ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2019. Випуск 60. Ч. 1. С. 73–81 Visnyk of the Lviv University. Series Chemistry. 2019. Issue 60. Pt. 1. P. 73–81

УДК 546.682:548.734:669.18

ДОСЛІДЖЕННЯ СИСТЕМ $RNiIn_{2-x}Ga_x$ (R = Y, Gd)

М. Горяча*, Г. Ничипорук, І. Савчук, П. Демченко, В. Заремба

Львівський національний університет імені Івана Франка, вул. Кирила і Мефодія, 6, 79005 Львів, Україна e-mail: goryacha_muroslava@ukr.net

Методами рентгенівського фазового та, частково, локального рентгеноспектрального аналізів досліджено взаємодію компонентів у системах $RNiIn_{2-x}Ga_x$ (R = Y, Gd) у повному концентраційному інтервалі при 873 К. Визначено межі розчинності відповідних елементів у вихідних сполуках, а також кристалічні структури та параметри елементарних комірок твердих розчинів. Кристалічну структуру сполуки GdNiIn_{1.06}Ga_{0.94} (CT PrNiIn₂, ПГ *Ствст, oS*80; a = 0.4220(2), b = 1.7168(6), c = 2.0896(8) нм; $R_{Bragg} = 0.099$; $R_f = 0.090$) уточнено методом порошку. Обговорено характер взаємодії компонентів та проведено кристалохімічний аналіз структуру фаз у досліджених системах.

Ключові слова: індій, твердий розчин, метод порошку, кристалічна структура.

DOI: https://doi.org/10.30970/vch.6001.073

1. Вступ

Інтерметалічні сполуки складу RNiIn₂ (R – рідкісноземельний метал) достатньо добре вивчені і є представниками структурних типів MgCuAl₂ [1] (R = Y, Eu, Gd, Tb, Dy, Yb) [2–5] та PrNiIn₂ [6] (R = Ce, Pr, Nd, Sm) [6,7], які структурно пов'язані між собою укладкою подібних фрагментів та детально описані авторами [8]. Для сполуки GdNiIn₂ характерний температурний поліморфізм – HTM–GdNiIn₂ належить до типу MgCuAl₂, а BTM–GdNiIn₂ кристалізується у власному структурному типі [9], який з геометричної точки зору можна розглядати як укладку деформованих фрагментів типу MgCuAl₂. Цікавими є фізичні властивості деяких сполук цих серій. Парамагнетиком Кюрі-Вайса є сполука CeNiIn₂ з магнітним моментом 2,44 µ_B/Ce, яка при 3,4 К впорядковується феро- чи феримагнітно [7]. Поміри магнітної сприйнятливості в області низьких температур для HTM–GdNiIn₂ виявили чотири фазові переходи – з пара- до феромагнітного стану при T_c=60,5 K та три інші переходи при 19,4 K, 12,2 K та 4,0 K [10].

Мета нашої праці – вивчити заміщення індію іншим *p*-елементом Ша групи галієм у сполуках $RNiIn_2$ (R = Y, Gd) зі структурою типу MgCuAl₂ з можливостю утворення твердих розчинів (чи нових тетрарних сполук), а також уточнити їхні структурні характеристики.

[©] Горяча М., Ничипорук Г., Савчук І. та ін., 2019

2. Матеріали та методика експерименту

Для дослідження взаємодії компонентів у системах $RNiIn_{2-x}Ga_x$ (R = Y, Gd) методом електродугової плавки шихти з металів високої чистоти (не менше 99,9 мас. % основного компонента) в атмосфері очищеного аргону виготовлено 15 та 17 зразків вагою до 1 г у системах з ітрієм та гадолінієм, відповідно. Отримані сплави піддано гомогенізуючому відпалу у вакуумованих кварцових ампулах при 873 К протягом місяця. Для визначення фазового складу зразки досліджено рентгенівським методом порошку (дифрактометри ДРОН-2.0M, Fe $K\alpha$ -випромінювання; PANalytical X'Pert Pro, Cu $K\alpha$ -випромінювання; STOE Stadi P, Cu $K\alpha_1$ -випромінювання), а окремі з них – методом скануючої електронної мікроскопії (електронний мікроскоп РЕММА-102-02). Фазовий аналіз та структурні розрахунки проведено з використанням програм Powder Cell [11], STOE WinXPOW [12] та FullProf [13].

