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A DROPOUT TECHNIQUE STUDY FOR THE FASTER R-CNN
DETECTORS WITH PRETRAINED CONVOLUTIONAL NEURAL NETWORKS
FOR DETECTING VERY SIMPLE OBJECTS THAT CAN BE MASKED
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One of the best object detection methods, the Faster R-CNN, uses a pretrained convolutional
neural network allowing to train the detector on small training sets typical in the object detection
practice. Convolutional networks are prevented from overfitting by inserting DropOut layers. An
open question is whether the DropOut technique improves much the object Faster R-CNN detector
accuracy. Therefore, the goal is to show how the DropOut technique influences on the object detector
performance. An original image classification dataset for pretraining a convolutional neural network
is CIFAR-10. An appropriate convolutional network architecture for classifying CIFAR-10 images
has a 50 % DropOut layer inserted in-between two fully-connected layers. Object detection tasks used
for training and testing the Faster R-CNN detector are of monochrome images wherein small black
rectangles are to be detected. Despite such objects are very simple, they can be masked around some
dark localities so that detection would not be easy. One detection task is to detect the black rectangles
in suburb house frontal views. Another one is to detect the rectangles in office room views. The
suburb view dataset is divided into a training set of 120 images and a testing set of 121 images, every
entry with a black rectangle. The office view dataset is divided likewise into a training set of 115
images and a testing set of 100 images, every entry with a black rectangle. Performance of the
detector is studied against three training parameters: bounding box overlap ratio for positive training
samples, minimum anchor box size, and anchor box pyramid scale factor. The performance is meant
by the number of detected objects along with the intersection-over-union. However, neither graphs
for the summed intersection-over-unions, nor graphs for the number of detected objects show that the
DropOut technique influences on the Faster R-CNN object detector performance. Even for letting
miss a few objects and decreasing an accuracy threshold, this influence is not significant. Therefore, a
pretrained convolutional neural network to be included into the Faster R-CNN object detector should
not contain a DropOut layer, especially if the network is trained much longer with the DropOut layer.

Key words: object detection, Faster R-CNN object detector, pretrained convolutional network,
DropOut, monochrome image, training set, intersection-over-union, number of detected objects.

DROPOUT LAYERS FOR PREVENTING OVERFITTING

Overfitting is a poor effect of an analysis over data that involves too complex
modeling. In machine learning, overfitting is especially likely for small training data sets
and, additionally, when training is performed overlong. To prevent overfitting, a technique
named dropout (or, stylistically, DropOut) is used [1, 2]. In convolutional neural networks
(CNNSs), DropOut is a layer, at which a part of nodes is randomly removed while training.
The randomness of the remover is defined with a probability [2, 3]. This probability is
commonly equal to 0.5, unless a very specific model is considered. Thus, the DropOut layer
works as the remover at each training stage, dropping out a half of individual activations
chosen randomly. After training, the removed nodes are reinserted into the network with
their original weights.

© Romanuke V., 2018
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A lot of studies considering DropOut exploitation exist. They have been trying to
achieve high performance with DropOut rather than to explain reasons for inserting or
canceling DropOut layers. Recently, the technique of DropOut was considered in [2] with
CNNs for image classification, aiming at finding a rule of rationally allocating DropOut
layers of 0.5 rate for maximizing performance. Two common network architectures having
either 4 or 5 convolutional layers were used for that, benchmarking with CIFAR-10,
EEACL26, and NORB datasets [4, 5]. A compromising rule was found as to non-compactly
insert a few DropOut layers before the last convolutional layer. The work [2] factually
claims that the rule “prefers” less number of DropOut layers. Eventually, the exemplary
gain of the rule application was roughly between 10 % and 50 % signifying that the
DropOut technique rationally applied is much influential in fine-tuning CNNs.

CONVOLUTIONAL NEURAL NETWORKS FOR OBJECT DETECTORS

CNNs are widely used for image classification and object detection. The R-CNN
method is an early application of CNNs to object detection [6], wherein a pretrained CNN is
included into the object detector. The pretrained CNN allows using small training sets that
is typical in the object detection practice. An enhanced technique is the Fast R-CNN method
[7], which is furthered to the Faster R-CNN method [8].

