>6</sub>Ni<sub>16</sub>Si<sub>7</sub> (*a*), Sc<sub>6</sub>Ni<sub>16</sub>Si<sub>7</sub> (*б*); *2* – Sc<sub>6</sub>Ni<sub>18</sub>Si<sub>11</sub> (*a*), ScNiSi (*б*); *3* – Ni<sub>2</sub>Si (*a*), Sc<sub>6</sub>Ni<sub>18</sub>Si<sub>11</sub> (*б*)

Fig. 1. Observed (dots), calculated (line) and differential (bottom line) XRD profiles for Sc<sub>15</sub>Ni<sub>55</sub>Si<sub>30</sub> (*a*) and Sc<sub>22.5</sub>Ni<sub>47.5</sub>Si<sub>30</sub> (*δ*). Refined peak positions are marked as vertical bars for the phases: *I* – Sc<sub>6</sub>Ni<sub>16</sub>Si<sub>7</sub> (*a*), Sc<sub>6</sub>Ni<sub>16</sub>Si<sub>7</sub> (*δ*); *2* – Sc<sub>6</sub>Ni<sub>18</sub>Si<sub>11</sub>(*a*), ScNiSi (*δ*); *3* – Ni<sub>2</sub>Si (a), Sc<sub>6</sub>Ni<sub>18</sub>Si<sub>11</sub>(*δ*)



Рис. 2. Частина уточнених фазових рівноваг при 800 °С системи Sc–Ni–Si. Пунктирними лініями позначено фазові рівноваги за даними праці [3]. *1а* та *2а* – склади досліджених сплавів

Fig. 2. Part of the refined phase equilibria at 800 °C of the system Sc–Ni–Si. Phase equilibria according to the data of ref. [3] are presented by dashed lines. *1a* and *2a* are the compositions of the investigated alloys

Результати ЕДХ аналізу добре узгоджуються із даними Х-променевого аналізу та подано на рис. 3.

Повнопрофільним аналізом Рітвельда дифрактограми порошку сплаву 2а вперше уточнено координати атомів у структурі сполуки  $Sc_6Ni_{16}Si_7$ , що кристалізується у кубічній структурі типу  $Mg_6Cu_{16}Si_7$ , надструктурній до бінарного типу  $Th_6Mn_{23}$ . Ці дані наведено у табл. 4.



Рис. 3. Фотографії мікрошліфів зразків Sc<sub>15</sub>Ni<sub>55</sub>Si<sub>30</sub> (*1a*) та Sc<sub>22,5</sub>Ni<sub>47,5</sub>Si<sub>30</sub> (*2a*). Фазовий склад узгоджено за результатами Х-променевого аналізу та ЕДХ

Fig 3. Backscattered electron image of the annealed bulk samples:  $Sc_{15}Ni_{55}Si_{30}$  (*1a*) and  $Sc_{22,5}Ni_{47,5}Si_{30}$  (*2a*). Phase composition is in accordance with the XRD and EDX data

Таблиця 4

# Координати та ізотропні температурні параметри зміщення атомів (*B*<sub>ізо</sub>) у структурі сполуки Sc<sub>6</sub>Ni<sub>16</sub>Si<sub>7</sub> (просторова група *Fm*3*m*)

Table 4

| for Sc <sub>6</sub> N <sub>116</sub> S <sub>17</sub> (space group $Fm3m$ ) |      |           |     |     |                              |  |  |  |  |
|----------------------------------------------------------------------------|------|-----------|-----|-----|------------------------------|--|--|--|--|
| Атом                                                                       | ПСТ* | x         | у   | z   | $B_{i30}, 10^2 \text{ Hm}^2$ |  |  |  |  |
| Sc                                                                         | 24e  | 0,2916(4) | 0   | 0   | 0,47(9)                      |  |  |  |  |
| Ni1                                                                        | 32f  | 0,1193(2) | x   | x   | 0,40(9)                      |  |  |  |  |
| Ni2                                                                        | 32f  | 0,3309(2) | x   | x   | 0,31(8)                      |  |  |  |  |
| Si1                                                                        | 24d  | 0         | 1/4 | 1/4 | 0,5(2)                       |  |  |  |  |
| Si2                                                                        | 4a   | 0         | 0   | 0   | 0,9(5)                       |  |  |  |  |

Fractional atomic coordinates and their displacement parameters  $(B_{i30})$ for Sc<sub>6</sub>Ni<sub>16</sub>Si<sub>7</sub> (space group *Fm*3*m*)

\*ПСТ – правильна система точок.

