ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2019. Випуск 60. Ч. 1. С. 91–102 Visnyk of the Lviv University. Series Chemistry. 2019. Issue 60. Pt. 1. P. 91–102

УДК 548.736.4

КРИСТАЛІЧНА СТРУКТУРА СПОЛУК Dy3Ga3,5Ge1,5 ТА Dy3Ga2,8-2,4Ge2,2-2,6

Т. Деленко*, Я. Токайчук, Р. Гладишевський

Львівський національний університет імені Івана Франка, вул. Кирила і Мефодія, 6, 79005 Львів, Україна e-mail: tarasdelenko@gmail.com

Синтезовано та методами рентгеноспектрального і рентгеноструктурного аналізів визначено склад і кристалічну структуру двох нових тернарних сполук: Dy₃Ga_{3,5}Ge_{1,5} (структурний тип Tm₃Ga₅; символ Пірсона *oP*32; просторова група *Pnma*; *a* = 11,6672(11), *b* = 9,4411(8), *c* = 6,0267(5) Å) і Dy₃Ga_{2,8-2,4}Ge_{2,2-2,6} (Pu₃Pd₅; *oS*32; *Cmcm*; *a* = 9,3738(11)–9,3599(11), *b* = 7,4816(8)–7,4788(9), *c* = 9,4068(11)–9,4148(12) Å). Структурні типи Tm₃Ga₅ та Pu₃Pd₅ належать до родини деформованих похідних структури типу Rh₅Ge₃, що характеризується взаємноз'єднаними колонами заповнених тригональних призм, що утворюють каркас з великими гексагональними каналами. В структурах синтезованих сполук можна також виділити тетрагонально-пірамідальні кластери з атомів Ga i Ge.

Ключові слова: диспрозій, галій, германій, рентгенівський дифракційний метод порошку, кристалічна структура.

DOI: https://doi.org/10.30970/vch.6001.091

1. Вступ

Системи R-Ga-Ge (R – рідкісноземельний метал) є багатими на тернарні сполуки: сьогодні відомо про існування 63 тернарних галідо-германідів, кристалічні структури яких належать до 40 структурних типів [1]. У системі з Ду досі повідомлено про існування п'яти тернарних сполук з вмістом 22,2-33,3 ат. % Ду: Dy2Ga1.8Ge5.2 (структурний тип (СТ) Sm2(Ga0.26Ge0.74)7; символ Пірсона (СП) оS80,64; просторова група (ПГ) *Стсе*; a = 8,3284, b = 8,0320, c = 20,9167 Å) [2], DyGa_{2,92–2,52}Ge_{0,08–0,48} (CT Mg₃In; CII *h*R48; IIF *R*-3*m*; a = 6,1707-6,22374, c = 27,7297-6,22374) 28,1185 Å) [3], DyGa_{2,32-2,20}Ge_{0,68-0,80} (CT PuAl₃; CII hP24; III P6₃/mmc; a = 6,0970-6,1091, c = 14,3153-14,3528 Å) [3], DyGa_{1.4}Ge_{0.6} (CT α -ThSi₂; CII *t1*12; IIF *1*4₁/*amd*; a = 4,16411, c = 14,4832 Å) [4] Ta DyGa_{0.15}Ge_{1.85} (CT PrGe_{1.91}; CII oS24; IIF Cmmm; a = 4,102, b = 29,896, c = 3,339 Å) [5]. Однак у системах з деякими іншими рідкісноземельними металами існують тернарні сполуки і з більшим вмістом R. Зокрема, у системі Ег-Ga-Ge на ізоконцентраті 37,5 ат. % Ег існує дві тернарні фази: Er₃Ga_{2,7}Ge_{2,3} (CT Tm₃Ga₅; CII *oP*32; IIF *Pnma*; a = 11,573, b = 9,368, c = 5,958 Å) [6] та Er₃Ga_{2,21–2,15}Ge_{2,79–2,85} (CT Pu₃Pd₅; CII *oS*32; IIГ *Cmcm*; a = 9,2880-9,269, b = 7,4180-7,402, c = 9,3830–9,375 Å) [6, 7]. Тернарні сполуки зі структурою типу Pu₃Pd₅ були також знайдені у споріднених системах {Sm, Dy}-Ga-Sn: Sm3Ga0,80-2,48Sn4,20-2,52 (*a* = 9,97522–9,89433, *b* = 8,02642–7,87246, *c* = 10,23304–9,91703 Å) [8, 9] та $Dy_3Ga_{2.54}Sn_{2.46}$ (*a* = 9,7300, *b* = 7,7081, *c* = 9,7925 Å) [10].

[©] Деленко Т., Токайчук Я., Гладишевський Р., 2019

Метою цієї праці є пошук тернарних сполук у системі Dy–Ga–Ge на ізоконцентраті 37,5 ат. % Dy, що є продовженням систематичного дослідження взаємодії компонентів у цій системі при 600°С. Ізоконцентрата 37,5 ат. % Dy системи Dy–Ga–Ge обмежена бінарними сполуками Dy₃Ga₅ (CT Tm₃Ga₅; CП *oP*32; ПГ *Pnma*; a = 11,43, b = 9,652, c = 6,080 Å) [11] та Dy₃Ge₅ (CT Y₃Ge₅; CП *oF*64; ПГ *Fdd*2; a = 5,729, b = 17,190, c = 13,678 Å) [12].

