ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2019. Випуск 60. Ч. 1. С. 103–109 Visnyk of the Lviv University. Series Chemistry. 2019. Issue 60. Pt. 1. P. 103–109

УДК 548.736.4+546.669:546.747:546.28

ВИЗНАЧЕННЯ СТРУКТУРИ ФАЗИ Lu5Ni0,09Si3 МЕТОДОМ МОНОКРИСТАЛА

А. Гагор¹, Б. Белан², М. Маняко²*, Р. Гладишевський²

¹ Інститут низьких температур та структурних досліджень ім. В. Тшебятовскі, Польська Академія Наук, Р. О. Box, 1410, 50-950 Wrocław, Poland;

> ² Львівський національний університет імені Івана Франка, вул. Кирила і Мефодія, 6, 79005 Львів, Україна e-mail: mykolamanyako40@gmail.com

Рентгенівським дифракційним методом монокристала проведено дослідження структури фази LusNi_{0.09}Si₃. Масив експериментальних даних отримано на дифрактометрі KM4 CCD. Кристалічну структуру уточнено за допомогою програми SHELXL-97. Наявність нікелю в монокристалі підтверджено EDX аналізом. Структура фази LusNi_{0.09}Si₃ належить до типу HfsCuSn₃ (структура включення до типу MnsSi₃): просторова група *P*6₃/*mcm*; a = 8,1823(5) Å; c = 6,1151(7) Å; V = 354,56(5) Å³; Z = 2; R = 0,0232; wR = 0,0360 для 163 незалежних рефлексів з $I > 2\sigma(I)$. З'ясовано, що в системі Lu–Ni–Si при 600°C, ймовірно, існує твердий розчин включення LusNi_xSi₃ незначної протяжності.

Ключові слова: кристалічна структура, Лютецій, Нікель, Силіцій.

DOI: https://doi.org/10.30970/vch.6001.103

1. Вступ

Подані результати є частиною систематичних досліджень взаємодії компонентів у системах R-T-Si (де R – рідкісноземельний метал; T – перехідний елемент). Систему Lu–Ni–Si не досліджено в повному концентраційному інтервалі; в літературі [1, 2] є інформація про існування дев'яти тернарних силіцидів, кристалічну структуру трьох з них визначено нами раніше [3]. Кристалографічні характеристики відомих тернарних сполук системи Lu–Ni–Si наведено в табл. 1.

У цій праці подано результати повного структурного дослідження монокристала, попередньо наведені в [4].

2. Матеріали та методика експерименту

Придатний для дослідження монокристал був відібраний зі сплаву складу Lu₅₀Ni₁₀Si₄₀. Сплав масою 1 г отримано шляхом сплавляння шихти з компактних металів чистотою >99,9 мас. % основного компонента в електродуговій печі в атмосфері очищеного аргону. Втрати після сплавляння зразка були відсутні. Гомогенізуючий відпал проводили впродовж одного місяця при 600°C. Хімічний склад вибраного кристала перевірено за допомогою скануючого електронного мікроскопа (FEINovaNanoSEM 230), оснащеного аналізатором EDS (EDAX GenesisXM4).

[©] Гагор А., Белан Б., Маняко М. та ін., 2019

Перший етап монокристального дослідження проведено з використанням методу Лауе (камера РКВ-86, проміння Мо *K*). Масив експериментальних дифракційних даних для подальшого дослідження отримано на дифрактометрі КМ4 ССD (проміння Мо *K*α). Структуру фази уточнено з використанням комплексу програм SHELXL-97 [11]. Рисунок проекції елементарної комірки та координаційні многогранники атомів виконано за допомогою програми ATOMS [12], міжатомні віддалі розраховані за допомогою програми DIAMOND [13].

