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We propose the direct method of Lie-algebraic discrete approximation for numerical solving
the Cauchy problem for advection equation in this paper. Discretization of the equation is performed
by means of the Lie-algebraic quasi representations for space variables of the equation and by means
of Taylor series expansion and small parameter method for the time variable. Such combination of
approaches leads to a factorial rate of convergence with respect to all variables in the equation if the
quasi representations for differential operator are built by means of Lagrange interpolation. The
approximation properties and error estimations for the proposed scheme are investigated. The
factorial rate of convergence for the proposed numerical scheme has been proven.

Key words: direct method of Lie-algebraic discrete approximations, advection equation, finite
dimensional quasi representation, Lagrange polynomial, small parameter method, factorial
convergence.

1. INTRODUCTION

The advection equation is the partial differential equation that governs the motion of
a conserved scalar field as it is advected by a known velocity vector field. It has many
applications in the different fields: physics, engineering and earth sciences [18, 19]. Hence
effective numerical solution is an important problem besides the variety of different
approaches [1, 8, 18].

We propose a numerical scheme built via direct method of Lie-algebraic discrete
approximations for advection equation and prove the factorial rate of convergence of
numerical scheme. The proposed numerical scheme, maintaining the same accuracy as a
generalized method of Lie-algebraic discrete approximations, requires significantly less
arithmetic operations.

The generalized method of Lie-algebraic method was introduced in [3] and
developed in [4, 20-22], which is based on classic Lie-algebraic method of discrete
approximations. The history of classical approach, open questions in this field and further
development guidelines are analyzed in [1]. Key findings of classical approach may be
found in [6, 7, 9, 11-17, 23, 24].

The main problem analyzed in these papers is the Cauchy problem for evolution
equation which is considered in a bounded domain Q:=(a, b) = R with time limit T <+o0

and cylinder Q; =Qx(0, T]:
find function u=u(x;,X,,...,X,,t) such, that
u, =K, x;o)u+ f(xt), xeQc R, t>0, (1.1)
u|t:0 =(x) € B,
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where B denotes some functional Banach space, linear operator K is assumed to be a
formal polynomial of elements from the Lie-algebra {x,d/0x,1} and can be represented as

ak ak+l ak+p
K:aky-‘rakﬂw‘i‘... ak+anTp,
where a,,; € R forall izﬁ and a, #0 and k>1.

Similarly, as in Calogero’s method, the Heisenberg-Weyl algebra

q
G=_®l{xj,a/8xj,1} has been used as a basic algebraic tool for constructing the
P
q
corresponding discrete approximations X ", Z(", 1™ ¢ _®1R”’ .
j=

Using g-dimensional Lagrange interpolation scheme problem (1.1) is reduced to the
Cauchy problem in the following form:

find functionu, =u, (t) such, that

du
)
— =Kyl + frmy  1>0, (1.2)
dt
U _o = Pimy) € By s

where K, denotes finite dimensional quasi representation of differential operator K , and

Q)
B, denotes finite dimensional space of approximations. System (1.2) is solved by means
of Euler’s or Runge-Kutta’s method [1, 7, 9, 13].

Since reduced problem (1.2) is solved making use of some numerical algorithm the
rate of convergence by time variable is constrained by the convergence rate of the method
based on, hence Lie-algebraic discrete approximations for space variables rate of
convergence is factorial [7, 9].

This restriction led to development of the Generalized Method of Lie-algebraic
discrete approximations proposed in [3], convergence rate for the time variable becomes
factorial [20]. The main idea of generalized method of Lie-algebraic discrete
approximations is the following: according to [3, 4] there was introduced the substitution
u(x,t) =v(x,t)+¢(x) for the Cauchy problem:

find function u =u(x,t) eV such, that
u, =Ku+f, V(x,t) e Q;, (1.3)
u|[:0 =peV,

where ¢ =@(x) eV denotes initial conditions , f = f(x,t) eC represents internal sources

and K denotes the differential operator of a problem (1.3). The idea of such substitution
was to reduce the computation effort maintaining accuracy which was demonstrated in the
case of boundary value problem for elliptic equation [2]. This leads to considering the
auxiliary Cauchy problem with homogeneous initial condition

find function v=v(x,t) eV such, that
v, =Kv+ Ko+ f, V(x,1) eQ;, (1.4)
v, =0
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The solution of problem (1.4) has been seek in the subspace of such functions which
are homogeneous at the initial moment of time: B = {v eV :v|t:o = 0}. Denoting the structure

elements in (1.4) by A:=0/ot—K, f= Ko+ f € C(Q;) , there was obtained a problem for
operator equation:
{for given operator A:B — C and element f €C,

find element v € B such, that Av = f~.