2. Матеріали та методика експерименту

Сплави для дослідження синтезували сплавлянням шихти вихідних простих речовин (вміст основного компонента (мас. %): Dy \ge 99,9; Ga \ge 99,99; Ge \ge 99,999) в електродуговій печі на мідному водоохолоджуваному поді з використанням вольфрамового електрода. Синтез проводили в атмосфері очищеного аргону (як гетер використовували пористий титан). Для досягнення однорідності сплави переплавляли двічі. Для гомогенізації сплави були запаяні у вакуумовані кварцові ампули та відпалені при 600°С впродовж 720 год у муфельній електропечі VULKAN A-550 з подальшим гартуванням у холодній воді без розбивання ампул. Втрати маси під час синтезу сплавів не перевищували 1 %. Рентгенофазовий аналіз здійснювали за масивами порошкових дифракційних даних, отриманими за кімнатної температури на дифрактометрі ДРОН-2.0М (проміння Fe Kα). Його проводили порівнянням експериментальних дифрактограм синтезованих зразків 3 розрахованими дифрактограмами простих речовин, бінарних і тернарних сполук системи Dy-Ga-Ge за допомогою комплексу програм STOE WinXPow [13]. Кристалічну структуру сполук визначали рентгенівським дифракційним методом порошку за масивами даних, отриманими на дифрактометрі STOE Stadi P (проміння Си Ка₁). Уточнення параметрів профілю і структури проводили методом Рітвельда за допомогою комплексу програм FullProf Suite [14]. З огляду на близькі значення факторів розсіювання рентгенівського проміння атомами Ga і Ge, склади статистичних сумішей цих атомів не уточнювали, а розраховували відповідно до складу фази, отриманого локальним рентгеноспектральним аналізом.

Локальний рентгеноспектральний аналіз проводили на растровому електронному мікроскопі РЕММА-102-02 з енергодисперсійним рентгенівським спектрометром ЕДАР. Сплави для аналізу заплавляли в тримачі сплавом Вуда, після чого шліфували та полірували до дзеркальної поверхні, застосовуючи наждачний папір з різною величиною зерен, а також дрібнодисперсний порошок Cr₂O₃. Загальний склад сплавів отримували на плоскій ділянці (1×1 мм²). Локальний хімічний склад фази одержували усередненням точкових складів 4–5 зерен.

3. Результати досліджень та їхнє обговорення

У результаті рентгенофазового аналізу зразків з вмістом 35–40 ат. % Dy, 55–20 ат. % Ga та 10–40 ат. % Ge визначено існування двох нових тернарних сполук. Синтезовані зразки із зазначеної області були багатофазними, а їхні дифрактограми, крім відбиттів нових тернарних фаз, містили відбиття інших бінарних і тернарних фаз системи Dy–Ga–Ge, вказуючи на відповідні рівноваги при 600°С. Для визначення складів та кристалічної структури тернарних сполук використано зразки складів Dy_{37,5}Ga₄₄Ge_{18,5}, Dy_{37,5}Ga_{37,5}Ge₂₅ та Dy_{37,5}Ga_{32,5}Ge₃₀, що, згідно з результатами рентгенофазового аналізу, містили найбільшу кількість нових фаз. Склади тернарних сполук, визначені локальним енергодисперсійним рентгенівським спектральним

аналізом сплавів, становлять: Dy₃Ga_{3,5}Ge_{1,5}, Dy₃Ga_{2,8}Ge_{2,2} і Dy₃Ga_{2,4}Ge_{2,6} (рис. 1, табл. 1). Стехіометрія Dy₃Ga_{3,5}Ge_{1,5} відповідає одній тернарній сполуці, тоді як склади Dy₃Ga_{2,8}Ge_{2,2} і Dy₃Ga_{2,4}Ge_{2,6} – іншій фазі, яка має область гомогенності вздовж ізоконцентрати 37,5 ат. % Dy при 600°C.

Рис. 1. Фотографії у вторинних електронах поверхонь шліфів зразків: $a - Dy_{37,5}Ga_{44}Ge_{18,5}; \delta - Dy_{37,5}Ga_{37,5}Ge_{25}; s - Dy_{37,5}Ga_{32,5}Ge_{30}$ Fig. 1. Photographs in the secondary electrons of the polished surfaces of the samples: $a - Dy_{37,5}Ga_{44}Ge_{18,5}; \delta - Dy_{37,5}Ga_{37,5}Ge_{25}; s - Dy_{37,5}Ga_{32,5}Ge_{30}$

Таблиця 1

Результати локального енергодисперсійного рентгенівського спектрального аналізу сплавів *Table 1*

Results of the l	ocal energy dispersi	ve X-ray spectral	analyses of the allow	'S

Вихідний склад сплаву – Dy _{37.5} Ga ₄₄ Ge _{18.5} *				
Сіра фаза (основна)	Dy ₃₈₍₁₎ Ga ₄₃₍₁₎ Ge ₁₉₍₁₎ (Dy ₃ Ga _{3,5} Ge _{1,5})			
Темна фаза	$Dy_{33(1)}Ga_{54(1)}Ge_{13(1)}$ (DyGa _{1,6} Ge _{0,4})			
Вихідний склад сплаву – Dy _{37,5} Ga _{37,5} Ge ₂₅ *				
Сіра фаза (основна)	Dy38(1)Ga35(1)Ge27(1) (Dy3Ga2,8Ge2,2)			
Темна фаза	$Dy_{33(1)}Ga_{43(1)}Ge_{24(1)}$ ($DyGa_{1,3}Ge_{0,7}$)			
	Вихідний склад сплаву – Dy37,5Ga32,5Ge30*			
Сіра фаза (основна)	$Dy_{38(1)}Ga_{30(1)}Ge_{32(1)}$ ($Dy_3Ga_{2,4}Ge_{2,6}$)			
Темна фаза	Dy33(1)Ga43(1)Ge24(1) (DyGa1,3Ge0,7)			

* Світлі вкраплення – Dy2O3.

