ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2019. Випуск 60. Ч. 1. С. 48–55 Visnyk of the Lviv University. Series Chemistry. 2019. Issue 60. Pt. 1. P. 48–55

УДК 546.882

ВЗАЄМОДІЯ КОМПОНЕНТІВ У СИСТЕМІ Zr-Cr-Sb ПРИ 870 К

Л. Ромака¹*, Ю. Стадник¹, В. Ромака^{2,3}, А. Горинь¹

¹Львівський національний університет імені Івана Франка, вул. Кирила і Мефодія, 6, 79005 Львів, Україна;

²Національний університет "Львівська політехніка", вул. Устияновича, 5, 79013 Львів, Україна;

³Інститут досліджень твердого тіла, IFW-Drezden, Гельмгольц штрасе, 20, 01069 Дрезден, Німеччина e-mail:lyubov.romaka@lnu.edu.ua

Методами рентгенівського фазового і мікроструктурного аналізів досліджено взаємодію компонентів у потрійній системі Zr–Cr–Sb при 870 K у повному концентраційному інтервалі. За температури дослідження в системі утворюється одна тернарна сполука Zr₅Cr_{0.5}Sb_{2.5} зі структурою типу W₅Si₃ (просторова група *I4/mcm; a* = 1,1097(1), *c* = 0,5566(2) нм). На основі бінарної сполуки Zr₅Sb₄ (структурний тип Ti₅Ga₄) визначено утворення твердого розчину заміщення Zr₅Sb_{4-x}Cr_x до вмісту 5 ат. % Cr. Розчинність стибію в бінарній сполуці ZrCr₂ (структурний тип MgZn₂) сягає 6 ат. %.

Ключові слова: інтерметаліди, потрійна система, фазові рівноваги.

DOI: https://doi.org/10.30970/vch.6001.048

1. Вступ

Сучасні наука і техніка, високі технології та виробництво значною мірою грунтуються на використанні існуючих та розробці нових сплавів і матеріалів. Велику увагу дослідників привертають багатокомпонентні системи на основі цирконію, сплави якого використовують як матеріали атомної енергетики і термоелектричні матеріали. Зокрема, сполуки ZrNiSn, ZrCoSb, ZrPtSn зі структурою типу MgAgAs та тверді розчини на їхній основі проявляють напівпровідникові властивості [1–3]. Широке застосування інтерметалідів потребує вивчення їхньої температурної та концентраційної стабільності, термодинамічних характеристик [4]. Побудова діаграм фазових рівноваг металічних систем на основі фізико-хімічного аналізу, вивчення структурних та фізичних характеристик проміжних фаз створює необхідну основу для пошуку нових матеріалів.

Потрійні системи Zr–M–Sb (M–d-метал) досліджено для ряду перехідних металів від Mn, Fe, Co, Ni до Cu [5–9]. Аналіз літературних даних свідчить про значну відмінність у взаємодії компонентів у вивчених системах, що відображається в кількості утворених проміжних фаз (дві сполуки в системі Zr–Mn–Sb, чотири – в

[©] Ромака Л., Стадник Ю., Ромака В. та ін., 2019

системах Zr-{Fe, Co}-Sb, вісім – в системі Zr-Ni-Sb та 3 сполуки в системі Zr-Cu-Sb), їхній стехіометрії та структурі. Сполуки складу $Zr_5M_{1-x}Sb_{2+x}$ зі структурою типу W_5Si_3 утворюються у всіх системах, а сполуки структурних типів Zr₂CuSb₃ і Zr₃NiSb₇ реалізуються тільки в системах Zr-Cu-Sb і Zr-Ni-Sb [8, 9].

У цій праці ми подаємо результати вивчення взаємодії компонентів у системі Zr–Cr–Sb при 870 K.

2. Матеріали та методика експерименту

Зразки для дослідження виготовляли методом електродугового сплавлення пихти вихідних компонентів (вміст основного компонента не нижчий за 99,9 мас. %) в атмосфері очищеного аргону (як гетер, використовували губчастий титан). Гомогенізацію сплавів проводили у вакуумованих кварцових ампулах за температури 870 К протягом 720 год з подальшим гартуванням у холодній воді. Надлишок 3–5 ваг. % Sb використано для компенсації втрат під час електродугового плавлення. Рентгенофазовий аналіз проводили з використанням дифрактометра ДРОН-2.0М (FeK α -випромінювання). Склад фаз контролювали за допомогою металографічного аналізу (скануючі електронні мікроскопи Carl Zeiss DSM 962 і REMMA-102-02). Для розрахунку кристалографічних параметрів використовували комплекс програм WinCSD [10].