The Cauchy problem was reduced into the problem for the operator equation. This
operator equation was solved by means of the generalized method of Lie-algebraic discrete
approximations and there has been proven its convergence for some particular cases [3, 20-
22].

However, such a computational scheme is relatively slow and requires computing
costs, our goal is to construct a computational scheme that will provide the same accuracy
and convergence rates, and as a result it will allow to get the numeric solution faster and
with less computational cost, and moreover with the same accuracy.

This paper is constructed in the following way: we formulate the model problem to
which we apply the proposed numerical scheme in second chapter, analytical foundations
for the proposed numerical approach are discussed in the third chapter and its Lie-algebraic
discretization of the recurrence relation is investigated in the fourth chapter. Numerical
results with arithmetic operations count for the model problem are provided in the fifth
chapter.

2. PROBLEM FORMULATION
Considering a bounded domain Q:=(a, b)c R, time limit T <+, cylinder
Q, =Qx(0, T] we take the Banach spaces V =C§;{(QT)MC(6T ), C=C(Q;) and
formulate the Cauchy problem
find function u =u(x,t) eV such, that
u,+cu, =0, x,t) e Q; =Qx(0, T] (2.1)
ul,_, = o(x), pew™” ((—ICIT [cT) uﬁ)
where the constant ¢ € R denotes the advection velocity parameter, ¢ =@(X) €V denotes

the initial conditions. According to [2-4] we make of use the introduced substitution
u(x,t) =v(x,t)+(x) into (2.1) which leads to considering the auxiliary Cauchy problem

with homogeneous initial condition
find function v =v(x,t) eV such, that
v, =—cv, —co’, V(X,t) € Q;,
v, =0.
The solution of problem (2.1) we seek using iterative approach method via Lie-

algebraic discrete approximations, i.e. direct method of Lie-algebraic discrete
approximations.
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3. ITERATIVE APPROACH AND ITS CONVERGENCE
The main idea of the direct method of Lie-algebraic discrete approximation is to
approximate the solution directly. First of all we make the analytical setup for the proposed
approach.
Lemma 3.1. An integro-differential representation of the solution.
The function u =u(x,t) in the integro-differential expression

u(x,t) = @(X)—Cj(%}dr, (3.1)

is the solution of Cauchy problem (2.1).
Proof. Let us integrate the equation in (2.1) on the interval (O, t)
t t t
I@dwcj@dr =0, u(x,t)—u(x,0)= —cj'a—udr .
0 0 o OX 5 OX
With respect to initial condition, i.e. u|[:O = @(x) we obtain

u(x,t)=(p(x)—cj.g—idr.

We can show that such defined function is the solution of the problem (2.1): if we
differentiate (2.1) with respect to time variable we will get the equation we deal with:
ou ou

ot OX
Next, we evaluate the ul_ :

u(x,0) = o(x) —cj%“dr =(X).

Thus all requirements hold and the lemma has been proven.
Let us recall the generalized method of Lie-algebraic discrete approximations where
the substitution u(x,t) = @(x)+Vv(x,t) had been introduced in order to proceed to Cauchy

problem with homogeneous initial condition. In current case we have obtained a formula for

t
the function v(x,t), namely v(x,t) = —cJ'Z—u dr.
X
0

For further purposes let us denote the derivative of the function as * =d*p/dx* .

Lemma 3.2. The identity of series expansions.
The solution expansion

u.(x,t>=gﬁk%. (3.2)

where U, = (-1)*c*e" , can be derived by means of iterative approach and this expansion

is a Taylor series with respect to time variable.

Proof. At first we show that the series (3.2) can be derived by means of iterative
approach. To accomplish this we recall the integro-differential representation of the solution
(3.1) and set up an iterative process in the following form:

u=u(xt) (3.3)
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According to [10] the starting element in recurrence sequence u,(x,t) =o(x) can be
obtained by setting u_, (x,t) =0 in recurrence relation (3.3).
Let us evaluate u, (x,t) for k=1 2, 3:

U, (x,t) = () [ ¢'(X)dre = 9(X) ~cp' (),
U, (X,1) = (x) - CI% (0(x) —co'(x))dt = p(X) — @' (X)t +C? ”(x)
Us (X, 1) = o(X) — C;‘:%((p(x) —c@'(X)T+Cc%Q"(X) ;jdt =
= (P(X) _C(P'(X)t +c2 ”(X) ¢l m(x)

Let us show that u, (x,t) = Z(( 1)kck(p(k’(x)) We assume that this statement holds for
k=0
n+l

u, (x,t) and we check whether it holds for u,_,(x,t),i.e. u,,(x,t) = Z(( 1) ckop® (x))

k=0

Hence we consider the term u,,, (x,t) :