Подібність дифрактограми сполуки Dy₃Ga_{3.5}Ge_{1.5} до теоретично розрахованих дифрактограм бінарного галіду Dy3Ga5 і тернарної сполуки Er3Ga2.7Ge2.3 зі структурою типу Tm₃Ga₅ засвідчили їхню ізоструктурність. Уточнення кристалографічних параметрів тернарної фази Dy₃Ga_{3.5}Ge_{1.5} провели методом Рітвельда, керуючись координатами атомів сполуки Er₃Ga_{2,7}Ge_{2,3} [6], які взято за початкову модель. Крім основної фази, зразок містив 9,5(2) мас. % DyGa1.6Ge0.4 (СТ AlB2; hP3, P6/mmm; a = 4,1795(4), c = 4,0914(4) Å), що відповідає твердому розчину DyGa₂₋ $_{1.55}$ Ge_{0-0.45} [4] ta 1,2(11) Mac. % Dy₂O₃ (CT (Mn_{0.5}Fe_{0.5})₂O₃; CII *c1*80; III *Ia*-3; *a* = 10,666(5) Å). Кристалічну структуру сполуки змінного складу Dy₃Ga_{2.8-2.4}Ge_{2.2-2.6} угочнено методом Рітвельда за дифрактограмами двох зразків. За початкову модель для уточнення взято координати атомів у структурі тернарної сполуки Er₃Ga_{2,21-2,15}Ge_{2,79-2,85} зі структурою типу Pu₃Pd₅ [6, 7], з огляду на подібність їхніх дифрактограм. Крім основної фази, зразки Dy_{37,5}Ga_{37,5}Ge₂₅ та Dy_{37,5}Ga_{32,5}Ge₃₀ містили 14,7(3) і 11,6(6) мас. % фази складу DyGa_{1,3}Ge_{0,7} (СТ α-ThSi₂; СП *tI*12; ПГ *I*4₁/*amd*; *a* = 4,1753(7), *c* = 14,4935(18) Å для зразка Dy_{37,5}Ga_{37,5}Ge₂₅ та *a* = 4,1748(8), *c* = 14,494(2) Å для зразка Dy_{37,5}Ga_{32,5}Ge₃₀) з області гомогенності тернарної сполуки DyGa_{1,40-1,25}Ge_{0,60-0,75} [4] та 1,2(5) і 0,9(1) мас. % Dy₂O₃, відповідно.

Експериментальні, розраховані та різницеві дифрактограми зразків $Dy_{37,5}Ga_{44}Ge_{18,5}$, $Dy_{37,5}Ga_{37,5}Ge_{25}$ та $Dy_{37,5}Ga_{32,5}Ge_{30}$ зображено на рис. 2, умови експерименту та результати уточнення кристалічної структури фаз $Dy_3Ga_{3,5}Ge_{1,5}$, $Dy_3Ga_{2,8}Ge_{2,2}$ та $Dy_3Ga_{2,4}Ge_{2,6}$ наведено у табл. 2. Незмінність параметрів елементарної комірки тернарної сполуки $Dy_3Ga_{3,5}Ge_{1,5}$ у різних багатофазних зразках свідчить про її постійний склад, тоді як аналіз параметрів елементарної комірки фази зі структурою типу Pu_3Pd_5 у різних зразках засвідчив, що склади $Dy_3Ga_{2,8}Ge_{2,2}$ та $Dy_3Ga_{2,4}Ge_{2,6}$ відповідають крайнім складам її області гомогенності.

Таблиця 2

Умови експерименту та результати уточнення кристалічної структури сполук Dy3Ga3,50Ge1,50 та Dy3Ga2,8-2,4Ge2,2-2,6

Table 2

Experimental conditions and results of the refinement of the crystal structures
of the compounds Dy3Ga3.50Ge1.50 Ta Dy3Ga2.8-2.4Ge2.2-2.6

Склад зразка, ат. %		Dy37,5Ga44Ge18,5	Dy37,5Ga37,5Ge25	Dy37,5Ga32,5Ge30
Фаза		Dy ₃ Ga _{3,5} Ge _{1,5}	Dy ₃ Ga _{2,8} Ge _{2,2}	Dy ₃ Ga _{2,4} Ge _{2,6}
Вміст фази, мас. %		89,3(5)	84,1(9)	87,5(4)
Структурний тип		Tm ₃ Ga ₅	Pu ₃ Pd ₅	Pu ₃ Pd ₅
Символ Пірсона		oP32	oS32	oS32
Просторова група		Pnma	Cmcm	Cmcm
Параметри елементарної				
комірки:	a, Å	11,6672(11)	9,3738(11)	9,3599(11)
	b, Å	9,4411(8)	7,4816(9)	7,4788(9)
	<i>c</i> , Å	6,0267(5)	9,4068(11)	9,4148(12)
Об'єм комірки V, Å ³		663,85(10)	659,71(13)	659,04(14)
Кількість формульних од	иниць Z	4	4	4
Густина D_X , г·см ⁻³		8,494	8,226	8,181
Параметр текстури G [нал	прям]	0,996(6) [001]	0,949(4) [010]	0,991(4) [010]
Параметри профілю:	U	0,022(13)	0,028(2)	0,068(2)
	V	0,024(12)	0,079(12)	-0,002(18)
	W	0,007(2)	-0,0035(4)	0,012(4)
Параметр змішування		0,641(16)	0,605(16)	0,594(18)
Параметри асиметрії:	P1,	0,075(13),	0,062(16),	0,101(18),
	P2	-0,003(2)	-0,003(2)	0,011(3)
Фактори достовірності:	$R_{ m B}$	0,0608	0,0611	0,0639
	R_F	0,0951	0,0877	0,0930
	$R_{ m p}$	0,0307	0,0295	0,0354
	$R_{ m wp}$	0,0386	0,0371	0,0448
	χ^2	0,993	1,07	1,01