3. Результати досліджень та їх обговорення

Згідно з результатами дослідження, у системі YNiIn_{2-x}Ga_x при 873 К галій та індій частково розчиняються у вихідних сполуках YNiIn₂ [2] та YNiGa₂ [14] з утворенням обмежених твердих розчинів заміщення зі структурою типу MgCuAl₂: YNiIn_{2,00-1,50}Ga_{0-0,50} (a = 0,4314-0,4284(1), b = 1,0406-1,0351(2), c = 0,7276-0,7136(2) нм; V=0,3266-0,3164(1) нм³) та YNiGa_{2,00-1,50}In_{0,0,50} (a = 0,4130-0,4179(1), b = 1,0050-1,0166(1), c = 0,6620-0,6787(1) нм; V = 0,2748-0,2884(1) нм³). З'ясовано, що у межах концентрацій ~30–19 ат. % індію існує нова тетрарна фаза змінного складу YNiIn_{1,25-0,75}Ga_{0,75-1,25} зі структурою типу PrNiIn₂ [6] (a = 0,4223(2)-0,4187(2), b = 1,7278(1)-1,7078(8), c = 2,0910(1)-2,0773(9) нм; V = 1,5256(2)-1,4855(1) нм³). Чимало зразків із високим вмістом галію містять у рівновазі незначну кількість фази із структурою типу CaCu₅.

На рис. 1 подано результати локального рентгеноспектрального аналізу трьох зразків цієї системи, а на рис. 2 – дифрактограми цих зразків.

Рис. 1. Фотографії поверхонь шліфів сплавів: *a* – YNiIn_{1.5}Ga_{0.5} (світла фаза – Y_{0.27}Ni_{0.26}In_{0.36}Ga_{0.11}; сіра фаза – Y_{0.26}Ni_{0.28}In_{0.27}Ga_{0.19}; темна фаза – Y_{0.23}Ni_{0.39}In_{0.05}Ga_{0.33}); *б* – YNiInGa (світла фаза – Y_{0.25}Ni_{0.27}In_{0.29}Ga_{0.19}; світло-сіра фаза – Y_{0.26}Ni_{0.25}In_{0.29}Ga_{0.20}; темно-сіра фаза – Y_{0.28}Ni_{0.25}In_{0.18}Ga_{0.29}; темна фаза – Y_{0.22}Ni_{0.44}In_{0.02}Ga_{0.32}); *в* – YNiIn_{0.3}Ga_{1.7} (світла фаза – Y_{0.32}Ni_{0.22}In_{0.07}Ga_{0.39}; темна фаза – Y_{0.26}Ni_{0.25}In_{0.08}Ga_{0.41})

Fig. 1. Electron microphotographs of the YNiIn_{1.5}Ga_{0.5} (a) (light phase – Y_{0.27}Ni_{0.26}In_{0.36}Ga_{0.11}; gray phase – Y_{0.26}Ni_{0.28}In_{0.27}Ga_{0.19}; dark phase – Y_{0.23}Ni_{0.39}In_{0.05}Ga_{0.33}); YNiInGa (δ) (light phase –

 $Y_{0.25}Ni_{0.27}In_{0.29}Ga_{0.19}; \ light\ gray\ phase - Y_{0.26}Ni_{0.25}In_{0.29}Ga_{0.20}; \ dark\ gray\ phase - Y_{0.28}Ni_{0.25}In_{0.18}Ga_{0.29}; \ dark\ phase - Y_{0.22}Ni_{0.44}In_{0.02}Ga_{0.32}); \ YNiIn_{0.3}Ga_{1.7} \ (\textbf{\emph{s}}) \ (light\ phase - Y_{0.28}Ni_{0.25}In_{0.18}Ga_{0.29}; \ dark\ phase - Y_{0.28}Ni_{0.25}In_{0.28}Ga_{0.29}; \ dark\ phase - Y_{0.28}Ni_{0.2$