3. Результати досліджень та їх обговорення

Для побудови діаграми фазових рівноваг системи Zr–Cr–Sb виготовлено 26 потрійних і 12 подвійних сплавів. Контроль сплавів після відпалювання проводили методом рентгенівського фазового та мікроструктурного аналізів. З метою перевірки літературних даних про сполуки подвійних систем Zr–Sb, Zr–Cr і Cr–Sb виготовлено сплави, склади яких відповідають описаним у літературі бінарним сполукам [11–14]. Утворення бінарних сполук у системі Zr–Sb при 870 К досліджено раніше під час вивчення фазових діаграм систем Zr–Mn–Sb і Zr–Co–Sb [5, 7]. З'ясовано, що за умов дослідження в системі Zr–Sb реалізуються сполуки Zr₃Sb (структурний тип (CT) Ni₃P), Zr₂Sb (CT La₂Sb), Zr₅Sb₃ (CT Mn₅Si₃), Zr₅Sb₄ (CT Ti₅Ga₄), ZrSb (CT ZrSb) і ZrSb₂ (CT TiAs₂). Кристалографічні характеристики бінарних сполук систем Zr–Cr і Cr–Sb, підтверджені під час дослідження за температури 870 К, наведено в табл. 1.

Таблиця 1

Кристалографічні характеристики бінарних сполук систем Cr–Sb i Zr–Cr при 870 К

Table 1

Crystallographic characteristics of binary compounds in the Cr–Sb and Zr–Cr systems at 870 K

Сполука	Просторова	Структурний	Періоди ґратки, нм			Піт
	група	тип	а	b	С	J111.
CrSb	P6 ₃ /mmc	NiAs	0,4128(1)	_	0,5478(2)	*
			0,4129	_	0,5470	[15]
CrSb ₂	Pnnm	FeAs ₂	0,6027(3)	0,6872(3)	0,3271(2)	*
			0,6028	0,6874	0,3273	[16]
ZrCr ₂	P63/mmc	MgZn ₂	0,5113(2)	_	0,8289(7)	*
			0,5102	_	0,8288	[17]

* Дані авторів.

Розраховані періоди гратки для бінарних сполук систем Zr-Cr і Cr-Sb узгоджуються з літературними даними.

У системі Zr–Cr за умов дослідження для сполуки ZrCr₂ реалізується високотемпературна модифікація з гексагональною структурою типу MgZn₂. Область гомогенності сполуки ZrCr₂, визначена на основі рентгеноспектрального аналізу, обмежена складами Zr_{33,05}Cr_{66,95} і Zr_{37,59}Cr_{62,41} (a = 0,5113(2)-0,5110(1), c = 0,8289(7)--0,8292(7) нм). Розчинність стибію в бінарній сполуці ZrCr₂ сягає 6 ат. %, зміна періодів гратки вздовж ізоконцентрати 33 ат. % Zr становить a = 0,5113(2)-0,5127(1), c = 0,8289(7)-0,8354(9) нм. За результатами фазового і рентгеноспектрального аналізів на основі бінарної сполуки Zr₅Sb₄ (CT Ti₅Ga₄) виявлено утворення твердого розчину заміщення вздовж ізоконцентрати 55 ат. % Zr до вмісту 5 ат. % Cr (a = 0,8532(4)-0,8482(2), c = 0,5858(4)-0,5820(1) нм). Бінарна сполука ZrSb (CT ZrSb) за результатами рентгеноспектрального аналізу розчиняє до 1,5 ат. % Сг, розчинність третього компонента в інших бінарних сполуках не перевищує 0,5 ат. %.

Ізотермічний переріз діаграми стану системи Zr–Cr–Sb подано на рис. 1, фотографії мікроструктур, елементний і фазовий склад окремих зразків – на рис. 2 і в табл. 2, відповідно.

50

Згідно з результатами рентгенофазового і рентгеноспектрального аналізів у системі Zr–Cr–Sb за температури 870 К підтверджено існування тернарної сполуки Zr₅Cr_{0.5}Sb_{2.5}, яка належить до структурного типу W₅Si₃ (просторова група *I4/mcm*; a = 1,1097(1), c = 0,5566(2) нм). Розраховані періоди гратки узгоджуються з літературними даними (a = 1,11027, c = 0,55600 нм) [18].