Кристалічна структура сполуки Dy₃Ga_{3,5}Ge_{1,5} належить до структурного типу Tm₃Ga₅ (СП *оP*32; ПГ *Pnma*; a = 11,6672(11), b = 9,4411(8), c = 6,0267(5) Å), а кристалічна структура сполуки Dy₃Ga_{2,8-02,4}Ge_{2,2-2,6} належить до структурного типу Pu₃Pd₅ (СП *oS*32; ПГ *Cmcm*; a = 9,3738(11)-9,3599(11), b = 7,4816(9)-7,4788(9), c = 9,4068(11)-9,4148(12) Å). Координати та ізотропні параметри зміщення атомів у структурах обох сполук наведено у табл. З. Заміщення атомів Ga на атоми Ge в межах області гомогенності фази зі структурою типу Pu₃Pd₅ приводить до анізотропної зміни параметрів елементарної комірки: параметри *a* і *b* зменшуються, тоді як параметр *c* – збільшується; водночас об'єм елементарної комірки зменшується.

Рис. 2. Експериментальні (кружки), розраховані (лінії) та різницеві (знизу) дифрактограми зразків: *a* – Dy_{37,5}Ga₄₄Ge_{18,5}; *b* – Dy_{37,5}Ga_{37,5}Ge₂₅; *b* – Dy_{37,5}Ga_{32,5}Ge₃₀ (проміння Си Kα₁). Вертикальні риски вказують на положення відбиттів індивідуальних фаз
 Fig. 2. Experimental (circles), calculated (line) and difference (bottom) X-ray powder diffraction

patterns of the samples: $a - Dy_{37.5}Ga_{44}Ge_{18.5}$; $\delta - Dy_{37.5}Ga_{37.5}Ge_{25}$;

 $e - Dy_{37.5}Ga_{32.5}Ge_{30}$ (Cu $K\alpha_1$ radiation). Vertical bars indicate the positions of reflections for individual phases

Обидві структури характеризуються двома правильними системами точок атомів Dy та чотирма чи трьома ПСТ, зайнятих статистичними сумішами атомів Ga i Ge. Варто зазначити, що у системі Dy–Ga при 600°С існує бінарна сполука Dy₃Ga₅ зі структурою типу Tm₃Ga₅ [11]. Відмінні параметри елементарної комірки фаз Dy₃Ga_{3,5}Ge_{1,5} і Dy₃Ga₅, а також результати рентгенофазового аналізу низки трикомпонентних сплавів (ізоструктурні сполуки не перебувають у рівновазі при 600°С) дають підстави стверджувати, що за температури дослідження фаза Dy₃Ga_{3,5}Ge_{1,5} є індивідуальною тернарною сполукою, а не частиною твердого розчину на основі бінарного галіду Dy₃Ga₅. Знайдені тернарні сполуки Dy₃Ga_{3,5}Ge_{1,5} та Dy₃Ga_{2,8-2,4}Ge_{2,2-2,6} не перебувають у рівновазі при 600°С.

Міжатомні віддалі, координаційні числа та координаційні многогранники атомів у структурах сполук Dy₃Ga_{3,5}Ge_{1,5} та Dy₃Ga_{2,8-2,4}Ge_{2,2-2,6} (для складу Dy₃Ga_{2,4}Ge_{2,6}) наведено у табл. 4 та 5, відповідно.

Координаційними многогранниками атомів Dy в обох структурах є 15- та 17-вершинники псевдо Франка-Каспера. Координаційними многогранниками атомів малого розміру є тригональні призми з чотирма додатковими атомами та дефектні ікосаедри. Найкоротшими віддалями у структурі сполуки Dy₃Ga_{3.5}Ge_{1.5} є віддалі між положеннями *M*1–*M*3 та *M*1–*M*2 статистичної суміші атомів Ga та Ge: $\delta_{M1-M3} = 2,633(19)$ Å і $\delta_{M1-M2} = 2,653(18)$ Å, в структурі сполуки Dy₃Ga_{2.4}Ge_{2.6} найкоротшими віддалями є також віддалі між положеннями *M*1–*M*3 та *M*1–*M*2: $\delta_{M1-M3} = 2,664(11)$ Å і $\delta_{M1-M2} = 2,668(8)$ Å. Статистичні суміші атомів Ga i Ge в обох

структурах утворюють ізольовані тетрагональні піраміди, які можна інтерпретувати як *arachno*-кластери типу Вейда [15]. У структурі сполуки Dy₃Ga_{3,5}Ge_{1,5} ці піраміди мають склад *M*4*M*1₂*M*2*M*3 ($\delta_{M1-M3} = 2,633(19)$ Å, $\delta_{M1-M2} = 2,653(18)$, $\delta_{M4-M2} = 2,72(2)$, $\delta_{M4-M3} = 2,77(4)$, $\delta_{M4-M1} = 2,872(19)$ Å), а в структурі сполуки Dy₃Ga_{2,4}Ge_{2,6} – *M*3*M*1₂*M*2₂ ($\delta_{M1-M3} = 2,664(11)$ Å, $\delta_{M1-M2} = 2,668(8)$, $\delta_{M2-M3} = 2,762(12)$ Å) (рис. 3).