Таблиця 1

Кристалографічні характеристики тернарних сполук у системі Lu–Ni–Si Table 1

Crystanographic data of the termary compounds in the system Eu Th Sr							
Сполука	Стр. тип	СП	Пр. група	a, Å	<i>b</i> , Å	<i>c</i> , Å	Літ.
LuNi ₁₀ Si ₂	Nd(Mn0,5Fe0,5)4Fe8	tI26	I4/mmm	8,164	_	4,650	[5]
LuNi5Si3	YNi5Si3	oP36	Pnma	18,49	3,739	6,710	[6]
LuNi ₂ Si ₂	CeAl ₂ Ga ₂	<i>tI</i> 10	I4/mmm	3,905	_	9,495	[7]
LuNiSi3	SmNiGe ₃	oS20	Cmmm	3,88279	20,8179	3,89111	[3]
Lu ₃ Ni ₆ Si ₂	Ce ₃ Ni ₆ Si ₂	cI44	Im-3m	8,659	_	-	[8]
Lu2Ni3Si5	Lu ₂ Co ₃ Si ₅	<i>mS</i> 40	C2/c	11,032	11,942 β=120,18°	5,919	[9]
LuNiSi ₂	CeNiSi ₂	oS16	Cmcm	3,851	15,810	3,851	[10]
LuNiSi	TiNiSi	oP12	Pnma	6,67857	4,09340	7,11618	[3]
LuNi0,61Si1,39	AlB_2	hP3	P6/mmm	3,94594	_	3,87276	[3]

Crystallographic data of the ternary compounds in the system Lu-Ni-Si

3. Результати досліджень та їхнє обговорення

Кристалографічні характеристики фази Lu₅Ni_{0,09}Si₃ та деталі експерименту подано в табл. 2, координати, ізотропні та анізотропні параметри зміщення атомів – у табл. 3 та 4. Наявність нікелю у дослідженому монокристалі підтверджено за допомогою EDX аналізу (рис. 1). Структура фази Lu₅Ni_{0,09}Si₃ належить до структурного типу Hf₅CuSn₃, який є похідною включення до структурного типу Mn₅Si₃.

Рис. 1. Результати EDX-аналізу монокристала Lu₅Ni_{0.09}Si₃ Fig. 1. Results of EDX-analysis of the single crystal Lu₅Ni_{0.09}Si₃

104

А. Гагор, Б. Белан, М. Маняко та ін.

ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2019. Випуск 60. Ч. 1

Таблиця 2

Table 2

105

Деталі експерименту та кристалографічні параметри фази Lu5Ni0,09Si3

Experimental details and crystallographic data for the Lu₅Ni_{0.09}Si₃ phase

Кристалографічні дані	Деталі експерименту	Уточнення
Пр. група Р6 ₃ /тст	T = 293(2) K	15 параметрів
a = 8,1823(5), c = 6,1151(7) Å	3 603 поміряні рефлекси	163 рефлекси з <i>I</i> > 2 <i>σ</i> (<i>I</i>)
$V = 354,56(5) \text{ Å}^3$	182 незалежні рефлекси	R = 0,0296 (0,0232)
Z = 2	$R_{\rm int} = 0,0632$	$wR = 0,0371 \ (0,0360)$
$D_{\rm X} = 9,033 {\rm Mr} \cdot {\rm m}^{-3}$	$\theta_{\rm max} = 28,23^{\circ}$	<i>S</i> = 1,213
$\mu = 69,575 \; \mathrm{mm^{-1}}$	$\begin{array}{l} -10 \leq h \leq 10, -10 \leq k \leq 8, \\ -8 \leq l \leq 7 \end{array}$	Аналітична корекція абсорбції

Таблиця 3

Координати та ізотропні параметри зміщення атомів у структурі фази Lu₅Ni_{0,09}Si₃ *Table 3*

Atomic coordinates and isotr	opic displacement pa	arameters for the Lu5Ni0.09Si3 ph	hase
------------------------------	----------------------	-----------------------------------	------

Атом	ПСТ	x	У	z	G	$U_{ m ekb},{ m \AA}^2$
Lu1	6 <i>g</i>	0,23765(7)	0	1/4	1	0,0085(2)
Lu2	4d	1/3	2/3	0	1	0,0083(2)
Ni1	2b	0	0	0	0,090(19)	0,04(2)
Si1	6 <i>g</i>	0,6023(5)	0	1/4	1	0,0081(9)