Рис. 2. Фотографії мікроструктур сплавів: a - 1. $Zr_{37}Cr_{58}Sb_7$ ($ZrCr_{2-x}Sb_x -$ сіра фаза; $Zr_5Cr_{0.5}Sb_{2.5} -$ світла фаза); $\delta - 3$. $Zr_{17}Cr_{65}Sb_{18}$ ($Zr_5Cr_xSb_{4-x} -$ світла фаза; CrSb -сіра фаза; Cr -темна фаза); e - 4. $Zr_{40}Cr_{30}Sb_{20}$ ($ZrCr_{2-x}Sb_x -$ сіра фаза; $Zr_5Cr_{0.5}Sb_{2.5} -$ світла фаза); e - 10. $Zr_{17}Cr_{20}Sb_{63}$ (ZrSb -світло-сіра фаза; $CrSb_2 -$ сіра фаза; CrSb -світла фаза)

Fig. 2. Electron microphotographs of the alloys: a - 1. $Zr_{40}Cr_{55}Sb_5$ ($ZrCr_{2-x}Sb_x - grey$ phase; $Zr_5Cr_{0.5}Sb_{2.5} - light$ grey phase); $\delta - 3$. $Zr_{17}Cr_{65}Sb_{18}$ ($Zr_5Cr_xSb_{4-x} - light$ phase; CrSb - grey phase; Cr - dark phase); e - 4. $Zr_{25}Cr_{58}Sb_{18}$ ($ZrCr_{2-x}Sb_x - grey$ phase; $Zr_5Cr_{0.5}Sb_{2.5} - light$ phase); e - 4. $Zr_{25}Cr_{58}Sb_{18}$ ($ZrCr_{2-x}Sb_x - grey$ phase; $Zr_5Cr_{0.5}Sb_{2.5} - light$ phase); e - 10. $Zr_{17}Cr_{20}Sb_{63}$ (ZrSb - light grey phase; $CrSb_2 - grey$ phase; CrSb - light phase)

51

Таблиця 2

Фазовий склад і результати ЕДРС аналізу окремих зразків системи Zr-Cr-S	D
	Table 2
Phase composition and EPMA data of selected alloys in the Zr-Cr-Sb system	

Фаза/Вміст	Zr, ат. %	Сг, ат. %	Sb, at. %					
компонента								
1. Zr ₃₇ Cr ₅₈ Sb ₇								
$ZrCr_{2-x}Sb_x$	37,59	57,03	5,38					
Zr5Cr0,5Sb2,5	62,43	7,00	30,56					
2. $Zr_{25}Cr_{65}Sb_{10}$								
Zr5Cr0,5Sb2,5	62,20	7,87	29,93					
$ZrCr_{2-x}Sb_x$	37,68	56,90	5,42					
Zr	99,99							
3. Zr ₁₇ Cr ₆₅ Sb ₁₈								
CrSb		50,48	49,52					
Cr		99,98						
ZrSb	49,53		50,47					
$4. Zr_{50}Cr_{30}Sb_{20}$								
$Zr_5Cr_{0,5}Sb_{2,5}$	62,47	7,55	29,68					
$ZrCr_{2-x}Sb_x$	34,53	60,08	5,39					
5. Zr ₃₅ Cr ₃₅ Sb ₃₀								
Zr_5Sb_4	55,76		45,24					
ZrSb	49,51		50.49					
Cr		99,98						
	6. Zr45Cr5S	b35						
$Zr_5Cr_{0,5}Sb_{2,5}$	62,62	7,71	29,67					
Zr5Cr _x Sb _{4-x}	54,86	5,13	40,01					
	7. $Zr_{30}Cr_{20}Sb_{50}$							
ZrSb	49,67		50,33					
CrSb		50,35	49,65					
	8. Zr ₂₅ Cr ₃₅	Sb_{40}						
CrSb		50,49	49,51					
ZrSb	49,78		50,22					
Cr		99,99						
	9. $Zr_{30}Cr_{10}Sb_{60}$							
$ZrSb_2$	37,00		63,00					
ZrSb	51,03		48,97					
CrSb		50,04	49,96					
10. $Zr_{17}Cr_{20}Sb_{63}$								
CrSb ₂		33,52	66,48					
CrSb		49,85	50,15					
$ZrSb_2$	33,67		66,33					

4. Висновки

Порівняльний аналіз дослідженої системи Zr–Cr–Sb з раніше вивченими Zr–M–Sb (M – Mn, Fe, Co, Ni, Cu) показав, що найбільш поширеними є сполуки Zr₅M_{1-x}Sb_{2+x} зі структурою типу W₅Si₃, які утворюються у всіх вивчених системах. За характером взаємодії компонентів та кількістю проміжних фаз досліджена система Zr–Cr–Sb найбільш подібна до системи Zr–Mn–Sb [5], за винятком сполуки Zr₅MnSb₃.