Таблиця 3

Координати, коефіцієнти заповнення позицій та ізотропні параметри зміщення атомів у структурах сполук Dy3Ga_{3,5}Ge_{1,5} та Dy3Ga_{2,8-2,4}Ge_{2,2-2,6}

Table 3

Coordinates,	occupancies	and isotropic	displacement	parameters	of the aton	ns in the structu	ires of the
	C	compounds Dy	/3Ga3 5Ge1 5 at	nd Dv3Ga2 8	$_{24}$ Ge $_{22}$		

Атом	ПСТ	x	у	Z	$B_{\rm iso},{ m \AA}^2$		
$Dy_3Ga_{3,5}Ge_{1,5}$ (Tm_3Ga_5 ; <i>oP</i> 32; <i>Pnma</i> ; <i>a</i> = 11,6672(11), <i>b</i> = 9,4411(8), <i>c</i> = 6,0267(5) Å;							
M1 = M2	= M3 = M4	l = 0,70Ga + 0,30Ga	Ge)				
Dy1	8d	0,3519(5)	0,0035(6)	0,3840(10)	0,51(12)		
Dy2	4c	0,4238(6)	1/4	0,8604(17)	0,62(18)		
M1	8d	0,0875(6)	0,0560(7)	0,3782(2)			
M2	4c	0,0011(14)	1/4	0,1066(4)	1 62(15)		
МЗ	4c	0,2027(12)	1/4	0,5990(5)	1,03(15)		
<i>M</i> 4	4c	0,2336(13)	1/4	0,1440(5)			
Dy ₃ Ga _{2,8} G	Ge _{2,2} (Pu ₃ Po	l5; oS32; Cmcm; a	= 9,3738(11), <i>b</i> =	7,4816(8), c = 9,40	068(11) Å;		
M1 = M2	= M3 = 0,5	6Ga + 0,44Ge)					
Dy1	8e	0,2001(5)	0	0	0,47(12)		
Dy2	4c	0	0,6480(8)	1/4	0,58(13)		
M1	8g	0,2015(10)	0,2971(11)	1/4			
M2	8f	0	0,3145(12)	0,0551(7)	1,58(15)		
M3	4c	0	0,0433(17)	1/4			
Dy ₃ Ga _{2,4} G	Ge2,6 (Pu3Po	l5; oS32; Cmcm; a	= 9,3599(11), <i>b</i> =	7,4788(9), c = 9,41	.48(12) Å;		
M1 = M2	= M3 = 0,4	8Ga + 0,52Ge)					
Dy1	8 <i>e</i>	0,1987(4)	0	0	0,50(13)		
Dy2	4c	0	0,6508(8)	1/4	0,52(17)		
<i>M</i> 1	8g	0,2034(9)	0,2919(10)	1/4			
M2	8f	0	0,3157(12)	0,0524(7)	1,46(14)		
<i>M</i> 3	4c	0	0,0428(15)	1/4			

Рис. 3. Вміст елементарних комірок і тетрагонально-пірамідальні кластери у структурах сполук Dy₃Ga_{3,5}Ge_{1,5} (*a*) та Dy₃Ga_{2,4}Ge_{2,6} (*б*)
 Fig. 3. Content of the unit cells and square pyramidal arachno-type clusters in the structures of Dy₃Ga_{3,5}Ge_{1.5} (*a*) and Dy₃Ga_{2,4}Ge_{2,6} (*б*)

Т. Деленко, Я. Токайчук, Р. Гладишевський ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2019. Випуск 60. Ч. 1

Таблиця 4

97

Міжатомні віддалі (δ), координаційні числа (КЧ) та координаційні многогранники (КМ) атомів у структурі сполуки Dy₃Ga_{3,5}Ge_{1,5} (M = 0,70Ga + 0,30Ge)

Table 4

Interatomic distances (δ), coordination numbers (KU) and coordination polyhedra (KM) of atoms in
the structure of the compound $Dy_3Ga_{3.5}Ge_{1.5}$ ($M = 0.70Ga + 0.30Ge$)

Dy ₃ Ga _{3,5} Ge _{1,5}						
Атоми	$\delta, \text{\AA}$	КЧ	КМ			
1	2	3	4			
Dy1 - M2	2,907(11)					
- <i>M</i> 3	3,014(18)					
-M4	3,029(17)					
-M4	3,068(17)					
-M1	3,111(13)					
-M1	3,123(9)					
-M1	3,181(13)					
- <i>M</i> 3	3,181(16)	17				
-M1	3,210(10)	17				
-M2	3,237(14)					
- Dy1	3,731(8)					
- Dy2	3,790(10)		$\underline{Dy1}M_{10}Dy_7$			
- 2 Dy1	3,838(8)					
- Dy2	3,841(8)					
- Dy2	4,010(10)					
- Dy2	4,011(8)					
Dy2 – <i>M</i> 4	2,80(2)					
-2 M1	2,894(7)					
-M2	2,96(3)					
- <i>M</i> 3	3,02(2)					
-2 M1	3,080(11)					
- <i>M</i> 3	3,263(17)	17				
-M2	3,33(3)					
- 2 Dy1	3,790(10)					
- 2 Dy1	3,841(8)		$\underline{\text{Dy2}}M_9\text{Dy8}$			
- 2 Dy1	4,010(10)					
- 2 Dy1	4,011(8)					
M1 - M3	2,633(19)					
-M2	2,653(18)					
-M1	2,729(12)					
-M4	2,872(19)					
- Dy2	2,894(17)	10				
- Dy2	3,080(11)	10				
- Dy1	3,111(13)					
- Dy1	3,123(9)		$\underline{M1}$ Dy ₆ M_4			
- Dy1	3,181(13)					
- Dy1	3,210(10)					