Y0.32Ni0.22In0.07Ga0.39; dark phase – Y0.26Ni0.25In0.08Ga0.41) alloys

74

Рис. 2. Експериментальна (точки), розрахована (суцільна лінія) та різницева (знизу) дифрактограми сплавів: *a* – YNiIn_{1,7}Ga_{0,3}; *δ* – YNiIn_{1,25}Ga_{0,75}; *в* – YNiIn_{0,3}Ga_{1,7} (дифрактометр STOE Stadi P, Cu Кα₁-випромінювання)

Fig. 2. Experimental (circles), calculated (continuous line) and difference (bottom) X-ray patterns of the YNiIn_{1.7}Ga_{0.3} (*a*); YNiIn_{1.25}Ga_{0.75} (*b*); YNiIn_{0.3}Ga_{1.7} (*b*) alloys (STOE Stadi P, Cu Kα₁-radiation)

Взаємодія компонентів у системі GdNiIn_{2-x}Ga_x при 873 К є подібною до системи з ітрієм. Галій частково заміщає індій у сполуці GdNiIn₂ з утворенням твердого розчину зі структурою типу MgCuAl₂ (GdNiIn_{2,00-1,50}Ga_{0-0,50}; a = 0,4335-0,4273(3), b = 1,0452-1,0351(6), c = 0,7327-0,7288(5) нм; V = 0,3320-0,3223(3) нм³). Внаслідок розчинення індію у сполуці GdNiGa₂ простежується утворення обмеженого твердого розчину заміщення зі структурою типу NdNiGa₂ [15] (GdNiGa_{2,00-1,50}In_{0-0,50}; a = 0,4120-0,4152(1), b = 1,7540-1,7546(6), c = 0,4082-0,4074(1) нм; V = 0,2950-0,2967(2) нм³). У межах концентрацій ~30–18 ат. % індію у дослідженій системі встановлено існування нової тетрарної фази змінного складу GdNiIn_{1,25-0,70}Ga_{0,75-1,30} зі структурою типу PrNiIn₂ [6] (a = 0,4258(1)-0,4238(1), b = 1,7038(23)-1,7239(4), c = 2,0454(6)-2,1019(5) нм; V = 1,4837(8)-1,5358(6) нм³). Зразки з високим вмістом галію містять у рівновазі незначні кількості фази зі структурою типу CaCu₅.

На рис. 3 подано результати локального рентгеноспектрального аналізу трьох зразків цієї системи, а на рис. 4 зображено дифрактограми цих зразків.

75

М. Горяча, Г. Ничипорук, І. Савчук та ін. ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2019. Випуск 60. Ч.1

Рис. 3. Фотографії поверхонь шліфів сплавів: *a* – GdNiIn_{1.9}Ga_{0.1} (сіра фаза – Gd_{0.26}Ni_{0.24}In_{0.46}Ga_{0.04}; світла фаза – Gd_{0.26}Ni₀In_{0.74}Ga₀); *б* – GdNiIn_{0.75}Ga_{1.25} (сіра фаза – Gd_{0.25}Ni_{0.25}In_{0.17}Ga_{0.33}; темна фаза – Gd_{0.26}Ni_{0.26}In_{0.13}Ga_{0.45}; *e* – GdNiIn_{0.25}Ga_{1.75} (світла фаза – Gd_{0.26}Ni_{0.24}In_{0.17}Ga_{0.33}; сіра фаза – Gd_{0.26}Ni_{0.26}In_{0.13}Ga_{0.45}; темна фаза – Gd_{0.17}Ni_{0.44}In_{0.02}Ga_{0.40}) Fig. 3. Electron microphotographs of the GdNiIn_{1.9}Ga_{0.1} (*a*) (gray phase – Gd_{0.26}Ni_{0.24}In_{0.17}Ga_{0.33}; dark phase – Gd_{0.26}Ni_{0.04}In_{0.04}Ga_{0.36}); GdNiIn_{0.75}Ga_{1.25} (*b*) (gray phase – Gd_{0.26}Ni_{0.24}In_{0.17}Ga_{0.33}; dark phase – Gd_{0.17}Ni_{0.44}In_{0.04}Ga_{0.36}); GdNiIn_{0.25}Ga_{1.75} (*b*) (light phase – Gd_{0.26}Ni_{0.24}In_{0.17}Ga_{0.33}; gray phase – Gd_{0.26}Ni_{0.26}In_{0.13}Ga_{0.45}; dark phase – Gd_{0.17}Ni_{0.44}In_{0.02}Ga_{0.40}) alloys