Selecting a pretrained CNN for including it into a Faster R-CNN detector
architecture is a separate task. In fact, the pretrained CNN is used for the detector in the
sense of the transfer learning workflow [9]. In transfer learning, a CNN used as the starting
point to solve a new classification or detection task is to be trained on a dataset of diverse
and heterogeneous images [2, 4, 5]. This is intended for that the pretrained CNN may learn
a rich aggregate of image features that are applicable to a wide range of images. Deepness
of the learning is still arguable, i.e. it is an open question whether the CNN should be
trained to its top accuracy or not. It is quite important because a deeper training lasts longer
and consumes more resources. Anyway, the learning is transferable to the new task by fine-
tuning the pretrained CNN: the feature representations learned for the original task are
slightly adjusted for supporting the new task (in this case, an object detection task). These
slight adjustments may be executed by a small training set [9, 10], which is only available
for the object detector.

An interesting question is, if the pretrained CNN has DropOut layers, does the
DropOut technique improve much the object detector accuracy? If it does not, then training
the CNN with DropOut layers would be senseless because training without DropOut layers
is significantly faster and easier.

GOAL OF ARTICLE AND STAGES TO ACHIEVE IT

Generally, the goal is to show how the DropOut technique influences on the object
detector performance considering the Faster R-CNN method, which is one of the best object
detection methods. The object detector performance is not just an average accuracy of
detection, but also stability of detection implying how badly accuracies related to individual
objects are scattered. For achieving the said goal, the five stages are to be executed:

1. Substantiating an original image classification task (dataset) that is going to be
used for pretraining a CNN.

2. Defining a CNN architecture for the substantiated task (dataset), with DropOut
and without it.



V. Romanuke
92 ISSN 2078-5097. BicH. JIbBiB. yH-Ty. Cep. mpuki. MateMm. Ta ing. 2018. Burm. 26

3. Substantiating an object detection task (dataset) that is going to be used for
training and testing the Faster R-CNN detector.

4. Comparing the Faster R-CNN detector performance by the CNN with DropOut
and without it.

5. Discussing and concluding on how the DropOut technique influences on the Faster
R-CNN object detector performance.

Both the original image classification dataset and object detection dataset should be
as general as possible for covering plausibility and generalization of the detector’s
performance results. A method of measuring the detector’s performance will be suggested at
the fourth stage. At the last stage, unanswered points should be emphasized.

ORIGINAL IMAGE CLASSIFICATION DATASET FOR PRETRAINING A CNN

The original image classification dataset used for pretraining a CNN should be of
very miscellaneous, diverse, and heterogeneous images.

Fig. 1. A subset (90 randomly montaged images) of the CIFAR-10 dataset

One of the best and simplest examples of such dataset is the CIFAR-10 dataset
(fig. 1). The CIFAR-10 dataset consists of 60,000 color 32x32x3 images. These tiny
images are represented as 32x32 matrix in each of the three color channels. The CIFAR-
10 dataset, consisting of only 10 image categories (“airplane”, “automobile”, “bird”, “cat”,
“deer”, “dog”, “frog”, “horse”, “ship”, “truck”™), is divided into 50,000 images intended for
training and 10,000 images intended for validating and testing [2, 4, 5, 11, 12]. Thus, this is



V. Romanuke
ISSN 2078-5097. BicH. JIbBiB. yH-Ty. Cep. mpuki. Matem. Ta ing. 2018. Burm. 26 93

6,000 images per image category, where 5,000 images per category are used to train, and
1,000 images per category are used to validate and test.

Image Input 32x32x3 images with 'zerocenter' normalization

Convolution 64 5x5x3 convolutiens with stride [1 1] and padding [2 2 2 2]
RelU RelU

Max Pooling 3x3 max pooling with stride [2 2] and padding [0 0 0 0]
Convolution 128 5x5x64 convolutions with stride [1 1] and padding [2 2 2 2]
RelU ReLU

Max Pooling 3x3 max pooling with stride [2 2] and padding [0 0 0 0]
Convolution 256 5x5x128 convolutions with stride [1 1] and padding [2 2 2 2]
RelU RelU

Max Pooling 3x3 max pooling with stride [2 2] and padding [0 0 0 0]

Fully Connected 64 fully connected layer

RelU RelU

Dropout 50% dropout

Fully Connected 10 fully connected layer

Softmax softmax

Classification Output crossentropyex with 'airplane' and 9 other classes

Fig. 2. A CNN architecture for classifying CIFAR-10 images with a single DropOut layer,
which is classically set at 50 % rate; max pooling layers have a purposely larger window
and a greater stride by the zero padding, whereas the first three convolutional layers
have a window of the same size by the minimal stride and a padding equal to 2

An appropriate CNN architecture for classifying CIFAR-10 images is shown in
fig. 2, where a 50 % DropOut layer is inserted in-between two fully-connected layers. The
starting number of filters in the first convolutional layer is 64, and then the number of filters
is doubled through the layers [2]. Except for the final convolutional layer, every
convolutional layer is followed by a rectified linear unit (ReLU), and this is close to the
most appropriate versions of allocating ReLUs for classifying CIFAR-10 images [5]. All the
max pooling layers have a 3x3 window and stride of 2, additionally preventing overfitting
and ensuring good generalization. A CNN trained for 80 epochs by such architecture
performs at 84.5 % accuracy rate, which is sufficient for including this CNN into the Faster
R-CNN detector architecture.

