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In this article, we propose a difference method with successive approximation of the
inverse operator for finding an approximate solution of the nonlinear least squares problem.
Classical methods are effective for such problems, but still there are types of problems for
which they cannot be applied. Besides, these methods require calculation of the inverse
matrix or solving a system of linear equations at each iteration, which complicates the task.
Hence, the considered method consists of two parts: finding approximation to the solution
and to the inverse operator. The first part uses the first-order divided difference of the
function instead of Jacobian. The analysis of local convergence of the proposed method
is carried out under the classical Lipschitz conditions. This method was also applied for
solving test problems, especially with nondifferentiable parts, to show its effectiveness and
properties. For comparison, the number of iterations for the Secant method and the method
with the approximation of the inverse operator for different initial approximations is shown.
Finally, the proposed method can be used for regression analysis problems and in the study
of some physical processes if there are difficulties with calculating the derivatives of a non-
linear function and with finding the inverse operator of the divided difference.

Key words: Nonlinear least squares problem, approximation of the inverse operator, differ-
ence methods, local convergence, Lipschitz conditions.

1. INTRODUCTION

In this article, we propose a method for finding the solution of the nonlinear least

squares problem [1,2]
1

i = -F(x)TF 1
min f(2) = (@) F(), 1)
where residual function F : D C RP — R™ (m > p) is continuously differentiable and
nonlinear on . Denote by F;(x) an i-th component of the function F(z). The problem
is to determine z, € D for which
f(z) = min f(z).
Such problems often appear during the investigation of physical processes or in statistical
analysis.
This problem is well studied for general cases. One of the effective methods is the
Gauss-Newton method

Tpt1 = Tk — (F/(:ck)TF'(xk))71F/(xk)TF(:ck), k= 0,1,..., (2)
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which was proposed by Friedrich Gauss in 1809 [2]. It is a modification of Newton’s
method and does not require the calculation of the second-order derivative. However,
in some cases, due to the peculiarities of the nonlinear functions (for example, F' can
be nondifferentiable), it is sometimes impossible to use the Gauss-Newton method for
solving problem (1).

The main goal of this article is to provide a convergence analysis of the iterative
method for solving the problem (1), which using an approximation of the Fréchet deriva-
tive and an approximation of the inverse operator. We investigate the convergence of the
proposed method under the classical Lipschitz conditions. Numerical experiments using
the test problems are also presented and a comparison of the results against the Secant
method for solving the nonlinear least squares problem [3,5,7] is conducted.

2. CONVERGENCE OF THE SECANT TYPE METHOD WITH SUCCES-
SIVE APPROXIMATION OF THE INVERSE OPERATOR

To find an approximate solution of the problem (1), the following modification of the
Gauss-Newton method was proposed and studied in [5,7]

Tp1 = xp — (Feg, 2o 1) Flog,ap1)) " Flog,ap1)  Flay), k=0,1,.... (3)

Here, x_1,x9 € D are given initial approximations; F'(zy, xx_1) is the divided difference
of the first order of the function F(z) at the points zx, zx_1.

The Gauss-Newton method (2) and the Secant method (3) for solving the nonlinear
least-squares problem require the calculation of the inverse matrix or solving system of
linear equations, which is not always easy to compute. For such cases, we suggest to find
an approximation to the inverse operator using iterative methods.

The inverse operator A~! of a linear operator A can be approximated by Newton’s
method [11]:

Apy1 = Ap(2E — AAy), k=0,1,..., (4)

where E is the identity operator and Ay is initial approximation to A~!. The same publi-
cation describes Newton’s method with successive approximation of the inverse operator
for solving a nonlinear equation

Tpy1 = T — ApF (Tr),

Ak—i—l :Ak(ZEfF/(xk_H)Ak), k:(),].,.... (5)
Here, A is an initial approximation to the inverse operator (F’(x.))™!; xo is an initial
approximation to the exact solution of the equation F'(z) = 0.

The method with successive approximation of the inverse operator consists of two
main parts: the first one is for finding an approximation to the problem’s solution and
the second part is for approximating the inverse operator.

In [8], we propose the Secant method with approximation of the inverse operator for
solving (1)

Tk+1 = Tk — AkBgF(a?k),

T (6)
Ak+1 :Ak[2E—Bk+1Bk+1Ak], k:(),l,

Here, By = F(xg,zr—1); x_1, 2o are given initial approximations to x; Ap is an initial
approximation to (F'(x.)TF'(z.))~ !, for example Ay = (B By)~!; E is an identity
matrix. The case of By = F’(xy) is described in the article [3].
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We will conduct an investigation of the local convergence of the method (6) for prob-
lems with zero residual under the classical Lipschitz conditions for the first-order divided
differences.