Т. Деленко, Я. Токайчук, Р. Гладишевський ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2019. Випуск 60. Ч.1

				Закінчення табл. 4
1		2	3	4
M2	- 2 <i>M</i> 1 - <i>M</i> 4 - 2 Dy1 - Dy2 - 2 Dy1 - Dy2 - <i>M</i> 4 - <i>M</i> 3	$\begin{array}{r} 2,653(18)\\ 2,72(2)\\ 2,907(11)\\ 2,96(3)\\ 3,237(14)\\ 3,33(3)\\ 3,46(3)\\ 3,70(2) \end{array}$	11	<u>M2</u> Dy6M5
МЗ	- 2 <i>M</i> 1 - <i>M</i> 4 - 2 Dy1 - Dy2 - 2 Dy1 - Dy2 - <i>M</i> 4 - <i>M</i> 2	2,633(19) 2,77(4) 3,014(18) 3,02(2) 3,181(16) 3,263(17) 3,30(4) 3,70(2)	11	<u>M3</u> Dy ₆ M5
M4	- M2 - M3 - Dy2 - 2 M1 - 2 Dy1 - 2 Dy1 - M3 - M2	2,72(2) 2,77(4) 2,80(2) 2,872(19) 3,029(17) 3,068(17) 3,30(4) 3,46(3)	11	<u>M4</u> Dy ₃ M ₈

Таблиця 5

Міжатомні віддалі (δ), координаційні числа (КЧ) та координаційні многогранники (КМ) атомів у структурі Dy₃Ga_{2,4}Ge_{2,6} (M = 0,48Ga + 0,52Ge)

Table 5

Interatomic distances (δ), coordination numbers (KU) and coordination polyhedra (KM) of atoms in the structure of Dy₃Ga_{2.4}Ge_{2.6} (M = 0.48Ga + 0.52Ge)

Dy3Ga2,4Ge2,6				
Атоми	$\delta, \text{\AA}$	КЧ	КМ	
1	2	3	4	
Dy1 $-2M1$	2,967(5)			
-2M3	3,017(3)			
-2 M2	3,046(7)			
-2 M2	3,178(5)			
-2 M1	3,211(5)	17		
- Dy1	3,720(5)			
-2 Dy2	3,843(3)			
- 2 Dy1	3,8607(16)		$\underline{\mathrm{Dy1}}M_{10}\mathrm{Dy7}$	
-2 Dy2	3,977(4)			
Dy2 $-2M2$	2,858(7)			
- <i>M</i> 3	2,932(13)			
-2 M1	2,970(9)			
-2 M2	3,121(10)	17		
-2 M1	3,291(9)			
- 4 Dy1	3,843(3)			
- 4 Dy1	3,977(4)		<u>Dyz</u> M9Dy ₈	

Т. Деленко, Я. Токайчук, Р. Гладишевський ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2019. Випуск 60. Ч. 1 99

			Закінчення табл
1	2	3	4
M1 - M3	2,664(11)		-
-2 M2	2,668(8)		R TR
- 2 Dy1	2,967(5)		
- Dy2	2,970(9)	10	
- 2 Dy1	3,211(5)		
$-Dy^2$	3,291(9)		
- <i>M</i> 3	3,351(10)		<u>M1</u> Dy6M4
M2 - 2M1	2,668(8)		
- <i>M</i> 3	2,762(12)		
- Dy2	2,858(7)		
-M2	2,928(12)	10	
- 2 Dy1	3,046(7)		
- Dy2	3,121(10)		
- 2 Dy1	3,178(5)		<u>M2</u> Dÿ6M4
M3 - 2M1	2,664(11)		
-2 M2	2,762(12)		
- Dy2	2,932(13)	11	
- 4 Dy1	3,017(3)	11	
- 2 <i>M</i> 1	3,351(10)		<u>M3</u> Dy ₅ M ₈

Структурні типи Tm₃Ga₅ та Pu₃Pd₅, до яких належать структури сполук Dy₃Ga_{3,5}Ge_{1,5} та Dy₃Ga_{2,8-2,4}Ge_{2,2-2,6}, є близькоспорідненими. Вони належать до родини деформованих похідних структури типу Rh₅Ge₃ [16]. Головною особливістю структурних типів Rh₅Ge₃, Yb₅Sb₃ [17], U₃S₅ [18], Y₅Bi₃ [19], Tm₃Ga₅ [6] та Pu₃Pd₅ [20] є каркаси атомів, утворені з'єднаними колонами з заповнених тригональних призм (рис. 4) [21]. Ці призми у колонах з'єднані трикутними гранями, а колони між собою – ребрами призм сусідніх колон, утворюючи тривимірний каркас з великими деформованими гексагональними призмами, що утворюють канали. У структурах сполук Dy₃Ga_{3,5}Ge_{1,5} та Dy₃Ga_{2,4}Ge_{2,6} всередині кожної гексагональної призми є два атоми малого розміру, а в площині кожної шестикутної основи призми розташований атом Dy. У структурах типів Tm₃Ga₅ та Pu₃Pd₅ гексагональні призми є сильно деформованими порівняно з призмами у структурі Rh₅Ge₃. У структурах типів Yb₅Sb₃ та Yb₅Bi₃ деформація є меншою. Структурний тип U₃S₅ є антитипом до структури Yb₅Sb₃.