If the DropOut layer in the architecture in fig. 2 is removed, the CNN is trained
significantly faster: it takes only 40 epochs to achieve 82.6 % accuracy rate. This accuracy
now being slightly less is also sufficient for the pretrained CNN.

OBJECT DETECTION DATASET FOR THE FASTER R-CNN DETECTOR

It is apparent that objects within color images are detected easier than dealing with
monochrome images. This is so owing to colors and their gradients help in detecting.
Henceforward, for making an object detection task harder, a set of monochrome images fits.
The harder object detection task will allow to obtain magnified results of the DropOut layer
influence.

Suburb house frontal views represented in 241 monochrome 220x330 images
constitute a pretty hard origin for an object detection task dataset (fig. 3). The image
resolution is about medium (although not as low as the resolution of CIFAR-10 images),
which is suitable for obtaining the detector performance results faster (much faster in
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comparison to color images whose resolution is close to standards of 480x640, 600x800
and so on).

Fig. 3. A subset (165 randomly montaged images) of suburb house frontal views

Despite the images in fig. 3 appear simple, they have a lot of small localities where
an object could be placed so that its detection would not be very easy. The localities are
either darker or lighter, and the object must be respectively darker or lighter. Then an effect
of masking the object may come. A very simple case, which, however, must not simplify the
object detection task itself, is to detect small black rectangles in those suburb view images.
Such black rectangles of sizes from 30x30 to 50x50 are randomly placed in them. Thus,
the suburb view dataset (SubVDS) in fig. 3 is divided into a training set of 120 images with
black rectangles and a testing set of 121 images with black rectangles. An assembled image
of the suburb view testing set is shown in fig. 4.
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e

Fig. 4. The object detector testing set of 121 suburb house frontal views, where house dark
windows and shadows (and other darkened localities) in some images mask the object

T

Fig. 5. The object detector testing set of 100 office room views (widths of the images have
been resized to 327), where dark screens of monitors in some images may confuse

For strengthening diversity, a supporting dataset should be formed with similar black
rectangles. This is about office room views represented in 215 monochrome 220xW

images by W e[24]; 392]ﬂN. Note that here the width of the office room view images is
inconstant. This makes additional difficulties in detecting, although they are not much
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influential. Such image dataset is divided into a training set of 115 images with black
rectangles and a testing set of 100 images with black rectangles. An assembled image of the
office room view testing set is shown in fig. 5.

Training parameters for both datasets are the same, except for the minibatch size
equal to the number of training images, which is 120 for the SubVDS and 115 for the office
room view dataset (OffRVDS). The number of epochs is set at 2.

THE DETECTOR PERFORMANCE WITH DROPOUT AND WITHOUT IT

When an object is detected, the detection confidence is desired to be as much as
greater. On the one hand, all the objects in the testing set should be detected. On the other
hand, the minimum of the detection accuracy should be greater than 0.5, which is acceptable
for such a detection accuracy parameter as the intersection-over-union (loU) [6].
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Fig. 6. The number of detected objects in the testing set of the SubVDS with
using DropOut (see fig. 2)

While trained, three parameters of the detector training process are varied. They are
bounding box overlap ratio p, for positive training samples, minimum anchor box size z,

anchor box pyramid scale factor s. Performance of the detector will be shown below
against these parameters. As the performance is a function of three variables, then it will be
plotted by using a few colors and different thickness of dots dependent on the detection
accuracy and number of detected objects. The number of detected objects is represented in
fig. 6, 8, 10, 12, where the trickiest dots colored black correspond to the maximum of the
detected objects (which is 121 for the SubVDS, and 100 for the OffRVDS). Dots colored
lighter correspond to a lesser number of the detected objects (this is between 115 and 120
for the SubVDS, and is between 96 and 99 for the OffRVDS). The lightest dots correspond
to a number of the detected objects less than 95 % (i. e., less than 115 for the SubVDS, and
less than 96 for the OffRVDS). The sum of loUs is represented in fig. 7, 9, 11, 13, where
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dots are plotted black only if the minimal loU is greater than 0.5. If the minimal loU is

equal to 0, then the dot is plotted the lightest. The dot thickness is proportional to the sum.
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Fig. 7. The summed loUs for the testing set of the SubVDS with using DropOut (see fig. 2)
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without using DropOut