Thus, the condition for the divided difference operator F'(x,y)

|F(2,y) = F(u,0)|| < L(l}x — ul[ +[ly = o[])  Va,y,u,v € D,

is called the Lipschitz condition in the domain D with the Lipschitz constant L. Let
U(zo,r) ={x: ||z — z0)|| < r} be a ball of radius r with center at z. Then,
1. the condition ||F(x,y) — F'(xo)|| < L(||x — xo|| + |ly — xol]) Vax,y € U(xg,r) is
called the center Lipschitz condition in the ball U(zg,r) with the constant L;
2. the condition ||F(zg) " F(z,70) — I|| < L||x — z0|| Vz € U(xg,r) is called the
radius Lipschitz condition in the ball U(zg,r) with the constant L.
The conditions described above are called the classical Lipschitz conditions [9].
Theorem 1. Let F' be a nonlinear operator defined on an open convex set D of a
Banach space RP with values in a Banach space R™. Assume that:
1) a problem (1) has a solution z, € D, such that F(x.) = 0, an operator
Ay = [F'(2.)TF'(2.,)] 7! exists and

|4 < B; (7)
2) in the closed ball Uz, ) = {x : ||z — .| < 7o}, where
ro = max{|zo — .|, lx—1 =z, [[Ao — A},
the following conditions are satisfied:

max{|[F'(z.)|, [|F'(z.)"[} < C, (8)
1F' (22) = F(z, )l < Lz = @]l + lly — 2.]); (9)

3) initial approximations x_1, xo and Aq are such that
qg<1, (10)

where
g = max{airg, as}, a1 = c? + (B+19)(3CL+ 2L2r0),

and
az = C?rg + (B 4 19)*[4CL + 4L%r).

Then, sequences {zi} and {A} converge to x. and A, respectively. Moreover, the
following estimates are fulfilled

2k — 2l < 1o, (| Ak — Ail| < ¢ 1o, (11)
where
cc1=—-1,¢c=0, cxy=cx—o2+cr_1,k=12,...,gr=cr—1+1, k=0,1,....
Proof. The proof is performed by mathematical induction. It follows from

lzo — 24l <70 =q 7o, [[Ao — Axll <70 = %10,
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80 xg € U(xg,7) and (11) is true for kK = 0. Suppose that z; € U(zg,r) and the estimate
(11) is true for k > 0. Because of ¢ < 1, then

ri = max{[lzy — 2|, [[Ar — A} <o
Considering (7) and the definition of ¢, we get
[AR[l < Al + 1Ak = Aull < B + 73 < B + 70, (12)

We obtain from the first equality of (6) and Taylor’s formula

Ty —Tpp1 = Ty —ap+ ARBF (F(zp) — F(z,)) =
= ., —xp + ABLF(xg, 2,)(zp — ) =
= [E — ApBIF(xp, x.)]|(xe — 21). (13)
It follows from
F'(z)TF'(z,) — BFF(xy,z,) = F'(z.)TF'(z.)— BFF/(z,)+

+B} F'(z,) — B F(zy,2.) =
= [F'(x.)" = B]F'(x.) + BE [F'(2.) = Flag, 2.))],
and taking into account the conditions of the theorem and the inequality
IBEN < I1F (@)l + 1By = F'(2:)" | < C + L(llww = apll + loe = zaall),  (14)
we obtain

1F" (@) F'(2.) = Bi F(aw, )| < CLEllws — all + [los — wpa]) + (15)

+L2 (o = zpll + lloe = zr-1l)llze — 2l
Based on conditions (8), (9), the estimates (12), (14), (15) and since
E— ABIF(zy,2.) = AF (2.)TF'(2.) — ApBF F(ay, 1) =
Ap[F (2 )TF'(2.) — BFF(xy, 2.)] +
(A — AP (2.)TF(a.),

we have that

IE — AkBF(zi, o)l < JARIIIF (@) F'(2.) = By Faw, x| +
HIF @) I E (20l A = Al <
< C?|lAc— Ayl + (16)