Рис. 4. Експериментальна (точки), розрахована (суцільна лінія) та різницева (знизу) дифрактограми зразків: *a* – GdNiIn_{1.9}Ga_{0.1}; *б* – GdNiIn_{0.6}Ga_{1.4}; *в* – GdNiIn_{0.1}Ga_{1.9} (дифрактометр PANalytical X'Pert Pro, Cu *К*α-випромінювання) Fig. 4. Experimental (circles), calculated (continuous line) and difference (bottom) X-ray patterns of the GdNiIn_{1.9}Ga_{0.1} (*a*); GdNiIn_{0.6}Ga_{1.4} (*б*); GdNiIn_{0.1}Ga_{1.9} (*в*) alloys (PANalytical X'Pert Pro, Cu *K*α-radiation)

76

Кристалічну структуру тетрарної сполуки GdNiIn_{1,06}Ga_{0,94} досліджено на основі аналізу масиву експериментальних даних, отриманих на автоматичному порошковому дифрактометрі STOE Stadi P з відпаленого при 873 K сплаву складу GdNiIn_{0,75}Ga_{1,25} (рис. 5), й уточнено в рамках моделі структурного типу PrNiIn₂ [6]. Результати подано в табл. 1, а уточнені координати атомів – у табл. 2.

Рис. 5. Експериментальна (точки), розрахована (суцільна лінія) та різницева (знизу) дифрактограми зразка GdNiIn_{0,75}Ga_{1,25} (дифрактометр STOE Stadi P, Cu Кα₁-випромінювання)
 Fig. 5. Experimental (circles), calculated (continuous line) and difference (bottom) X-ray patterns of the GdNiIn_{0.75}Ga_{1,25} alloy (STOE Stadi P, Cu Kα₁-radiation)

Таблиця 1

Результати угочнення кристалічної структури сполуки GdNiIn_{1,06}Ga_{0,94}

Table 1

Crystal data and structure refinement for GdNiIn1.06Ga0.94			
Емпірична формула	GdNiIn1,06Ga0,94		
Просторова група, Z	Стст, 20		
Символ Пірсона	<i>oS</i> 80		
Параметри комірки, нм	a = 0,4220(2)		
	b = 1,7168(6)		
	c = 2,0896(8)		
Об'єм комірки, <i>V</i> , нм ³	1,514(1)		
Дифрактометр	STOE Stadi P		
Випромінювання, λ, нм	Cu <i>K</i> α ₁ ; 0,154060		
Розрахована густина, Dx, г/см ³	8,847		
Межі 2 <i>θ</i> , °	6,0–110,6		
Крок, час знімання	0,015 °, 40 c		
Кількість відбить / параметрів	6976 / 29		
Фактор добротності	1,2		
Фактори достовірності	$R_{\rm P}=0,033, wR_{\rm F}=0,042,$		
	$R_{\rm Bragg} = 0,099, R_{\rm f} = 0,090$		

Таблиия 2

Table 2

Atomic coordinates for GdNiIn _{1.06} Ga _{0.94} structure				
Атом	ПСТ	x	у	Z
Gd1	8 <i>f</i>	0	0,2196(9)	0,1278(7)
Gd2	8f	0	0,4475(11)	0,0750(8)
Gd3	4c	0	0,4934(13)	1/4
Ni1	8f	0	0,005(3)	0,1533(17)
Ni2	8f	0	0,3344(19)	0,5510(18)
Ni3	4c	0	0,308(3)	1/4
<i>M</i> 1	8f	0	0,0723(13)	0,0503(10)
In2	8f	0	0,1365(11)	0,66653(9)
In3	8f	0	0,2029(10)	0,5237(7)
Ga1	8f	0	0,6015(20)	0,1432(14)
M2	4c	0	0,1220(19)	1/4
M3	4c	0	0,720(2)	1/4

Координати атомів у структурі сполуки GdNiIn1,06Ga0,94

M1 = 0.34(3) In+0.66(3) Ga; M2 = 0.25(3) In+0.75(3) Ga; M3 = 0.38(3) In+0.62(3) Ga; B_{overall} = 1.07 HM²

Результати експериментального дослідження свідчать про складність взаємодії компонентів у системах $RNiIn_{2-x}Ga_x$ (R = Y, Gd) при 873 K у повному концентраційному інтервалі.