V. Romanuke

ISSN 2078-5097. BicH. JIbBiB. yH-Ty. Cep. mpuki. MateMm. Ta ing. 2018. Burm. 26

98

1o}
re)

e o 06 06 06 06 &6 ¢ 0 o

50
z

45

40

35

e o 0 06 06 0 0 0 o o

30

25

0.7

0.6

ec o000 (e oo

0.5

P,
Fig. 9. The summed loUs for the testing set of the SubVDS without using DropOut

® 0 0 o : o 0 o o o 0
® 6 06 06 ¢ 0 o
° ® o o o o 0 0 <
[S)
e o 0 o e o o o o
e 0 0 o o + o o+

(the flawless dot is encircled)

25

0.7

0.6

0.5

P,
Fig. 10. The number of detected objects in the testing set of the OffRVDS with using

0.4

DropOut (see fig. 2)



V. Romanuke

99

ISSN 2078-5097. BicH. JIbBiB. yH-Ty. Cep. mpuki. Matem. Ta ing. 2018. Burm. 26

re)
re}

s o 0 0 0 0 0 0 o o

40

35

30

0.4

0.5

0.6

25

0.7

P,
Fig. 11. The summed loUs for the testing set of the OffRVDS with using DropOut (see

55

35

30

25

® o o 0 o o @0 0 o o

0.7

® o 0606060000 00 M

—~ e 0060060000 00

[V}

- ®© 060060000 000

(o))

[ ® 0 06060600 00 00

® 0 06060600 00 0 0
® 00 00000 000
® 00060000 00
® 606060066000 00 M
® 0060600000 00
® 060000060 0 00

+
o

0.4

Fig. 12. The number of detected objects in the testing set of the OffRVDS

without using DropOut



V. Romanuke
100 ISSN 2078-5097. BicH. JIbBiB. yH-Ty. Cep. mpuki. MateMm. Ta ing. 2018. Burm. 26

p+ 0.7

Fig. 13. The summed loUs for the testing set of the OffRVDS without using DropOut

It is quite apparent that the performance results of detectors without DropOut are
very similar to those of detectors used DropOut. The performance for the OffRVDS is
poorer than that for the SubVDS (it is well seen if to compare fig. 10 to fig. 6 and fig. 12 to
fig. 8, paying attention to faces at p, =0.7). Detectors are trained faster without DropOut:

on average, it is 14 % faster for the SubVDS and 19 % faster for the OffRVDS. Moreover,
detectors are tested faster without DropOut as well: on average, it is 11 % faster for the
SubVDS and 20 % faster for the OffRVDS.

There are 362 detectors (out of grand total 385 detectors) used DropOut for the
SubVDS which have zero loUs, whereas 340 detectors without DropOut for the SubVDS
produced zero loUs. The situation is a kind of reverse for the OffRVDS: 372 detectors used
DropOut have zero loUs, but there are 379 detectors produced zero loUs without DropOut.

There is still only single detector (out of 385 detectors) which detected all 121 test
objects of the SubVDS, without using DropOut, at a high accuracy rate where the minimal
loU was greater than 0.5 (see fig. 9). The high accuracy rate is meant to be not less than
97 % of the maximal sum of loUs. However, the number of detectors against the maximal
number of their object omissions does not seem better without using DropOut, for both the
SubVDS (fig. 14) and OffRVDS (fig. 15). This is the most contradictory result, and it is
going to be confirmed below.

If to loosen the requirement of detecting the whole testing set, at the same greater-
than-0.5 minimal loU and not-less-than-97 % of the maximal sum of loUs, the number of
flawless detectors increases. Aiming at detecting only 120 out of 121 objects in the testing
set of the SubVDS, there are 4 and 5 flawless detectors, respectively using and without
using DropOut. Such let-miss-one-object loosening does not affect the OffRVDS.



V. Romanuke
ISSN 2078-5097. BicH. JIbBiB. yH-Ty. Cep. mpuki. Matem. Ta ing. 2018. Burm. 26

101

385
380
375

TTT T T T T T T T T T T T T T I T T T TITI T I T ]

—=— with using DropOut (see fig. 2)
—S— without using DropOut

IREEEEEREEEREEEEEEEREEEEEEEEEEEREERRERREE!