(%) = 900 ~ ] = (u, (% 9 e = 90— g( > (- 1)kck<p‘k>(x))%jdr -

=@(X)—Cj(

=0(X) - CZ(( D c'o" P (%)

k=0

> (D e o (%)) jdr—(p(x) c (ch%(k“’(x)j J—

k=0

n

k+l k+1 (k+1) tk+l
(k+1)lJ (P(X)+k0(( D ( )(k+1)'J

-o)s i((‘”k o (X)%j =S o 00)t

At the current moment we have shown that expansion (3.2) can be derived by means
of the iterative approach (3.3). As a second step we derive the Taylor series for the problem
(2.1) with respect to time variable and verify that obtained expression is identical to the
expression stated in (3.2). Let us consider Taylor expansion at the initial moment of time:

ou o’u t? (& t® o"u t"
— t+ _2 _I+ _3 _I+.--+ n _I y
ot ot o 2! ot o 3 ot o) N

am—lu n+1
having the following propert
o t_]n+1_l g g property

u(x,t)—u,(x,t) =R, (xt).

u,(x,t) :u(x,0)+(

with the remainder R, (X,t) :{
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k
Although we have not explicit formulas for the [a—lkJ
ot

} k >1, nevertheless we can
t=0

evaluate them with respect to initial condition and along the equation, i.e. Zt_u =—c— . For
X

. ou
instance, one can evaluate | —|

ou ou 3 '
(3 (] =2 teento
U . 0fdu B 28_2 -
(8‘:2 t-Oj_ Cé'x(at o ox? (u|l: ) (X)

To show that

[ﬂ

k

at t=0

we assume that expression of the above holds, and retrieve the following
o u 0 (8 u k) porn ) kel kel (k)
Tl = S = e (09 (1) = (e e (x)
o, ox| ot

We see that expression holds and we have derived the expansion (3.2) using the symbolic
computation tools.
As a third step we show the connection between these approaches. Let us consider

] =(-D"c*o"(x), k21,

m

un(x,t):Z((—l)kc"(p(k)(x))t The calculation of the 2 u” yields:
k=0

t=0

ou, - —eq N —\k K, (K) !
to—( cp (X)+kZ_;(( 1) c o (x )(k 1),j 3 cp'(X),
82un 2 , k (k) L,
o, ( 0‘“2(( 1)*ce®(x )(k 1),j e ¢"(x),
a;[ti” g = {(‘Dmcm(p(m)(x)+§;((_1)kck(p(k)( ) (k 1)|] B _ (—1)mCm(p(m)(X) .

Thus we have proven the expansion (3.2).
Lemma 3.3. Convergence of the iterative approach.
The sequence {un(x,t)} defined in (3.2) is convergent to the exact solution, i.e.:

rIergzun(x,t) =u(xt),
where u(x,t) is the solution of the problem (2.1).
Proof. Since u, (x,t) is the Taylor expansion of the solution u(x,t), so if u,(x,t) is
convergent, then u, (x,t) converges to the exact solution u(x,t). The remainder of Taylor
series for function u(x,t) has the following form:
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an+lu tn+1
Rn (X,t) = [? ] '
o™ | _. ) (n+1)!
The exact solution of problem (2.1) is the following u(x,t)=@(x—ct), thus
0" i1 e ™0 . L . e .
T =(-D)"c VT and since the function in the initial condition is bounded, i.e.
QpeW™* ((—|c|T,|c|T) ug_z) we have:
n+1 dn+1 e dn+l
o = sup et S
ot o (De0; dx dx -
Since u(x,t)—u,(x,t) =R (x,t) the estimation yields:
||6n+1u tn+l | n+lT n+1 dn+1
Ju-ul, === < o
= jet™ (n+DY (n+D! dx™
n+1. n+1
c Tt n+l n+l C n+l
limju—u, | =lim |—dn(f :d—n(f m|—:0
n— ol (N x| ax™™ (n+D)!

Thus u,(x,t) converges to the exact solution u(x,t).

At current moment we should verify that u, (x,t) = Z( 1)ka(p(k)(X) , is the

k=0
solution of problem (2.1).
Having calculated auxiliary components:

aaul Z( l)kck (k+l)(X)
8 Z( l)k K (k)( )(k 1)|_kz(;( l)k+1 k+1(p(k+l)(x)%,

we can substitute them in the equation (2.1) and obtain the following expression:

ou, 41 glert (kD) < K Ak (k+1) t*
— -1 X +c -D"c X)—=
e ax Z( ) ( ) _ k;( ) cior( )kl

+00

+ + + + + + tk
Z( 1)k 1Ck 1(p(k 1) (X) Z(_l)k lck 1(p(k l)(X)_|:
k=0 ' k=0

+00

Z(( l)k+l K+l (k+l)(x) - 1)k+1Ck+1(p(k+l)(X))t?