Рис. 4. Проекції структур Rh₅Ge₃ (*a*), Dy₃Ga_{3,5}Ge_{1,5} (*б*) та Dy₃Ga_{2,4}Ge_{2,6} (*в*) Fig. 4. Projections of the structures of Rh₅Ge₃ (*a*), Dy₃Ga_{3,5}Ge_{1,5} (*б*) and Dy₃Ga_{2,4}Ge_{2,6} (*в*)

4. Висновки

Тернарні сполуки Dy₃Ga_{3.5}Ge_{1.5} (СТ Tm₃Ga₅) і Dy₃Ga_{2.8-2.4}Ge_{2.2-2.6} (СТ Pu₃Pd₅) існують на ізоконцентраті 37,5 ат. % Dy системи Dy–Ga–Ge при 600°C. Під час заміщення атомів Ga на атоми Ge в області гомогенності сполуки зі структурою типу Pu₃Pd₅ параметри елементарної комірки змінюються анізотропно: параметри *a* і *b* зменшуються, тоді як параметр *c* – збільшується; водночас об'єм елементарної комірки зменшуються анізотропно: параметри *a* і *b* зменшуються. У кристалічних структурах обох сполук можна виділити ізольовані тетрагонально-пірамідальні кластери, утворені атомами *p*-елементів, інтерпретовані як *arachno*-кластери типу Вейда. Структурні типи Tm₃Ga₅ та Pu₃Pd₅ належать до родини деформованих похідних структури типу Rh₅Ge₃, що, на загал, характеризується взаємноз'єднаними колонами заповнених тригональних призм, які утворюють великі гексагональні канали.

- 1. *Villars P., Cenzual K. (Eds.).* Pearson's Crystal Data Crystal Structure Database for Inorganic Compounds. Materials Park: ASM International (OH), Release 2017/18.
- 2. *Tokaychuk Ya., Delenko T., Gladyshevskii R.* Crystal structure of Dy₂Ga_{1.8}Ge_{5.2} // Chem. Met. Alloys. 2013. Vol. 6. P. 220–224.
- 3. Delenko T., Horyn A., Tokaychuk Ya., Gladyshevskii R. Crystal structures and electrical properties of the ternary compounds $DyGa_{3-x}Ge_x$ (x = 0.08-0.48 and x = 0.68-0.80) // Solid State Phenom. 2019. Vol. 289. P. 53–58.
- 4. Tokaychuk Ya., Delenko T., Gladyshevskii R. Structure transformations in DyGa_{2-x}Ge_x $(0 \le x \le 0.6)$ // Visnyk Lviv Univ. Ser. Chem. 2014. Iss. 55(1). P. 47–53 (in Ukrainian).
- Pukas S., Melnyk A., Kuprysyuk V., Gladyshevskii R. Influence of the Ga(In) additions on the structure of digermanides of Dy, Ho and Er // Coll. Abs. 9 Sci. conf. "Lviv Chemical Readings – 2003". Lviv, May 21–23, 2003. P. H36 (in Ukrainian).
- Venturini G., Vernière A., Malaman B. Evolution of the non-stoichiometry in the Er(Ge_{1-x}Ga_x)₂ compounds: crystal structure of Er₄(Ge,Ga)₇, a new hexagonal AlB₂ derivative // J. Alloys Compd. 1999. Vol. 291. P. 201–207. DOI: https://doi.org/10.1016/S0925-8388(99)00276-5
- Welter R., Venturini G. Trierbium digallide trigermanide // Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1999. Vol. 55. P. 1969–1970. DOI: https://doi.org/10.1107/S0108270199010501
- Tokaychuk Ya. O., Filinchuk Ya. E., Fedorchuk A. O., Bodak O. I. Partial Sn-atom ordering in Sm₃Ga_{0.80-2.48}Sn_{4.20-2.52} // Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 2003. Vol. 59. P. i125–i127. DOI: https://doi.org/10.1107/S0108270103024776
- Tokaychuk Ya. The ternary system Sm–Ga–Sn: isothermal section of the phase diagram at 600°C and crystal structures of the compounds // Chem. Met. Alloys. 2015. Vol. 8. P. 112–122.
- 10. *Fedyna V., Tokaychuk Ya., Gladyshevskii R.* Crystal structure of the compound Dy₃Ga_{2.54}Sn_{2.46} // Chem. Met. Alloys. 2012. Vol. 5. P. 160–165.
- Yatsenko S. P., Gladyshevskii, E. I. Tschuntonow K. A., Yarmolyuk Ya. P., Grin Yu. Kristallstruktur von Tm₃Ga₅ und analoger verbindungen // J. Less-Common Met. 1983. Vol. 91. P. 21–32. DOI: https://doi.org/10.1016/0022-5088(83)90092-9