Як і варто було очікувати, індій та галій частково розчиняються у вихідних сполуках $RNiX_2$ (R = Y, Gd; X = In, Ga) з утворенням обмежених твердих розчинів заміщення. Характер зміни параметрів елементарної комірки добре корелює з розмірами атомів *p*-елементів (Іп, Ga) (*r*_{In} = 0,166 нм, *r*_{Ga} = 0,141 нм) [16]: простежуємо закономірне їх зменшення під час заміщення атомів більшого розміру (In) атомами меншого розміру (Ga) в межах твердих розчинів. У досліджених системах зі збільшенням концентрації галію відбувається структурна трансформація фаз структурного типу MgCuAl₂ у фази зі структурою типу PrNiIn₂ [6], які пов'язані між собою топологічно. Ці фази існують у доволі широких концентраційних інтервалах, характер зміни параметрів елементарної комірки також добре корелює з розмірами атомів *p*-елементів. Схематичну діаграму розподілу фаз у досліджених системах зображено на рис. 6.

Рис. 6. Схематична діаграма розподілу фаз складу RNiX₂ у системах RNiIn_{2-x}Ga_x (R = Y, Gd; X = In, Ga)

Fig. 6. Schematic diagram of the distribution of the $RNiX_2$ phases in the $RNiIn_{2-x}Ga_x$ (R = Y, Gd; X = In, Ga) systems

Кристалічні структури сполук, які належать до структурних типів MgCuAl₂ та PrNiIn₂, мають різну метрику та подібну будову. Структуру сполуки HTM–GdNiIn₂ (CT MgCuAl₂) можна розглядати як укладку фрагментів центрованих пента-, тетрата тригональних призм. Пентагональні призми з атомів індію центровані атомами Gd, з'єднуючись спільними гранями, утворюють ланцюги вздовж напрямку Z (рис. 7). Подібна укладка різного роду призм характерна й для сполуки GdNiIn_{1,06}Ga_{0,94} (CT PrNiIn₂). Ланцюги центрованих пентагональних призм такі самі, як у структурі GdNiIn₂, а тетрагональні і тригональні призми утворюють мозаїчну укладку. На відміну від структур сполук GdNiIn_{1,06}Ga_{0,94} (CT PrNiIn₂) та GdNiIn₂ (CT MgCuAl₂), кристалічна структура сполуки GdNiGa₂ (CT NdNiGa₂) характеризується укладкою гексагональних призм, центрованих атомами Gd, та тетра- і тригональних призм, центрованих атомами меншого розміру.

Рис. 7. Укладка фрагменів пента-, тетра-, тригональних призм у структурах сполук GdNiIn₂ (a) i GdNiIn_{1,06}Ga_{0,94} (б) та гекса- та тетрагональних призм – у структурі сполуки GdNiGa₂ (в) Fig. 7. Stacking of penta-, tetra-, trigonal prisms in GdNiIn₂ (a) and GdNiIn_{1.06}Ga_{0.94} (б) structures; hexa- and tetragonal prisms in GdNiGa₂ (в) structure

4. Висновки

Унаслідок заміщення *p*-елементів у сполуках $RNiX_2$ (R = Y, Gd; X = In, Ga) простежується утворення обмежених твердих розчинів зі структурами вихідних сполук, у рівновазі з якими існує нова тетрарна фаза зі структурою типу PrNiIn₂.

5. Подяка

Автори вдячні працівнику університету Серкізу Роману Ярославовичу, старшому науковому співробітнику Міжфакультетської лабораторії низькотемпературних досліджень ЛНУ ім. І. Франка за допомогу у дослідженні мікрошліфів окремих сплавів.