9 10 11 12 13 14 15 16 17 18 19 20

. 14. SubVDS: the number of detectors against the maximal number of their

object omissions (abscissa axis)

—*— with using DropOut (see fig. 2)
—©— without using DropOut

r r [ r r [ [ r [ [ r r [ r r [ r [ r r [ [ r [

7 8

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Fig. 15. OffRVDS: the number of detectors against the maximal number of
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Nonetheless, if to decrease that not-less-than-97 % down to 95 %, the detector
without DropOut for the SubVDS gains more: 4 against 12. The number of flawless
detectors with DropOut remains the same by decreasing it down to 90 %, whereas the
number of flawless detectors without DropOut becomes 18. For the not-less-than-95 % and
letting miss two objects, there are 11 and 14 flawless detectors of the SubVDS, respectively
using and without using DropOut. For the not-less-than-93 %, this is 13 and 18. For the not-
less-than-90 %, these respective numbers are 13 and 20, remaining the same by further

decreasing.
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The OffRVDS is much rougher: there is still only single detector which detected 98
OffRVDS test objects, without using DropOut, at not-less-than-95 % of the maximal sum of
loUs. The same result remains by decreasing it down to 90 % and looser, or letting miss
even three objects. The further loosening reveals that here the detector with DropOut has its
minimal gain. However, this gain is pretty insignificant because the numbers of flawless
detectors are fewer. Namely, at the not-less-than-90 %, they are 2 and 1 by letting miss up
to four objects, 3 and 2 by letting miss up to five objects, 3 and 3 by letting miss up to six
objects. When the number of missed objects is seven or more, those respective numbers are
4 and 3.

DISCUSSION AND CONCLUSION

Neither the graphs for the summed loUs (fig. 7, 9, 11, 13), nor the graphs for the
number of detected objects (fig. 6, 8,10, 12) have shown that the DropOut technique
influences on the Faster R-CNN object detector performance. Letting miss a few objects,
this influence is not significant for the SubVDS at the not-less-than-97 % (fig. 14), although
detectors with using DropOut have a tiny advantage for the OffRVDS (fig. 15). Decreasing
that not-less-than-97 % down has revealed that the DropOut technique can be “dropped out”
for the SubVDS. Using the DropOut technique does not help much with the OffRVDS.

The object detection datasets used here have both similar and dissimilar features.
Owed to a lot of images of these datasets mask the black rectangles, the performance results
recapitulated above must be really perceived magnified. Consequently, the DropOut
technique does not make any significant improvement of the Faster R-CNN object detector
performance. Therefore, a pretrained CNN to be included into the Faster R-CNN object
detector should not contain a DropOut layer, especially if the CNN is trained much longer
with the DropOut layer. An exclusion may be for very simple original image classification
datasets (like MNIST [13, 14] or EEACL26 [2, 4, 5]), where overfitting is prevented with
two or even more DropOut layers and they do not retard the training process.
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3AMACKOBAHMMHU
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Meton BusBneHHs 00’ektiB Faster R-CNN BukopucToBye Hamepeln HaBUEHY 3TOPTKOBY
HEWPOHHY MEpPEeXy JUIS TOTO, 00 HABYATH AETEKTOP Ha MAJHMX HABYAIEHHX MHOXHHAX, TUIIOBHUX IS
MIPAKTHKHU BUSIBICHHS 00’ekTiB. [lepeHaBUaHHIO B 3rOPTKOBUX Mepexkax 3amo0iraloTh 3a J0MOMOTOI0
BcTaBky IapiB DropOut. Bimkputum nurtanHsM e Te, yn TexHika DropOut nabararo momimmrye
TouHicTh jAerekTopa 06’ektiB Faster R-CNN. Tomy Hama mera — 3’sicyBatH, sk TexHika DropOut
BIUTMBAa€ Ha IPOAYKTHBHICTH JeTekTopa 00’ekTiB. IlepBuHHMM HabopoM IaHHMX Kiacugikaiil
300pakeHb Ul MONEPEAHBOr0 HaBYaHHS 3ropTkoBoi HeiipoHHoi Mepexi € CIFAR-10. Bignosigna
apXiTeKTypa 3ropTKoBOi Mepexi mis kiacudikarii 306paxens CIFAR-10 mae 50 % map DropOut,
BCTaBJICHUI MiXK IBOMA ITOBHO3B SI3HUMH IIapaMu. 3aadi BUSIBICHHS 00’ €KTiB, BUKOPUCTOBYBaHI AJIs
HaB4aHHs i TecTyBaHHs aeTekropa Faster R-CNN, ckiamgaroTbesi 3 MOHOXpOMHHX 300pakeHb, Ha
SKUX MaroTh OYTH BHABIICHI HEBENUKI YOPHI MpAMOKyTHHKH. He3Baxarouu Ha Te, 110 Taki 00’ e€KTH —