Т. Деленко, Я. Токайчук, Р. Гладишевський

- Schobinger Papamantellos P., De Mooij D. B., Buschow K. H. J. Crystallographic and magnetic structure of Dy₃Ge₅ and DyGe_{1.9} // J. Less-Common Met. 1990. Vol. 163. P. 319–330. DOI: https://doi.org/10.1016/0022-5088(90)90598-E
- 13. STOE WinXPow (Version 2.21). Darmstadt : Stoe & Cie, 2005.
- 14. *Rodríguez-Carvajal J.* Recent developments of the Program *FULLPROF //* Commission on Powder Diffraction (IUCr). Newsletter. 2001. Vol. 26. P. 12–19.
- Zürcher F., Nesper R., Hoffmann S., Fässler T. F. Novel arachno-type X₅⁶⁻ Zintl anions in Sr₃Sn₅, Ba₃Sn₅, and Ba₃Pb₅ and charge influence on Zintl clusters // Z. Anorg. Allg. Chem. 2001. Vol. 627. P. 2211–2219. DOI: https://doi.org/10.1002/chin.200148013
- Geller S. The rhodium-germanium system. I. The crystal structures of Rh₂Ge, Rh₅Ge₃ and RhGe // Acta Crystallogr. 1955. Vol. 8. P. 15–21. DOI: https://doi.org/10.1107/S0365110X55000030
- Brunton G. D., Steinfink H. The crystal structure of β-ytterbium triantimonide, a low-temperature phase // Inorg. Chem. 1971. Vol. 10. P. 2301–2303. DOI: http://dx.doi.org/10.1021/ic50104a042
- Potel M., Brochu R., Padiou J., Grandjean D. Etude structurale du sulfure U₃S₅ // C. R. Seances Acad. Sci., Ser. C. 1972. Vol. 275. P. 1419–1421.
- Wang Y., Gabe E. J., Calvert L. D., Taylor J. B. The crystal structure of Y₅Bi₃ and its relation to the Mn₅Si₃ and the Yb₅Sb₃ type structures // Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1976. Vol. 32. P. 1440–1445. DOI: https://doi.org/10.1107/S0567740876005529
- Cromer D. T. Plutonium–palladium Pu₃Pd₅ // Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1976. Vol. 32. P. 1930–1932. DOI: https://doi.org/10.1107/S0567740876006778
- Gladyshevskii R. E., Cenzual K., Zhao J. T., Parthé E. Ce₅RuGe₂ with a Y₂HfS₅ anti-type structure, an ordered substitution variant of orthorhombic β-Yb₅Sb₃ // Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1992. Vol. 48. P. 221–225. DOI: https://doi.org/10.1107/S010827019100971X

CRYSTAL STRUCTURE OF THE COMPOUNDS Dy3Ga3.5Ge1.5 AND Dy3Ga2.8-2.4Ge2.2-2.6

T. Delenko*, Ya. Tokaychuk, R. Gladyshevskii

Ivan Franko National University of Lviv, Kyryla i Mefodiya Str.. 6, 79005 Lviv, Ukraine e-mail: tarasdelenko@gmail.com

Two new ternary compounds, Dy₃Ga_{3.5}Ge_{1.5} and Dy₃Ga_{2.8-2.4}Ge_{2.2-2.6}, were found in the system Dy–Ga–Ge at 600°C. Their compositions were established by means of energy-dispersive X-ray spectral analysis and the crystal structures were determined by X-ray powder diffraction: Dy₃Ga_{3.5}Ge_{1.5} (structure type Tm₃Ga₅; Pearson symbol *oP*32; space group *Pnma*; *a* = 11.6672(11), *b* = 9.4411(8), *c* = 6.0267(5) Å) and Dy₃Ga_{2.8-2.4}Ge_{2.2-2.6} (Pu₃Pd₅; *oS*32; *Cmcm*; *a* = 9.3738(11)–9.3599(11),

b = 7.4816(8)-7.4788(9), c = 9.4068(11)-9.4148(12) Å). Substitution of Ge atoms for Ga atoms within the homogeneity range of the Pu₃Pd₅-type phase is accompanied by an anisotropic change of the unit-cell parameters: the parameters *a* and *b* decrease, whereas the parameter *c* increases; the unit-cell volume decreases. The coordination polyhedra of the Dy atoms in both structures are 15- and 17-vertex pseudo Frank-Kasper polyhedra. The coordination environments of the *p*-element atoms (statistical mixtures of Ga and Ge atoms) are trigonal prisms with four additional atoms and defect icosahedra.

In the structures of the compounds Dy₃Ga_{3.5}Ge_{1.5} and Dy₃Ga_{2.8–2.4}Ge_{2.2–2.6} the *p*-element atoms form empty square pyramids, which can be interpreted as *arachno*-clusters of the Wade type. The interatomic distances within the pyramids ($\delta_{M1-M3} = 2.633(19)$ Å, $\delta_{M1-M2} = 2.653(18)$, $\delta_{M4-M2} = 2.72(2)$ Å, $\delta_{M4-M3} = 2.77(4)$, $\delta_{M4-M1} = 2.872(19)$ Å in Dy₃Ga_{3.5}Ge_{1.5}; $\delta_{M1-M3} = 2.664(11)$ Å, $\delta_{M1-M2} = 2.668(8)$, $\delta_{M2-M3} = 2.762(12)$ Å in Dy₃Ga_{2.4}Ge_{2.6}) are the shortest distances in the structures.

The structure types Tm_3Ga_5 and Pu_3Pd_5 belong to the family of deformation variants of the structure type Rh_5Ge_3 , which is characterized by interconnected infinite columns of filled trigonal prisms forming a three-dimensional network with large deformed hexagonal channels.

Keywords: dysprosium, gallium, germanium, X-ray powder diffraction, crystal structure.

Стаття надійшла до редколегії 01.11.2018 Прийнята до друку 23.01.2019