#### 4. Висновки

За результатами проведених досліджень не підтверджено існування при 800 °С тернарної сполуки ~Sc<sub>2</sub>Ni<sub>5</sub>Si<sub>3</sub>. Уточнено частину фазових рівноваг системи Sc–Ni–Si за участю тернарних сполук Sc<sub>6</sub>Ni<sub>18</sub>Si<sub>11</sub> та Sc<sub>6</sub>Ni<sub>16</sub>Si<sub>7</sub>. Підтверджено належність тернарних сполук Sc<sub>6</sub>Ni<sub>18</sub>Si<sub>11</sub>, Sc<sub>6</sub>Ni<sub>16</sub>Si<sub>7</sub>, ScNiSi та бінарної Ni<sub>2</sub>Si до структурних типів Sc<sub>6</sub>Ni<sub>18</sub>Si<sub>11</sub>, Mg<sub>6</sub>Cu<sub>16</sub>Si<sub>7</sub>, TiNiSi та Co<sub>2</sub>Si та уточнено періоди їхніх елементарних комірок. Для сполуки Sc<sub>6</sub>Ni<sub>16</sub>Si<sub>7</sub> вперше проведено повне структурне дослідження методом X-променевого структурного аналізу порошку та уточнено координати та ізотропні температурні параметри зміщення атомів.

19

- 1. *Gladyshevsky E. I., Markiv V. Ya., Kuzma Yu. B.* New ternary compounds with a structure of the Mg<sub>6</sub>Cu<sub>16</sub>Si<sub>7</sub> type // Dopov. Acad. Nauk Ukrain. RSR. 1962. P. 481–483 (in Ukrainian).
- Voroshilov Yu. V., Markiv V. Ya., Gladyshevsky E. I. System zirconium-nickel-silicon // Izvestiya Akad. Nauk SSSR. Neorgan. Materials. 1967. Vol. 3. P. 1404–1408 (in Russian).
- 3. *Bodak O. I., Kotur B. Ya., Gladyshevsky E. I.* The system scandium-nickel-silicon // Dopov. Acad. Nauk Ukrain. RSR. Ser. A. 1976. No. 7. P. 655–657 (in Ukrainian).
- Kotur B. Ya., Bodak O. I. New representatives of structure types TiNiSi and ZrSi<sub>2</sub> in the systems Sc–Mn(Fe, Co, Ni)–Si // Kristallografiya. 1977. Vol. 22. P. 1209–1213 (in Russian). [Sov. Phys.-Crystallogr. 1977. Vol. 22. P. 687].
- Kotur B. Ya., Sikirica M., Bodak O. I., Gladyshevsky E. I. Crystal structure of compound Sc<sub>3</sub>Ni<sub>11</sub>Si<sub>4</sub> // Kristallografiya. 1983. Vol. 28. P. 658–661 (in Russian). [Sov. Phys.-Crystallogr. 1983. Vol. 28. P. 378].
- Kotur B. Ya., Bodak O. I., Gladyshevsky E. I. Crystal structure of compound ScNi<sub>2</sub>Si<sub>3</sub> // Kristallografiya. 1978. Vol. 23. P. 189–190 (in Russian). [Sov. Phys.-Crystallogr. 1978. Vol. 23. P. 101].
- Kotur B. Ya., Gladyshevsky E. I., Sikirica M. Structure of silicide Sc<sub>6</sub>Ni<sub>18</sub>Si<sub>11</sub> new structure type of intermetallic compounds // Kristallografiya. 1986. Vol. 31. P. 796– 799 (in Russian). [Sov. Phys.-Crystallogr. 1986. Vol. 31. P. 470].
- Kotur B. Ya., Bodak O. I., Mys'kiv M. G., Gladyshevsky E. I. Crystal structure of compound ScNiSi<sub>3</sub> // Kristallografiya. 1977. Vol. 22. P. 267–270 (in Russian). [Sov. Phys.-Crystallogr. 1977. Vol. 22. P. 151].
- 9. *Kotur B. Ya.* Crystal structure of compounds Sc<sub>2</sub>M<sub>3</sub>Si (M=Fe, Co, Ni) // Dopov. Acad. Nauk Ukrain. RSR. Ser. A. 1977. No. 2. P. 164–165 (in Ukrainian).
- Zhao G. T., Parthe E. Structure of Sc<sub>3</sub>Ni<sub>2</sub>Si<sub>4</sub>, an intergrowth of CrB, TiNiSi and CaBe<sub>2</sub>Ge<sub>2</sub> columns // J. Less-Common Met. 1989. Vol. 154. P. 31–37. DOI: https://doi.org/10.1016/0022-5088(89)90167-7
- 11. *Zhao G. T., Parthe E.* Structures of Sc<sub>3</sub>Ni<sub>2</sub>Si<sub>4</sub> and Sc<sub>3</sub>Ni<sub>2</sub>Si<sub>3</sub> interpreted as an intergrowth of simple parent types // Twelfth Europ. Crystallogr. Meeting, Moscow, 20–29 August, 1989. Vol. 2. P. 182.
- Kotur B. Ya., Gladyshevsky E. I. Crystal structure of Sc<sub>3</sub>NiSi<sub>3</sub> // Kristallografiya. 1983. Vol. 28. P. 461–464 (in Russian). [Sov. Phys.-Crystallogr. 1983. Vol. 28. P. 271].
- 13. *Kotur B. Ya., Gratz E.* Scandium alloy systems and intermetallics. In: Handbook on the Physics and Chemistry of the Rare Earths. Eds. K. A. Gschneidner, Jr. and L.-R. Eyring. Vol. 27, Ch. 175. 1999. Amsterdam: Elsevier Science B. V. P. 339–533.
- Morozkin A. V., Knotko A. V., Garshev A. V., Yapaskurt V. O., Nirmala R., Quezado S., Malik S. K. The Ce–Ni–Si system as a representative of the rare earth-Ni–Si family: isothermal section and new rare-earth nickel silicides // J. Solid State Chem. 2016. Vol. 243. P. 290–303. DOI: http://dx.doi.org/10.1016/j.jssc.2016.09.001
- Landrum G. A., Hoffmann R., Evers J., Boysen H. The TiNiSi family of compounds: structure and bonding // Inorg. Chem. 1998. Vol. 37. P. 5754–5763. DOI: http://doi.org/10.1021/ic9802223e
- Akselrud L., Grin Y. WinCSD: software package for crystallographic calculations (Version 4) // J. Appl. Crystallogr. 2014. Vol. 47. P. 803–805. DOI: https://doi.org/10.1107/S1600576714001058