mailto:romanukevadimv@gmail.com

V. Romanuke
104 ISSN 2078-5097. BicH. JIbBiB. yH-Ty. Cep. mpuki. MateMm. Ta ing. 2018. Burm. 26

Iy’Ke TMpOCTi, BOHH MOXYTh OyTH 3aMacKOBaHUMH MOOJIM3Y AEAKAX TEeMHUX AULTHOK TaK, 1100
BUsIBIEHHA He Oyino yerkuMm. OpHa 3ajada TOJATae€ y BHSABICHHI YOPHUX NPSAMOKYTHHKIB Ha
(poHTATBHUX 300paXKCHHSIX MPUMICHKUX OyauWHKIB. [HIIA — y BHUSBICHHI TAKUX MPSMOKYTHHUKIB Ha
300pakeHHsAX o¢icHUX KiMHaT. Habip maHUX MPUMICBKHX 300pakeHb MOMUICHHH Ha HaBYAIbHY
MHOXHHY 31 120 300pakeHb 1 TeCTOBY MHOXKHUHY 31 121 300pa)<eHHS, 3 YOPHUM NPSMOKYTHHKOM Y
KO)KHOMY 300paxkeHHi. HaGip nanux o¢icHuX 300pakeHb MOIIICHUI TaK CaMoO Ha HaBYAIbHY
MHOXHHY 31 115 300paxkeHs 1 TecToBy MHOXUHY 31 100 300paxkeHpb, 3 YOPHUM MPSIMOKYTHUKOM Y
KO)KHOMY 300pakeHHi. I[IpOgyKTHBHICTH JeTeKTopa OOCHiIKYIOTH 3a TphbOMa IIapaMeTpaMu
HABUAHHS: CIIBBIAHOLICHHS MEPEKPUTTA OOMEXYBAJbHUX MPSIMOKYTHHKIB JUI1 TO3UTHBHHUX
HaBYAIBHHUX 3Pa3KiB, PO3Mip MiHIMAJIbHOTO MPSMOKYTHHKA MPUB’SI3KH 1 KOe(ili€HT mipamiIanbHOTo
MacmTa0yBaHHS OOMEXYBaJbHUX MNPAMOKYTHHUKIB. Ilil HPOAYKTHBHICTIO PO3YMIIOTH KiJIbKICTh
BUSIBIICHUX 00’€KTIB pa3oM 3i CHiBBiIHOIIEHHSIM NepeTuHy i 06’ enHanHsa. OnHak Hi rpadiku A1 cyMm
CHIBBiIHOIIEHb MEpeTHHY i 00’e€qHaHHA, Hi Trpadikd U1 KUTBKOCTI BUSBIEHHX OO0’€KTIB He
npoJeMOHCTpyBaitH, o6 texnika DropOut BimBaia Ha NMPOAYKTHBHICT AeTeKTOpa 00’ €kTiB Faster
R-CNN. HaBiTh mpomyCTHBIIM Kijbka OO0’ €KTIB Ta 3HIKYIOYH MOPIT TOYHOCTi, TAaKUil BIUIMB
BU/IA€THCS HE3HAUHUM. BinTak Hamepen HaBueHa 3rOPTKOBA HEHpPOHHA Mepeka s BKIIOUCHHS i1 y
cknan gerekropa o6’exriB Faster R-CNN ne moBunHa mictutu mrapy DropOut, ocobnuBo sKIIo 1t
Mmepexa 3 mapom DropOut HaBuaeThCst HAbaraTo JOBILE.

Kniouosi cnosa: BusiBnenHs o6’ extiB, nerekrop o6’exriB Faster R-CNN, Hanepen HaBueHa 3ropTKOBa
Mepexa, DropOut, MoHOXpOMHE 300pakeHHs, HABYAJIbHA MHOJKHMHA, CIIiBBiJHOIICHHS MEPETHHY i
00’ eqHaHHs, KITBbKICTE BUSBIEHUX 00 €KTIB.