Thus, lemma has been proven.
Proposition 3.1. Recurrence relation for the expansion terms.

Terms {Gk (x)}E:1 in expression (3.2) can be computed by means of the following

recurrence relation:

~ d ~
uk+l :_Cd_(uk)’ (34)
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Proof. To prove this proposition we will use a Small Parameter Method. We seek
solution as a formal expansion by small parameter:

u, (x,t) = >0, (x,t)e"
k=0
for the parameterized problem:

find function u=u(x,t) eV such, that
u, =—¢(cu, ), (x1) e Q, =Qx(0, T]
U =e(x).  oeW (T dm)ua).

Substitution of formal series into parameterized problem yields the following expression:

2 ol (%t 0 t

Zuk(x)gk: ZU(X)k'

k=0 k=

After auxiliary algebraic calculations:
i@dk(x,t) o :Ci 6L]k(x,t)8k+l Zau (1) o = o0, (x,t) N
k=0 at k=0 8X k=0 k=1 aX
N ol, (x,t) +i@uk(x,t) oo CZ ad, ,(x,t o
ot ot kO

and as a conclusion we obtain:
AUy (.1 +i %H:—aak‘l e“=0.
ot —\ ot OX

Taking into account the initial conditions
u, (x,0) =0, (x,t)e" = o(x),
k=0
=(X),

we obtain the set of initial conditions:
'jo t=0
G =0, k>1.
klt=o

The next step is that we introduce the set of Cauchy problems:

find functions U, =4, (x,t) eV such, that

%:_c% (xt)eQ, =Qx(0,T], k=1
X

and
find function U, =U,(x,t) eV such, that
%
ot
ol =0(x),  @eW™" ((—|C|T,|C|T) Ug_z),

=0, xt)eQ; =Qx(0,T], k=1
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A

The solution of the first problem is U, (x,t) = ¢(x) . In fact, equation % =0 shows

that there are no changes during the evolution and L]OL:O =@(x) will not change during the

A

all process, thus U, = @(x). On the other hand, the equation aati =0 leads that solution of

this equation might be an arbitrary function that doesn’t depend on time variable and since
that U, at initial moment of time has a constraint as L]o| . =@(x) then the solution is

t=
L]0 =¢(X).
Similar approach we use for the next problems. Evaluation of U, yields the

following expressions:

LN % = —cg/(x) =, = ~c[ ¢/ (X)dlt = ~co/(X)t + C, (1),

ot OX

where C,(t) is an arbitrary function. Taking into account the initial condition L]1|t:O =0 we

obtain C,(t)=0 and G, = —co'(X)t =u, (X)t.
k k
We can assume that G, (X, t)=(—1)kck(p(k)(x)%=ﬁk (x)%, let us show that this
expression holds for k +1:

auk+1 =—C al"Ik :>auk+1

ot OX ot

A PR . tk ok . tk
= O (0t) =] ((—Dk R (X)Fjdt = (e (9] dt =

+ + + tk
=(_1)k 1Ck l(P(k 1) (X)ﬁj

tk+l tk+l

=l .
(k+1) " (k+2)!
Since U, (xX)=(-D c (%) and U, ,(X) =D " (x) it implies that

ﬁk+l(X,t) = (_1)|<+1Ck+1(p(k+1) (X)

Uy = —cdi(ﬁk) and it proves the proposition.
X

Before we move forward we have compare these three approaches which have been
mentioned just above. It is obvious that iterative approach is computationally expensive,
since at each step one should integrate an increasing expression. Taylor expansion requires
symbolic computations and, thus, it cannot be used for the finite dimensional calculations.
As our point of view, the most suitable approach, within these three approaches, is the
method of small parameter. This approach allows fast symbolic computation in order to
obtain the analytical solution and it is a good basis to make of use the Lie-algebraic discrete
approximations. Next chapter is devoted to constructing the numerical scheme on top of
recurrence relation via finite dimensional quasi representations.

4. NUMERICAL SCHEME

The main idea of numerical scheme construction for the direct method of Lie-
algebraic discrete approximation is to replace the elements from Lie-algebra
G={, x,8/éx} in recurrence relation (3.4) by theirs finite dimensional quasi
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representations {L X, Z} respectively. Lagrange polynomials have been chosen as a tool
for finite dimensional quasi representations construction.