### PHASE EQUILIBRIA AT 800 °C OF THE SYSTEM Sc-Ni-Si WITH PARTICIPATION OF THE TERNARY COMPOUNDS Sc6Ni18Si11 AND Sc6Ni16Si7

#### B. Kotur\*, V. Babizhetskyy

Ivan Franko National University of Lviv, Kyryla i Mefodiya Str., 6, 79005 Lviv, Ukraine e-mail: bohdan.kotur@lnu.edu.ua

The Sc-Ni-Si alloys of compositions Sc<sub>15</sub>Ni<sub>55</sub>Si<sub>30</sub> and Sc<sub>22.5</sub>Ni<sub>47.5</sub>Si<sub>30</sub> have been investigated by means of X-ray diffraction (XRD) phase and structure analysis (powder diffractometer STOE STADI P, CuK<sub>a</sub>-radiation, Rietveld XRD profile refinement, WinCSD programs package) and energy dispersion X-ray spectroscopy (EDX) combined with the electronic microscopy (TESCAN 5130 MM, detector Oxford Instruments AZTEC). The alloys were prepared by arc melting of the initial components of high purity (not less than 99.9 wt. %) under argon and subsequent homogenizing the ingots in the avacuated quartz ampoule at 800 °C for 340 h. Part of the phase equilibria at 800 °C of the Sc-Ni-Si ternary system with participation of the ternary compounds Sc6Ni18Si11 and Sc6Ni16Si7 have been refined. The alloy Sc15Ni55Si30 consisted of three phases: Sc6Ni18Si11, Sc6Ni16Si7 and Ni2Si, while the alloy Sc22.5Ni47.5Si30 contained Sc6Ni18Si11, Sc6Ni16Si7 and ScNiSi. The reported earlier ternary compound ~Sc<sub>2</sub>Ni<sub>5</sub>Si<sub>3</sub> was not confirmed to occur at 800 °C. The membership of the ternary compounds Sc6Ni18Si11, Sc6Ni16Si7, ScNiSi and binary Ni2Si to the structure types Sc<sub>6</sub>Ni<sub>18</sub>Si<sub>11</sub>, Mg<sub>6</sub>Cu<sub>16</sub>Si<sub>7</sub>, TiNiSi and Co<sub>2</sub>Si, respectively, was confirmed, and their crystal structure parameters were refined. For the Sc<sub>6</sub>Ni<sub>16</sub>Si<sub>7</sub> compound a complete crystal structure study has been performed for the first time, atomic coordinates and their isotropic temperature parameters were refined: space group Fm3m, Pearson's symbol cF116, a=1.14405(2) nm, 24Sc in 24e: x, 0, 0,  $x=0.2916(4), B_{iso}=0.47(9)\cdot 10^{-2} \text{ nm}^2$ ; 32Ni1 in 32f: x, x, 0, x=0.1193(2),  $B_{iso}=0.40(9)\cdot 10^{-2} \text{ nm}^2$ ; 32Ni2 in 32*f*: *x*, *x*, 0, *x*=0.3309(2),  $B_{iso}$ =0.31(8)·10<sup>-2</sup> nm<sup>2</sup>; 24Si1 in 24*d*: 0, 1/4, 1/4,  $B_{iso}$ =0.5(2)·10<sup>-2</sup> nm<sup>2</sup>; 4Si2 in 4*a*: 0, 0, 0,  $B_{iso}=0.9(5)\cdot10^{-2}$  nm<sup>2</sup>.

Keywords: ternary system, phase equilibria, intermetallic compounds, crystal structure.

Стаття надійшла до редколегії 01.11.2019 Прийнята до друку 14.01.2020