+(B + [[Ax = AIDICLQ2lws =zl + lz — 21 ]]) +

+L2(lzx = ]l + e = @r—alDlls — 2l
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We obtain from (13) and (16) that

lze = zpall < ||B = ApBy Fag, w0 o — 2] <
< [C2||A* — Al + (B + | A = AkDICLQ2||2s — wpll + [l — zr—al) +
L2 (s — el + s — )l — ] — ] <
< [C2||A* — Akl + (B + [|Ac = AlDBCL + 2L |l — ap]]) x
X s = x| [lze — k] <
< [CP1A = Al + (B +r0)BOL + 2L7r0) o — i — | <
< [Cqu’“ro + (B+19)(3CL+ 2L2r0)qc’“*1r0} q“*ro <
< [02 + (B+19)(3CL+ 2L2r0)}qck+c’“*1rg = ¢ t1rg. (17)
Thus,
@4 = gl < ¢*F1ro <o
and

g1 € Ulzo, 7).
We obtain from the second equality (6)
Ay — A = (A — A F (2)TF'(2)(As — Ag) — Ap(F'(2)TF'(2.) — BL 1 Brs1) Ay

Considering the last assumption, estimates (8), (9), and (17), we attain

JAs = Al < ARPIE (@) F'(@.) = BE,y Bl +
HIE @) T IE @) A~ Al <
< O A — Al + (B + || Ax — Al 2CL(l2. — ]| +

Hlow = wel) + L2 (e — zell + loe — ze1)?] <

< CQqQQ’“Tg +(B+ r0)2[4CLqC’“r0 + 4L2q20kr8] <

< [Czro + (B +19)?[4CL + 4L2r0]] qFrg = g7t rg.

That is, (11) is fulfilled for k+1. The convergence of sequences {zj} and { Az} follows
from the estimate (11) for k — oo. O

3. NUMERICAL RESULTS

We apply the considered methods for solving test problems for the cases when m = p
and m # p. The first two problems can not be solved by the Gauss-Newton method,
because they contain nondifferentiable parts. We use the condition ||zgp+1 — zkl|| < €,
where ¢ = 1078, for stopping the computational process.
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Table 1

Approximations to the solution by the method (3), residuals
and divided differences for Example 4

o PGl Flar, o)
(1.0,1.6) 3.28665389 _1'88%8889 3.31_1%)'?111_
(1.26714515, 2.50458079) | 0.82873749 _2'37%05626 4'21_5168191_
(1.14292999, 2.33992414) | 0.12312023 _2'521.108625 4.95)_5%?605:
(1.15847877,2.36137145) | 0.00350551 _2'41?01988 4.817228671_

4 | (1.15936717,2.36182509) | 1.76618586¢ — 05 :2'42f?05706 4_83;;8766:

5 | (1.15936085, 2.36182434) | 5.58477895¢ — 09 :2'42?_803913 4_8?;17'2054:

6 | (1.15936085,2.36182434) | 1.35691205¢ — 14 :2‘429183276 4_83;716011:

Calculations were performed using Python 3.9.2 and 2,4 GHz 8-Core Intel Core 19/64
GB.

Example 4. Consider a system of nonlinear equations

1
m%—m2+1+§\x1—1|20, (18)
1
x%—&-xl—?—i- §|.’172| =0.

The solution of this problem is z, ~ (1.15936717,2.36182509).

For initial approximations, we use o = (1.0,1.6) and x_; = (0.9999, 1.5999). The
Table 1 shows the results obtained by the method (3) at each iteration.

Let us apply the method (6) for the system of equations from Example 4. Table 2
shows the results of the Secant type method with successive approximation of the inverse
operator for the problem (18) with the same initial approximations.

Example 5. Consider a system of nonlinear equations, when m # p:

22 4 3xy — 74 (2.5 — 22| = 0,
220 T — 22 — |/—xixy + 1.5z — 2| =0, (19)

rixy — |z3| = 0.

For this problem z, = (—1;0.5).
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Table 2

Approximations to the solution by the method (6), residuals and divided
differences for Example 4

; o [Faol oy o)

0| (1.0,1.6) 3.28665389 _1'888178889 3.311_011111_
1| (1.26714515,2.50458080) | 0.82873751 _2‘37213?05626 4.21_516'8191_
2 | (1.15445344, 2.39294403) | 0.15270233 _2'53%0971 5'0&16?594_
3 | (1.15861503, 2.36306145) | 0.00605964 _2'42411.107958 4'86_711'?659_
4 | (1.15935080, 2.36183880) | 7.13645916¢ — 05 :2'42?907694 4.836%'&36:
5 | (1.15936085, 2.36182435) | 3.62087881¢ — 08 :2'42?§02277 4.83417'3426:
6 | (115936085, 2.36182434) | 1.25322626¢ — 13 :2'42951257 4_83;715321:

Table 3 shows results for Example 5 with different initial approximations. Additional
starting point is calculated by formula z_; = ¢ — 0.0001.