В обох системах утворюються тернарні сполуки зі структурою типу W₅Si₃. Порівняння системи Zr–Cr–Sb з іншими спорідненими системами Zr–M–Sb (M – Fe, Co, Ni, Cu) [6–9], в яких утворюється від трьох (Zr–Cu–Sb) до восьми (Zr–Ni–Sb) тернарних сполук, свідчить про значний вплив *d*-елемента на характер фазових рівноваг, кількість та структуру проміжних фаз.

- 1. *Romaka V. A., Romaka V. V., Stadnyk Yu. V.* Intermetallic Semiconductors: Properties and Applications. Lviv: Lvivska Politekhnika, 2011. 488 p. (in Ukrainian).
- Romaka V. A., Frushart D., Stadnyk Yu. V. et al. Conditions for attaining the maximum values of thermoelectric power in intermetallic semiconductors of the MgAgAs structural type // Semiconductors. 2006. Vol. 40, No. 11. P. 1275–1281. DOI: https://doi.org/10.1134/S1063782606110054
- Grykalowska A., Novak B. Nuclear spin-lattice relaxation in narrow gap semiconductors TiPtSn and ZrPtSn // Intermetallics. 2007. Vol. 15. P. 1479–1482. DOI: https://doi.org/10.1016/j.intermet.2007.05.009
- Berche A., Tedenac J. C. Phase stability of nickel and zirconium stannides // J. Physics Chem. Solids. 2017. Vol. 103. P. 40–48. DOI: https://doi.org/10.1016/j.jpcs.2016.11.029
- Romaka L., Tkachuk A., Stadnyk Yu., Romaka V. V. et al. Peculiarity of component interaction in Zr–Mn–{Sn,Sb} ternary systems // J. Alloys Compd. 2014. Vol. 611. P. 401–409. DOI: https://doi.org/10.1016/j.jallcom.2014.05.078
- 6. *Melnyk G., Leithe-Jasper A., Rogl P., Skolozdra R.* The antimony-iron-zirconium (Sb-Fe-Zr) system // J. Phase Equilibr. 1999. Vol. 5. P. 497–507.
- Romaka V. V., Romaka L., Rogl P. et al. Peculiarities of thermoelectric half-Heusler phase formation in Zr–Co–Sb ternary system // J. Alloys Compd. 2014. Vol 585. P. 448–454. DOI: https://doi.org/10.1016/j.jallcom.2013.09.097
- Romaka L., Tkachuk A., Stadnyk Yu., Romaka V. A. Phase equilibria in Zr–Ni–Sb ternary system at 870 K // J. Alloys Compd. 2009. Vol. 470. P. 233–236. DOI: https://doi.org/10.1016/j.jallcom.2008.03.030
- Melnychenko N., Romaka L., Stadnyk Yu. et al. Zr-Cu-Sb ternary system and the crystal structure of new ternary compounds // J. Alloys Compd. 2003. Vol. 352. P. 89–91. DOI: https://doi.org/10.1016/S0925-8388(02)01091-5
- Akselrud L., Grin Yu. WinCSD: software package for crystallographic calculations (Version 4) // J. Appl. Cryst. 2014. Vol. 47. P. 803. DOI: https://doi.org/10.1107/S1600576714001058
- 11. *Massalski T. B.* Binary Alloy Diagrams. American Society for Metals. Metals Park OH 44073. 1986. Vol. 1, 2.
- 12. Villars P., Calvert J. D. Pearson's Handbook of Crystallographic Data for Intermetallic Phases. Metals Park OH 44073. 1997.
- 13. Zeng K., Hämäläinen M., Luoma R. A thermodynamic assessment of the Cr–Zr system // Z. Metallknd. 1993. Vol. 84. P. 23–28.
- Garcia E., Corbett J. D. A synthetic and structural study of the zirconium-antimony system // J. Solid State Chem. 1988. Vol. 73. P. 440–451. DOI: https://doi.org/10.1016/0022-4596(88)90130-2