4.1. NUMERICAL SCHEME CONSTRUCTION
Let n, denotes the count of nodes in domain € and n, denotes count of nodes in

interval [0, T] and Q; , denotes the set of nodes {x, |, and {t;}", . Lagrange polynomials

I;(x) built at the nodes {x,}I, is the basis in finite dimensional space B, . Let us denote the
matrix Z as finite dimensional quasi representation of the differential operator d/dx . The

matrix Z is built upon the rule Z; =1i(x;) [14-16]. The key property of this matrix is

such, that matrix Z* =(Z)k approximates differential operator d*/dx* and matrix Z is
nilpotent [14], i.e. there is some number n that all further multiplications give nil matrix:
vk>n:Z*=0.

Having built all required quasi-representations we provide the following proposition
as a key finding of this paper, namely the discrete recurrence relation as a Lie-algebraic
discrete approximation of the recurrence relation.

Proposition 4.1. Finite dimensional recurrence relation for the expansion terms.

Terms {Gk,h}::1 in expression (3.2) can be computed by means of recurrence relation:

Gk+l,h =-cZ Gk,h '
Upn = P s

which is the Lie-algebraic discretization of the recurrence relation (3.4)

Proof. Since U, , is the finite dimensional quasi representation of U, and matrix Z

(4.1)

is the finite dimensional quasi representation of differential operator d/dx , then expression

JM(X)——C—( (X)) from (3.4) may be rewritten as a finite dimensional quasi

representation U,,,, =—CZ Uy, .

Since the matrix Z is nilpotent, the length of a sequence U, , in (4.1) is n+1. To
prove that property one can rewrite the recurrence relation into the following form
U, =—C“Z" @,. When the index k reaches the number n, we have 4, , =0,k >n,, since

Z™ =0 [14].

4.2. APPROXIMATION PROPERTIES

Since the numerical scheme uses Lagrange interpolation and Lagrange polynomials,
we need to discuss some issues regarding the approximation properties of Lagrange
polynomials in the context of constructed numerical scheme.

Lemma 4.1. Derivative error bounds for Lagrange interpolation.

Let v(x) eW**(Q) and v,(x) denotes the Lagrange interpolation of function v(x)

built at nodes {xi }i”:U. Then the following estimation of the error bounds for Lagrange
interpolation holds:
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b=, <SR
°° n—k+

Proof. When interpolating the given function v(x) by Lagrange polynomial v, (X)

©

of degree n at the nodes {xi };‘:0 we get the remainder which can be expressed as

n+1 (E_,)

v(x)-v, (%) 03()( )

, £ Q and can be bounded as

Joon (],
Jv-v,|, < (n+1)'

With estimation [|eo, (x)] < (diam€2)™* we have the final estimation:

- n+l
< (diamQ) |

(n+1)

Let us estimate the |v'—v]|_. The derivative of the remainder with respect to space

(n+1)

©

= o

©

variable has the following form:

n+l(§)
V-Vi(0 =0l (s

Since function ), (x) is a sum of n+1 terms, each of them is a product containing

,Eed

n units of x—x;, then the estimation of |}, (x)| < (n+1)(diamQ)" yields

- n
. (diamQ) |
n!
V|, - The derivative of the remainder with respect to space

v,

©

Let us estimate the |v" -

variable has the following form:
n+l
' (é)
V'(X) -V (X
00V =0f s

The function () is a sum of n(n+1) terms, each of them is a product containing

n—1 units of x—x, . Thus the estimation of "0)' (x)|| <n(n+1)(diamQ)"" yields

-

And finally let us estimate the norm ||v(k) - ,(k)” . The derivative of the remainder with

(n+1)

©

respect to space variable has the following form:
n+l
VO () v (x) = 0 (x) (é)
(=¥ 00 =0 (0 5 &
The function o (x) is a sum of (n+1)n(n—1).(n—k+1) terms each of them is a
product containing n-1 units of x-x. Thus the estimation of

"m(k)(x)" (n+n(n—1)..(n—k +1)diamQ)" " yields the final estimation:
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V(n+1)

d- Q n—k+1
I

Thus, the lemma is proven.
Let us introduce the cylinder norm for the function v=v(x): R — R as a following

. 13 . . - . .
functional: ||v||; =—12v2(xi) , being a norm in the finite dimensional space B,. One
h n+ "

can verify that the following inequality holds ||v||Bh <V, -

In fact, it is easy to verify that inequality of above has place:

M, = S ><J +1z(max|v<x>|)

i=0 i=0

e L

n+1

Lemma 4.2. Derivative error bounds for quasi representation.
Let v(x) eW™*(€2) and v, (x) denotes the Lagrange interpolation of function v(x)

built at nodes {x}',, matrix Z* as finite dimensional quasi representation of the

differential operator d*/dx* , then the following estimation of the error bounds for finite

dimensional quasi representations holds:
-2, s -]
By, ©

Proof. Since the norm of space B, is actually a norm of vector, we represent the

difference v —Z*v as a vector at the nodes of interpolation {x, }",. We obtain the vector

{v"‘) (xi)}i":0 for the expression v and {v(x,)}, for the element ve B.
According to the construction of finite dimensional quasi representations we can
verify that (Zkv)i =v®(x,). To ensure that property let us consider the particular

component of a vector Z*v :
(Z9) = (19906, 89 06 )W), v (%, ) = D (I J) = v ()
=0
As a conclusion of (Z"v)i =v®(x) we get the generalization:
( ©_z v) ( * —vfk))(xi) which is used for the desired estimation:

25, = [E5 kool <[5 (st o) v

xIO

Therefore the lemma is proven.

4.3. CONVERGENCE AND ERROR ESTIMATION

The key finding of this paper is the proposition of method which has almost the same
properties regarding the convergence but has more comprehensive way in the constructing
and implementation of the numerical scheme. Let us proceed to discussion concerning the
convergence of numerical scheme.
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Theorem 4.1. Convergence of the direct Lie-algebraic numerical scheme.
k

Let u=u(x,t) be the solution of the problem (2.1), u, = Zﬁk % be the Taylor
k=0 -

expansion of the solution and u, (x,t) = ZKZUM JI (x)} be the finite dimensional
j=0

solution. Then built numerical scheme (4.1) is convergent having the factorial rate of

convergence:

n+1

(n+1)

T 4+ (2max{[T, (diamQ)})”+l|
(n+1)!
Proof. The norm |ju —uh||Bh can be split to two others norm,

Ju=ung, <

4.2)

Ju=uiflg, =u—u,+u, —uyfly <fu—uyfly +u, —uy,
where the first norm |ju —un||Bh represents the accuracy of approximation of the solution by

means Taylor expansion and second form represents the error of Taylor series
approximation by means of Lie-algebraic finite dimensional quasi representations. Using
lemmas 3.3 and 4.2 we obtain the estimation for the first norm:

|C|n+l_|_ n+l d n+1
(n+1)! olx"+l B

Decomposition of the norm |u, —u, | implies the following:
h

no_ tk n__ tk N k
lun =ully, =200 o= D Un Z(U ~U,, h) <Z||“k Uy, h"B o
L v € M k! g, k=0 k-

Since U, (X) =(-D"c*e® and U, ,(x) =(-1)*“c*Z"p, I(x), using lemma 4.1. and 4.2. we
obtain the estimation of the approximation error on the some particular iteration step:

‘, S|c|k||(p(k) _Zk(Ph” |C| \/ Z[@(k)(x )- (pfk)(x )]
S Rt o

n+1 (n+1-k)
In addition, we denote M =max{|c|T, (diamQ)} and recalling the binomial property

Tk
OOW =

Ju=talls, <fu-ua. <

||uk —Uyp

(n+1)

©

n 1 n+1l

é(n—k)!k!:(n+l)!

Un _uh"Bh

|| (diame)"** |

0 Ui <2"uk_ukh”3 kI _k_o{ (n+1-k)

i || (diame)™** T S|
=&l (n+1-ky k!

(n+1)

(n+1)

N4

(n+1)

N4
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< M n+lf| _(n+1)

: 1 e M)
3 4L oy

= (n+1)
As a conclusion of the above findings we can verify that lim|u, —u,||. =0. In fact:
nN—o0 h

1on n+l
Iim||un _uh”Bh < |im("q)(n+1) MJ < ||(p(n+1) lim (ZM)

n—ow n—w o (n +]_) © n—w (n +1) -
Finally we have the estimation (4.2), which implies the convergence of the proposed in (4.1)
numerical scheme, namely limju—u,|. =0, since

limlju—u,

N—o0

<\limu—u,
—0!

+limlu, —u,

Br  nooo

Bh):O'

By

5. NUMERICAL EXAMPLE

Let us proceed to the analysis of numerical results. For that purpose, we consider a
model problem with the advection equation [21]

find function u = u(x,t) such, that :

ou adu
—+—=0,V(x,t , 5.1
Tairy (x,t) eQ; (5.1)

Ulzo=sinX,
having the exact solution u(x,t) =sin(x—t).
The norm of the error of approximating the exact solution u—u, =u(x,t)—u,(x,t)
in space L*(Q,) is calculated by the formula

"U _uh"iz(QT) = _U(u _uh)2 dxdt,
or

in the space L"(Q; ) is calculated at the discretization nodes

u=thl g = 500 0D -, D),

and the norm in the Sobolev space W*?(Q; ) [5] is calculated according to

2 _ , (ou ou ) (au au, )
||u—uh||W1,z(QT) —Q{(u—uh) +[§_6_th J{E_Ehj }dxdt.