Таблиця 4

Анізотропні параметри зміщення атомів у структурі фази Lu5Ni0,09Si3

Table 4

Anisotropic displacement parameters for Lu₅Ni_{0.09}Si₃ phase

Атом	$U_{11},{ m \AA}^2$	$U_{22}, Å^2$	$U_{33}, Å^2$	$U_{23},{ m \AA}^2$	$U_{13}, Å^2$	$U_{12},{ m \AA}^2$
Lu1	0,0072(3)	0,0059(3)	0,0119(4)	0	0	0,00293(17)
Lu2	0,0105(3)	0,0105(3)	0,0040(4)	0	0	0,00526(14)
Ni1	0,02(2)	0,02(2)	0,07(5)	0	0	0,012(11)
Si1	0,0052(14)	0,0069(19)	0,013(2)	0	0	0,0035(10)

Проекцію структури елементарної комірки фази Lu₅Ni_{0,09}Si₃ вздовж напряму [001] зображено на рис. 2. У табл. 5 наведено міжатомні віддалі, координаційні числа та координаційні многогранники атомів у структурі дослідженої фази.

Рис. 2. Проекція елементарної комірки структури фази Lu₅Ni_{0,09}Si₃ вздовж [001] Fig. 2. Projection of the unit cell of the structure of the Lu₅Ni_{0.09}Si₃ phase along [001]

Таблиця 5

Міжатомні віддалі, координаційні многогранники та координаційні числа атомів у структурі фази Lu₅Ni_{0,09}Si₃

Table 5

Interatomic distances, coordination polyhedra and coordination numbers of the atoms in the structure Lu₅Ni_{0.09}Si₃ phase

Атоми		δ, Å	КМ (КЧ)
	- 2 Ni1	2,4736(5)	
	- 2 Si1	2,8360(5)	Lui
	- 1 Si1	2,9837(41)	Lui
Lu1	- 2 Si1	3,3265(17)	Si Si Lui
	-2 Lu1	3,3680(7)	Lu2 Si
	-4 Lu2	3,5390(4)	Si Lu2
	-4Lu1	3,6238(4)	[Ni12Si15Lu12Lu24Lu14] (17)
	- 6 Si1	2,9355(12)	Lu1 Si
Lu2	- 2 Lu2	3,0578(3)	Lu Lu2
	– 6 Lu1	3,5390(5)	[Si16Lu22Lu16] (14)
Ni1	– 6 Lu1	2,4736(3)	Lul Lul Lul Ni Lul Lul Lul
Si1	- 2 Lu1	2,8360(33)	
	- 4 Lu2	2,9355(12)	Si Lu2 2
	– 1 Lu1	2,9837(41)	Lui Lui
	- 2Lu1	3,3265(17)	[Lu1 ₂ Lu2 ₄ Lu1 ₃] (9)

Бінарна сполука Lu₅Si₃, яка існує в системі Lu–Si [2], кристалізується в структурному типі Mn₅Si₃ [14]. Згідно з систематикою П. Крип'якевича [15], цей структурний тип належить до класу інтерметалічних сполук, які характеризуються октаедричними пустотами, що утворені атомами мангану, центри яких описано координатами 0 0 0 правильної системи точок 2b просторової групи $P6_3/mcm$. При додаванні нікелю до сполуки Lu₅Si₃ його атоми займають ці пустоти, внаслідок чого відбувається перехід від структурного типу Mn₅Si₃ до типу Hf₅CuSn₃ (просторова група $P6_3/mcm$) [16]. Параметри елементарної комірки фази Lu₅Ni_{0.09}Si₃ є дещо менші від параметрів для бінарної сполуки Lu₅Si₃ (a = 8,200, c = 6,142 Å). Результати уточнення кристалічної структури фази Lu₅Ni_{0.09}Si₃ добре узгоджуються з [17], де підтверджено, що октаедричні пустоти у структурі типу Mn₅Si₃ можуть заповнюватись не тільки атомами *p*-елемента, але й атомами Cr, Mn, Fe, Co, Ni, Cu, Zn, Ru та Ag. Отже, на основі рентгеноструктурного дослідження монокристала фази Lu₅Ni_{0.09}Si₃, встановлено, що, ймовірно, в системі Lu–Ni–Si при 600°С існує твердий розчин включення Lu₅Ni_xSi₃ незначної протяжності.