Table 3

The number of iterations and time to obtain an approximation to the solution
r. = (—1;0.5) by both methods with the accuracy ¢ = 1078

Initial approximation Method (3) Method (6)
Iterations Time Iterations Time
xo = (—0.5,-3.0) 9 0.00687 11 0.00771
xo = (—0.5,-3.5) 10 0.00701 12 0.00782
xo = (—2.0,-0.5) 8 0.00503 9 0.00574
xo = (—2.5,3.0) 11 0.00749 12 0.00825
xo = (—2.5,-1.0) 10 0.00684 11 0.007
xo = (—4.6,3.6) 14 0.01116 15 0.00994
xo = (—2.2,8.2) 14 0.00966 15 0.00978
xo = (—2.4,4.0) 13 0.00851 13 0.00825

For the test problems from [4], we give the number of iterations for calculating the

approximate solution using the difference methods (3) and (6).

with zero and non-zero residuals.

We consider problems

The following test problems were used for numerical calculations [4]:
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Table 4

The number of iterations to obtain an approximation to the solutions of the test
problems by both methods with the accuracy e = 1078

Problem Method (3) Method (6)
Iterations Time Iterations Time
Rosenbrock function
g 12’:71,:1)2: }ng:) (i’(l)o) 3 0.00213 3 0.0013
Beale function
o s ?)5550 Jf(ﬁjo’:}lﬁ) 11| 000696 | 16 | 0.00886
Helical valley function
L e S I Y IR
Gaussian function
P 6)9,”}::([5’;;’913?_’153‘5 Yoo | oume |1 | 00622
Freudenstein and Roth function
g 2*2’:75,:4?,’ o) (0. 10 | 000547 | 13 | 0.00631
Box three-dimensiomal function
! :xszm (. fé’”lf?,@(g)i o 2) 10 | 478794 | 12 | 3.82081

1. Rosenbrock function

2. Beale function

Fi(z) = y; — 21(1 — ab),
where y; = 1.5, 1y =2.25, y3 = 2.625.
3. Helical valley function
Fi(z) = 10[x3 — 100(x1, z2)],
Fy(x) = 10[(af + 23)"/? - 1],
Fi(x)

zs3,
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1 T
o arctan —2, if x1>0,
m I
O(x1,12) =

1
—_ arctan -2 +0.5, if z1<O.
2w T

4. Gaussian function
Fi(z) = ppem w2 (timwa)?/2 _ yi, ti=(8—1)/2.
5. Freudenstein and Roth function

Fl(l') = 7].3 -+ X1 -+ ((5 — Iz) — 2)12,
FQ(Z‘) =-29+ r1 + ((1'2 + 1)1‘2 — 14)332

6. Box three-dimensional function
Fi(z) = e ti™1 — g7 ti%2 g (e_tf' - e‘lOt"), t; = 0.14.

Table 4 shows number of iterations for finding the solution of the described functions
by methods (3), (6), where ¢ = 1078,

4. CONCLUSIONS

This article describes the nonlinear least squares problem and the methods for find
an approximation to its solution. The classical Gauss-Newton method and the Secant
method require calculations of inverse matrix or solving system of linear equations. Given
this, the Secant type method with the successive approximation of the inverse operator
is proposed and studied. This method is tested on problems with zero and non-zero
residuals, with different numbers of unknowns and equations. The method with the
successive approximation of the inverse operator takes more iterations than the basic
Secant method, but it does not require to solve the system of linear equations or to
calculate the inverse matrix at each iteration. This is the main advantage of the proposed
method.
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METO/, TUITY XOP/1 3 AITPOKCVMMAIIIEIO OBEPHEHOTI' O
OIIEPATOPA [AJI HEJIIHINHUX 3AJAY HAVMMEHIIINX
KBAJPATIB

C.IIaxuo', M.TaBgak!, P. Akumuyk??, T. Ipmosa’

L Iveiscoruii nayionarvruti ynicepcumem imeni Ieana ®Ppanka,
eya. Ymuisepcumecwvka, 1, JIveis, 79000,