- Perlitz H., Westgren A. The crystal structure of MgCuAl₂ // Ark. Kemi Mineral. Geol. 1943. Vol. 16B (13). P. 1–5.
- Zaremba V. I., Zakharko O. Ya., Kalychak Ya. M., Bodak O. I. The crystal structure of RNiIn₂ (R = Y, Gd, Tb, Dy) and CaNiIn₂ compounds // Dopov. Akad. Nauk Ukr. RSR, Ser. B. 1987. No. 12. P. 44–46 (in Ukrainian).
- Hlukhyy V., Zaremba V. I., Kalychak Ya. M., Pöttgen R. Synthesis and structures of YNiIn₂ and Y₄Ni₁₁In₂₀ // J. Solid St. Chem. 2004. Vol. 177. P. 1359–1364. DOI: https://doi.org/10.1016/j.jssc.2003.11.017
- Kalychak Ya. M., Galadzhun Ya. V., Stepien-Damm J. Crystal structure of europium nickel diindide, EuNiIn₂// Z. Kristalogr. NCS. 1997. Vol. 212. P. 292. DOI: https://doi.org/10.1524/ncrs.1997.212.jg.292
- Zaremba V. I., Muts I. R., Rodewald U. Ch., Hlukhyy V. V., Pöttgen R. Synthesis and structures of RE₁₀Ni_{9+x}In₂₀ (RE = Tb, Dy) and YbNiIn₂ // Z. Anorg. Allg. Chem. 2004. Vol. 630. P. 1903–1907. DOI: https://doi.org/10.1002/zaac.200400187
- Zaremba V. I., Kalychak Ya. M., Dubenskiy V. P., Hoffmann R.-D., Pöttgen R. Indides LnNiIn₂ (Ln = Pr, Nd, Sm) and Ferromagnetic PrRhIn // J. of Solid St. Chem. 2000. Vol. 152. P. 560–567. DOI: https://doi.org/10.1006/jssc.2000.8731
- Zaremba V. I., Kalychak Ya. M., Tyvanchuk Yu. B., Hoffmann R.-D., Möller M. H., Pöttgen R. Synthesis, Structure and Magnetic Properties of CeNiIn₂// Z. Naturforsch. 2002. Vol. 57b. P. 791–797. DOI: https://doi.org/10.1515/znb-2002-0711
- Pöttgen R., Lukachuk M., Hoffmann R.-D. Re₃B type intermetallics-crystal chemistry, bonding and properties // Z. Kristallogr. 2006. Vol. 221. P. 435–444. DOI: https://doi.org/10.1524/zkri.2006.221.5-7.435
- Zaremba V. I., Hlukhyy V., Pöttgen R. The High-temperature modification of GdNiIn₂ – An Intergrowth Structure of MgCuAl₂-Related Slabs // Z. Anorg. Allg. Chem. 2005. Vol. 631. P. 327–331. DOI: https://doi.org/10.1002/zaac.200400142
- Lątka K., Kmieć R., Pacyna A. W., Gurgul J., Zaremba V. I., Pöttgen R. Magnetic properties and ¹⁵⁵Gd Mössbauer spectroscopy of LT-GdNiIn₂ // Solid St. Sci. 2006. Vol. 8. P. 548–555. DOI: http://doi.org/10.1016/j.solidstatesciences.2005.11.005
- 11. Kraus W., Nolze G. Powder Cell for Windows. Berlin, 1999.
- 12. STOE WinXPOW. Version 1.2, STOE & CIE GmbH. Darmstadt, 2001.
- 13. *Rodríguez-Carvajal J.* Recent Developments of the Program FULLPROF // Commission on Powder Diffraction (IUCr). Newsletter. 2001. Vol. 26. P. 12–19.
- Yarmoluyk Ya. P., Grin Y. Intermetallic compounds RGa₂Ni and RGa₄Ni in (Y, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu)–Ga–Ni system // Russ. Metall. 1981. Vol. 5. P. 179–183 (in Russian).
- 15. *Grin Y., Yarmoluyk Ya. P.* Crystal structure of the *R*Ga₂Ni compounds (*R* = La, Ce, Pr, Nd, Sm, Gd) // Dopov. Akad. Nauk Ukr. RSR. Ser. A. 1982. No. 3. P. 69–72 (in Ukrainian).
- Teatum E. T., Gschneidner K. Jr., Waber J. T. Compilation of calculated data useful in predicting metallurgical behaviour of the elements in binary alloy systems. USAEC Report LA-2345. Washinton, DC: United States Atomic Energy Commission, 1960. 225 p. DOI: https://doi.org/10.2172/4789465