Із систем *R*–Ni–Si, де *R* – рідкісноземельний метал ітрієвої підгрупи, в повному концентраційному інтервалі досліджено системи лише з Y при 600°C [18], Gd при 600°C [18] та Dy при 800°C [19]. Автори цих праць також з'ясували, що на основі бінарних сполук зі структурою типу Mn_5Si_3 існують тверді розчини включення нікелю до 5 та 8 ат. % для ітрію та гадолінію, а сполука Dy₅Si₃ не утворює подібного твердого розчину.

- 1. *Villars P., Cenzual K.* (Eds.), Pearson's Crystal Data Crystal Structure Database for Inorganic Compounds, Release 2013/14, ASM International, Materials Park (OH), 2013.
- 2. *Villars P., Cenzual K., Gladyshevskii R.* (Eds.), Handbook of Inorganic Substances 2014, De Gruyter. Berlin, 2017. 1955 p.
- 3. *Belan B., Tokaychuk Ya., Manyako M., Gladyshevskii R.* New ternary phases in the Lu–Ni–Si system // Chem. Met. Alloys. 2013. Vol. 6. No. 3/4. P. 209–213.
- Gagor A., Belan B., Manyako M., Gladyshevskii R. Single-crystal investigation of the Lu₅Ni_xSi₃ phase // Coll. Abstr. XIII Int. Conf. on Crystal Chemistry of Intermetallic Compounds. Lviv, 25–29 September 2016. P. 103.
- 5. *Yarovets V. I.* Crystal structure and magnetical properties of the RNi₁₀Si₂ ternary compounds // Coll. Abstr. III All-Union Conf. on Crystal Chemistry of Intermetallic Compounds. Lviv, 4–6 Oktober 1978. P. 124 (in Russian).
- Bodak O. I., Gorelenko Yu. K., Yarovets V. I. Crystal structure and some physical properties of the RNi₅Si₃ (R = Y, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) compounds and solid solution Y(Fe_xNi_{1-x})₅Si₃ // Fiz. Khim. Tverd. Tila. 2003. Vol. 4. No. 1. P. 141–145 (in Ukrainian).
- Bodak O. I., Gladyshevskii E. I., Krypyakevych P. I. Crystal structure of the CeNi₂Si₂ compound and isostructural compounds in the related systems // Inorg. Mater. 1966. Vol. 2, No. 12. P. 2151–2155 (in Russian).
- Gladyshevskii E. I., Krypyakevych P. I., Bodak O. I. Die Kristallstruktur von Ce₃Ni₆Si₂ und verwandten Verbindungen // Z. Anorg. Allg. Chem. 1966. Bd. 344. Heft 1–2. S. 95–101.

- Mazumdar C., Ghosh K., Ramakrishnan S., Nagarajan R., Gupta L. C., Chandra G., Padalia B. D., Vijayaraghavan P. R. Superconductivity in the ternary nickel silicide Lu₂Ni₃Si₅ // Phys. Rev. B. 1994. Vol. 50, Iss. 18. P. 13879(R)–13882(R).
- Bodak O. I., Gladyshevskii E. I. Crystal structure of the CeNiSi₂ compound and related compounds // Sov. Phys. Crystallogr. 1970. Vol. 14, No. 6. P. 859–862 (in Russian).
- 11. Sheldrick G. M. Crystal structure refinement with SHELXL // Acta Crystallogr. C. 2015. Vol. 71. P. 3–8. DOI: https://doi.org/10.1107/S2053229614024218
- 12. Dowty E. ATOMS A Computer Program for Displaying Atomic Structures, Kingsport, TN, USA, 1999.
- 13. *Pennington W.T.* DIAMOND Visual Crystal Structure Information System // J. Appl. Cryst. 1999. Vol. 32, Pt. 5. P. 1028–1029.
- 14. *Aronson B*. A note on the compositions and crystal structures of MnB₂, Mn₃Si, Mn₅Si₃ and FeSi₂ // Acta Chem. Scand. 1960. Vol. 14. P. 1414–1418.
- 15. *Krypyakevich P. I.* Structure types of the intermetallic compounds: [monograph]. Moscow: Nauka, 1977. 288 p. (in Russian).
- Parthé E. Gelato L., Chabot B., Penzo M., Cenzual K., Gladyshevskii R. TYPIX. Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types // Heidelberg: Springer-Verlag, 1993. Vol. 1–4. 1596 p.
- Guloy A. M., Corbett J. D. Exploration of the interstitial derivarives of La₅Pb₃ (Mn₃Si₃-type) // J. Solid State Chem. 1994. Vol. 109. P. 352–358.
- 18. *Bodak O. I., Gladyshevskii E. I.* Rare-Earth-Containing Ternary Systems, Lvov: Vyshcha Shkola, 1985, 328 p. (in Russian).
- Yuan F., Mozharivskyj Y., Morozkin A. V., Knotko A. V., Yapaskurt V. O., Pani M., Provino A., Manfrinetti P. The Dy–Ni–Si system as a representative of the rare earth– Ni–Si family: Its isothermal section and new rare-earth nickel silicides // J. Solid State Chem. 2014. 219. P. 247–258. DOI: http://dx.doi.org/10.1016/j.jssc.2014.07.030