The exact solution is known for the problem (5.1), thus we use the following rule for

evaluating the rate of convergence: p, = Iog{MJ . If we get value |u—u,| =0 and

Ju—uyo|
Ju—u,,||=0, thus the value 0/0 is shown as NaN (not a number).

The model problem is investigated by means Lax-Wendroff scheme of finite
differences method (FDM), method of Lie-algebraic discrete approximations (MLADA),
generalized method of Lie-algebraic discrete approximations (GMLADA) and Direct
method of Lie-algebraic discrete approximations (DMLADA). The solution of Cauchy
problem with the system of differential equations was performed using Mathematica.
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Let us denote Ax=1/(n,—1) — the step of discretization by space variable,
At =1/(n, —1) — the step of discretization by time variable. If discretization steps by both
variables are equal then we use h= Ax= At for FDM and GMLADA. Nevertheless h
denotes the step of discretization by space variable for MLADA, because time step is

chosen automatically while solving the Cauchy problem with the system of differential
equation by means of Wolfram Mathematica software.

Table 5.1
Error estimations in L?(Q,) space
Step h FDM MLADA GMLADA DMLADA
h=1/2 0.0152981 0.0849962 0.0396427 0.00505709
h=1/4 0.00408866 0.00623154 0.00053962 0.000384316
h=1/8 0.00103819 5.7579-10°° 2.87577-107 2.87141-107
h=1/16 0.00026054 2.16961-107° 2.38063-107 2.37838-107%
h=1/32 0.00006510 - 3.34574.10™" | 3.15082.107"
Table 5.2
Error estimations in L*(Q; ,) space
Step h FDM MLADA GMLADA DMLADA
h=1/2 0 0.46952 0.0660836 0.0302731
h=1/4 0 0.0514178 0.0037222 0.0034583
h=1/8 0 7.90058-10°° 4.24574.107° 4.24392.10°°
h=1/16 0 4.70088-10* | 6.19514-10™ | 6.19514-107
h=1/32 0 - 7.07336-107* 7.07335.107*
Table 5.3
Error estimations in W**(Q; ) space
Step h FDM MLADA GMLADA DMLADA
h=1/2 0.0815902 0.383927 0.0903126 0.026232
h=1/4 0.0394812 0.0390588 0.0027526 0.00263218
h=1/8 0.0195588 0.0000578184 3.1048-10°° 3.1048-10°°
h=1/16 0.00975607 0.000338286 4.45453.107 4.45398.107
h=1/32 0.00487437 - 7.13162.10™" | 7.76035-107"
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Table 5.4
Rates of convergence in L*(Q,) space
Step h FDM MLADA GMLADA DMLADA
h=1/2 1.90365 3.76974 6.19897 3.71794
h=1/4 1.97756 10.0798 10.8738 10.3863
h=1/8 1.99448 -1.91382 26.848 26.8472
h=1/16 2.00057 — 6.15287 6.23811
Table 5.5
Rates of convergence in L”(Q,) space
Step h FDM MLADA GMLADA DMLADA
h=1/2 NaN 3.19085 4.15005 3.129868
h=1/4 NaN 9.34609 9.77594 9.670485
h=1/8 NaN -2.5729 26.0303 26.02968
h=1/16 NaN - 66.2473 66.2473
Table 5.6
Rates of convergence in W**(Q,) space
Step h FDM MLADA GMLADA DMLADA
h=1/2 1.04723 3.29711 5.03606 3.31699
h=1/4 1.01335 9.3999 9.79208 9.72754
h=1/8 1.00344 -2.54864 26.0547 26.0548
h=1/16 1.00108 — 9.28683 0.16476

From the above tables we can see that proposed numerical method has the same
accuracy as Generalized method of Lie-algebraic discrete approximations and even better
accuracy for the small count of discretization nodes.

Table 5.7
Count of arithmetic operations for n, =n, =3
Step h=1/2 GMLADA DMLADA
Errorin L*(Q,) space 0.0396427 0.00505709
Additions, subtractions 1770 159
Multiplications 1843 159
Divisions 83 31

Let us proceed to the main benefit of the proposed numerical scheme, namely the
significant reduce of the arithmetic operations count. We compare both methods for solving
the problem (5.1), namely the generalized method of Lie-algebraic discrete approximations
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and the direct method of Lie-algebraic discrete approximations for the fixed count of

discretization nodes at each of tables.