- Suzuki N., Kanomata T., Kaneko T. et al. Magnetic phase diagram of CrTe_{1-x}Sb_x (0.0 ≤ x ≤ 1.0) // J. Alloys Compd. 1999. Vol. 290. P. 25–29. DOI: https://doi.org/10.1016/S0925-8388(99)00244-3
- Narada T., Kanomata Y., Takahashi Y. K. et al. Structural and electrical properties of Cr_{1-x}Ru_xSb₂ // J. Alloys Compd. 2004. Vol. 383. P. 200–204. DOI: https://doi.org/10.1016/j.jallcom.2004.04.058
- Kuranaka S., Gamo T., Morita Y. Powder X-ray diffraction under a high-pressure hydrogen atmosphere for Zr–Cr based Laves phase alloys // J. Alloys Compd. 1997. Vol. 253–254. P. 268–271. DOI: https://doi.org/10.1016/S0925-8388(96)03030-7
- Tkachuk A. V., Mar A. Structure and physical properties of ternary W₅Si₃-antimonides and bismuthides Zr₅M_{1-x}Pn_{2+x} (M=Cr, Mn; Pn=Sb, Bi) // J. Solid State Chem. 2004. Vol. 177. P. 4136–4141. DOI: https://doi.org/10.1016/j.jssc.2004.08.012

COMPONENT INTERACTION IN THE Zr-Cr-Sb SYSTEM AT 870 K

L. Romaka¹*, Yu. Stadnyk¹, V. Romaka^{2,3}, A. Horyn¹

¹Ivan Franko National University of Lviv, Kyryla i Mefodiya Str., 6, 79005 Lviv, Ukraine;

²Lviv Polytechnic National University, Ustyyanovycha Str., 5, 79013 Lviv, Ukraine;

³Institute for Solid State Research, IFW-Dresden, Helmholtzstr. 20, 01069 Dresden, Germany e-mail:romakal@franko.lviv.ua

The component interaction in the Zr-Cr-Sb ternary system was studied at 870 K over the whole concentration range using methods of X-ray diffraction and metallographic analysis. The alloys for investigation were prepared by direct arc melting the stoichiometric amounts of the constituent elements under high purity Ti-gettered argon atmosphere on a water-cooled copper hearth. The arcmelted ingots were then annealed at 870 K in evacuated quartz glass tubes for 720 hours and subsequently cold water quenched. The 3-5 wt. % excess of Sb was required to compensate the evaporative losses during arc-melting. The synthesized and annealed samples are stable in atmospheric conditions. For the characterization of the annealed samples X-ray powder diffraction on DRON-2.0m diffractometer with Fe K α radiation was performed. The chemical and phase compositions of the obtained samples were examined by Scanning Electron Microscopy (SEM) using Carl Zeiss DSM 962 and REMMA-102-02 electron microscopes. In the Cr-Sb and Zr-Sb systems a formation of the all binaries reported in the literature was confirmed. In the Zr-Cr system at 870 K $ZrCr_2$ binary was realized in high-temperature hexagonal modification with MgZn₂ structure type. According to EPMA data the homogeneity range of the ZrCr₂ binary is limited by the Zr_{33.05}Cr_{66.95} and $Zr_{37,59}Cr_{62,41}$ compositions (a = 0.5113(2) - 0.5110(1), c = 0.8289(7) - 0.8292(7) nm). At the temperature of investigation phase relations in Zr-Cr-Sb system are characterized by existence of one ternary compound $Zr_5Cr_{0.5}Sb_{2.5}$ with W₅Si₃ structure type (space group I4/mcm; a = 1.1097(1),

Л. Ромака, Ю. Стадник, В. Ромака та ін. ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2019. Випуск 60. Ч. 1

c = 0.5566(2) nm). The substitutional solid solution $Zr_5Sb_{4-x}Cr_x$ up to 5 at. % Cr based on the binary antimonide Zr_5Sb_4 with Ti_5Ga_4 structure type (a=0.8532(4)-0.8482(2), c=0.5858(4)-0.5820(1) nm) was observed. Solubility of Sb in ZrCr₂ compound (MgZn₂-type) is up to 6 at. % (a = 0.5113(2)--0.5127(1), c = 0.8289(7)-0.8354(9) nm) along isoconcentrate of 33 at. % Zr. Solubility of the third component in other binary compounds is less than 1-2 at. %. Analysis of the Zr–Cr–Sb system and studied early Zr–M–Sb (M = Mn, Fe, Co, Ni, Cu) showed that the ternary compounds with W_5Si_3 structure type appear in all these systems. The reduced number of the ternary phases in the Zr–Cr–Sb system comparing with related Zr–M–Sb systems shows an important influence of d-metal on the formation and structure of intermediate ternary phases.

Keywords: intermetallics, ternary system, phase equilibria.

Стаття надійшла до редколегії 29.10.2018 Прийнята до друку 23.01.2019