SINGLE-CRYSTAL INVESTIGATION OF THE STRUCTURE OF Lu5Ni0.09Si3

A. Gagor¹, B. Belan², M. Manyako^{2*}, and R. Gladyshevskii²

¹ Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P. O. Box, 1410, 50-950 Wrocław, Poland;

> ² Ivan Franko National University of Lviv, Kyryla i Mefodiya Str., 6, 79005 Lviv, Ukraine e-mail: mykolamanyako40@gmail.coms

During an investigation of the Lu–Ni–Si system, a single crystal could be isolated from an alloy of composition $Lu_{50}Ni_{10}Si_{4}$. The alloy had been synthesized by arc melting under an argon atmosphere and then annealed at 600°C (1 month). X-ray diffraction data were collected on a diffractometer KM4-CCD operating in kappa geometry, using Mo K α radiation. The structure was refined by the full-matrix least-squares method on F^2 using SHELXL.

108

The crystallographic data (space group $P6_3/mcm$, a = 8.1823(5), c = 6.1151(7) Å, V = 354.56(5) Å³, Z = 2, $D_X = 9.033$ Mg·m⁻³, $\mu = 69.575$ mm⁻¹) indicate that the structure is a filled-up derivative of the Mn₅Si₃ structure type (Hf₅CuSn₃ type) (parameters for the data collection: T = 293(2) K, 3603 measured reflections, 182 independent reflections, $R_{int} = 0.0632$, $-10 \le h \le 10$, $-10 \le k \le 8$, $-8 \le l \le 7$, and refinement: 15 parameters, 163 reflections with $I > 2\sigma(I)$, R = 0.0232, wR = 0.0360, S = 1.213, analytical absorption correction). The refined positional coordinates and displacement parameters are the following: Lu1 in 6g 0.23765(7) 0 1/4, $U_{eq} = 0.0085(2)$ Å²; Lu2 in 4d 1/3 2/3 0, $U_{eq} = 0.0083(2)$ Å²; Ni in 2b 0 0 0, $U_{eq} = 0.04(2)$ Å², occ. 0.090(19); Si in 6g 0.6023(5) 0 1/4, $U_{eq} = 0.0081(9)$ Å². The nickel content was confirmed by EDX analysis.

Among the systems *R*–Ni–Si, where *R* is a rare-earth metal of the yttrium subgroup, only the systems with Y (isothermal section at 600°C), Gd (600°C), and Dy (800°C) have been investigated in the whole concentration range. Interstitial solid solutions with up to 5 and 8 at. % Ni, based on the binary compounds with Mn_5Si_3 -type structure, have been reported for yttrium and gadolinium, whereas the compound with dysprosium does not dissolve significant amounts of nickel.

Keywords: crystal structure, lutetium, nickel, silicium.

Стаття надійшла до редколегії 01.11.2018 Прийнята до друку 23.01.2019