2 Yuisepcumem Copbonuna — LIP6, 4 place Jussieu, 75252 Paris, France,
3 Vnieepcumem Ymeo, Linnaeus vig 49, 907 36 Umed, Sweden,
e-mail: ! {stepan.shakhno, mykhaylo.havdiak, halyna.yarmola}@Inu.edu.ua,
2roman.iackymchuk@sorbonne-universite.fr, >roman.iakymchuk@umau.se

3amnponoOHOBAHO PI3HUIEBUI METOJ| 3 MOCJIJJOBHOK AIPOKCUMAIi€l0 06epHEHOT0 Ornepa-
TOpa JAJs IMONIyKy HAOJMKEHOTO pO3B’S3Ky HeJsiHiffHOI 3amadi mpo HaiiMeHIIi KBajpa-
Tu. JlocuigzkeHo #oro 36i2KHICTH 1 TPOBEIEHO YKMCJIOBUM ekcnepuMeHT. Kiacuasi meromu
po3B’sa3yBaHHA edEKTHBHI, IPOTE iCHYIOTh TUIH 3aJa4, JAJIs AKUX IX HEMOXKJIUBO 3aCTOCY-
Baru. Takoxk ni merogu morpebyors 00uucaeHHs 00epHEeHO] MaTpuUli ab0 PO3B’s3yBAHHS
crucTeMu JIiHIHHUX anreOpuaHUX PIBHSAHD HA KOXKHIHN iTepariil, 110 MOXe YCKJIAJHUTH MOIIYK
HaDIMXKEHOTro po3B’a3Ky. Ha mporuBary iM 3anpOnoOHOBAHUI METOJ BUKOPUCTOBYE 3aMiCTh
AKobiaHa MmOAijieHy DI3HHUII0 HmepIoro mopsigky Bix mHeminiftaol dymkmii. Posrusmyrnit
METOJ CKJIQJAETHCS 3 JBOX YACTUH: TEPINa JACTHHA MPU3HAUEHA I 3HAXOAKEeHHs HabIm-
2KEHb JI0 PO3B’sI3Ky; Jpyra — BUKOPUCTOBYE allPOKCUMAaIif0 06epHEHOr0 OrepaTopa 3aMicTb
pPO3B’A3yBaHHS CHCTeM JIHIMHUX aJreOpUYHUX PIBHAHb YU IOMIYKY OOepHEHOI MaTpHIi.
IIpoBeneno anasi3 sokaabHOI 30i2kHOCTI TA 3’s1COBAHO MOPsIJOK 3012KHOCTI 3aIIPOIOHOBAHOIO
MeTomy 3a KjacuaHuxX yMmoB Jlimmuig. BuKOHAHO YHCIOBHI €KCIEPHMEHT HA TECTOBUX
3a/avax /s BUBUEHHS peaTbHUX BJIACTUBOCTEH MeTomy. TakoxK Jedki 3agadi MicTunm
HegudepeHIiioBHy yacTuHy. HaBemeHO KijbKicTh iTepariii HeoOXimHy /st 00YUCIIEHHS
HADJIUKEHOTO PO3B’SA3KY 3 JOIOMOTIOI0 METOIY XOPJ i MEeTOy 3 allpOKCUMAIi€l0 06€pHEHOTO
oneparTropa, a TAKOX pe3yJIbTaTH IPH Pi3HUX [N0YATKOBUX HabirkeHHsix. (OCHOBHOIO
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IepeBaro0 3aMPONOHOBAHOTO METOAY € Te, IO HOro MOXKHA 3aCTOCOBYBATH 10 3334
perpeciiiHoro amaJsizy i y JgocCiifKeHHI AedKuxX (QI3UYHUX MIPOINECIiB y BHUIAJKY, KOJH
BHHHUKAIOTh TPYAHOIN 3 O0YMCIE€HHAM HOXigHuX Bif meminiftuol ¢yuxmnii Ta 31 3maxomken-
HAIM 0OEPHEHOT0 OIepaTopa.

Karwowosi caosa: HemiHIMHA 3a7a9a Opo HalMeHHII KBaJgpaTH, AlPOKCHMAallig 0OepHEHOro
oImepaTopa, MojIiieHa pi3HUIS, PI3HUIIEBI MeTOIN, TOKAIbHA 361KHICTH, yMoBH Jlinmus.