INVESTIGATION OF $RNiIn_{2-x}Ga_x$ (R = Y, Gd) SYSTEMS

M. Horiacha*, G. Nychyporuk, I. Savchuk, P. Demchenko, V. Zaremba

Ivan Franko National University of Lviv, Kyryla i Mefodiya Str., 6, 79005 Lviv, Ukraine e-mail: goryacha_muroslava@ukr.net

The interaction of the components in $RNiIn_{2-x}Ga_x$ (R = Y, Gd) systems at 873 K by means of X-ray phase and partially local X-ray analysis was investigated in full concentration range. The samples for the investigation were synthesized by arc-melting technique with subsequent annealing at 873 K for a month. Phase analysis was carried out by X-ray powder diffraction (DRON-2.0M, Fe Kα-radiation, PANalytical X'Pert Pro, Cu Kα-radiation and Stoe Stadi P, Cu Kα₁-radiation) and, partially, EDX analysis (REMMA-102-02). The limit of solubility of respective *p*-elements in $RNiX_2$ (R = Y, Gd; X = In, Ga) compounds were determined and parameters of unit cell were refined:

YNiIn_{2.00-1.50}Ga_{0.050} (MgCuAl₂-type structure): a = 0.4314-0.4284(1), b = 1.0406-1.0351(2), c = 0.7276-0.7136(2) nm; V = 0.3266-0.3164(1) nm³;

YNiIn_{1.25-0.75}Ga_{0.75-1.25} (PrNiIn₂-type structure): a = 0.4223(2)-0.4187(2), b = 1.7278(1)-1.7078(8), c = 2.0910(1)-2.0773(9) nm; V = 1.5256(2)-1.4855(1) nm³;

YNiGa_{2.00-1.50}In_{0.050} (MgCuAl₂-type structure): a = 0.4130-0.4179(1), b = 1.0050-1.0166(1), c = 0.6620-0.6787(1) nm; V = 0.2748-0.2884(1) nm³;

GdNiIn_{2.00-1.50}Ga_{0.0.50} (MgCuAl₂-type structure): a = 0.4335-0.4273(3), b = 1.0452-1.0351(6), c = 0.7327-0.7288(5) nm; V = 0.3320-0.3223(3) nm³;

GdNiIn_{1250.70}Ga_{0.75-1.30} (PrNiIn₂-type structure): a = 0.4258(1)-0.4238(1), b = 1.7038(23)-1.7239(4), c = 2.0454(6)-2.1019(5) nm; V = 1.4837(8)-1.5358(6) nm³);

GdNiGa_{2.00-1.50}In_{0.0.50} (NdNiGa₂-type structure): a = 0.4120-0.4152(1), b = 1.7540-1.7546(6), c = 0.4082-0.4074(1) nm; V = 0.2950-0.2967(2) nm³.

The substitution of indium atoms by gallium atoms leads to structure transformation: from phases with MgCuAl₂-type structure to phases with PrNiIn₂-type structure. These phases have a different metric but similar structure. The phases with MgCuAl₂-type structure can be presented as penta-, tetra- and trigonal prisms stacking. Pentagonal prisms are centred by Gd atoms and form infinity chains along z axis when tetragonal and trigonal prisms form a mosaic stacking. A similar stacking of these types of prisms is also characteristic for the GdNiIn_{1.06}Ga_{0.94} compound with PrNiIn₂-type structure. The increasing of gallium concentration leads to second structure transformation: phases with PrNiIn₂-type structure transform to phase with MgCuAl₂ and NdNiGa₂-type structure in YNiIn₂- xGa_x and GdNiIn_{2-x}Ga_x systems respectively.

The crystal structure of GdNiIn_{1.06}Ga_{0.94} compound was refined from powder X-ray diffraction data (PrNiIn₂-type structure, space group *Cmcm*, a = 0.4220(2), b = 1.7168(6), c = 2.0896(8) nm; $R_{\text{Bragg}} = 0.099$; $R_{\text{f}} = 0.090$). The formation of solid solutions, new quaternary phases and character of the unit cell parameters variation in the studied systems were briefly discussed.

Keywords: indium, solid solution, powder method, crystal structure.

Стаття надійшла до редколегії 30.10.2018 Прийнята до друку 23.01.2019