Table 5.8
Count of operations for n, =n, =5
Step h=1/4 GMLADA DMLADA
Error in L?(Q,) space 0.00053962 0.000384316
Additions, subtractions 170588 1151
Multiplications 171251 1115
Divisions 627 131
Table 5.9
Count of operations for n, =n, =9
Step h=1/8 GMLADA DMLADA
Errorin L*(Q,) space 2.87577-10°" 2.87141-10”
Additions, subtractions 27278784 12439
Multiplications 27288163 11979
Divisions 6563 739
Table 5.10
Count of operations for n, =n, =17
Step h=1/16 GMLADA DMLADA
Errorin L*(Q,) space 2.38063-10" 2.37838-10
Additions, subtractions 1199234704 162241
Multiplications 1199374531 158219
Divisions 83523 4931

As it can be seen from the above tables the main benefit of using the proposed
numerical scheme is reduced count of arithmetic operations maintaining the same
computational properties as a generalized method of Lie-algebraic discrete approximations.

6. CONCLUSIONS

Direct method of Lie-algebraic discrete approximations is the combination of
classical Method of Lie-algebraic discrete approximation, namely for discretization with
respect to space variables and analytical tools for solving Cauchy problem. The key
property of such a combination is that method approximates the solution instead of the
differential operator; this method brings us significantly closer to the solution of a problem.
Such approach allows obtain numerical result with the same high precision and with
significantly less computational costs in compare to the generalized method of Lie-algebraic

discrete approximations.
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We have presented the application of the direct method of Lie-algebraic discrete
approximations for solving the Cauchy problem for advection equation in this paper.

There were compared different numerical schemes (finite difference method,
classical method of Lie-algebraic discrete approximations, generalized method of Lie-
algebraic discrete approximations and direct method of Lie-algebraic discrete
approximations) for solving the Cauchy problem for advection equation.
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3anpornoHOBaHO i 0OIPYHTOBAHO MPSIMUA MeTo Jli-anreOpruyHNX TUCKPETHUX alpOKCUMAIlil
JUISL YMCENTBHOTO PO3B’si3yBaHHs 3amadi Komri [y piBHAHHS anBekuii, ske 3aJaHe y 3aMKHYTil

obnacti 2:=(a, b) = R 3 1acosoro mexero T <+
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sHatmu ¢gynxyiio U =U(X,t) maky, wo
u,+cu, =0, xt) e Q; =Qx(0, T],

ul_, = (%), peW °°'°°((—|C|T [cT) ug_z)

ne crana C € R — wBuakicts ansekuii; ¢ = (p(X) — TI0YaTKOBa YMOBA.

Imest mpsimoro mertoxy Jli-anreOpHyHMX MUCKPETHUX ANpPOKCHMALil IOJISrae y ToMy, 1o 3
BUKOPHCTAHHSAM aHAIITHYHUX IMIXOMIB, 30KpeMa METOAYy Majoro Iapamerpa, IMo0yIoBaHO
HaOJIVDKeHUH aHAIITHYIHUN PO3B’SI30K 3a/1adi y BUIIIS/II CTETICHEBOTO PSIIY 38 9aCOBOIO 3MiHHOIO

o~ tk ’ " t2 m t3 n.n_(n tn
U, (1) = D, == () ~ o' ()t + 70" () ~C*p" ()= +..+ (-1)'c"o™ (%) —.
~ K 2! 3 n!

[Ticns mporo moOymoBaHO HOTO MUCKPETHUIT BIIIOBITHHUK 3 BUKOPHCTaHHIM KBa3i300paKeHb
enementis anre6pu JIi G = {1, X, 6/x}

v

no_ t? t?
Uy, (t) = E U n qu)h _CZ(Pht+CZ(Z)2(ph__03(2)3(ph §+---+(_1)ncn(z)n(Ph o
k=0 ! | !

2!
ne Matpuusg Z anpokcumye audepeHIiaabHui onepaTop d/ dx .
JloBeneHo, o o04nCITIoOBaIbHA cXeMa 301KHa, a HOpMa MOXUOKU XapaKTePH3y€eThCsI OLIHKOIO
o T ™ + (2max{|cfT, (diam))'™ oD
(n+)! o
OO0unCIIOBaIbHI €KCIIEPUMEHTH 3aCBiMYMIIM, IO MPH OJHAKOBHUX MOKAa3HHKAX TOYHOCTI Ta
30DKHOCTI, XapaKTepHHUX A y3aralbHeHOro MeTony Jli-alreOpHuHuX AWCKPETHHX alpOKCHMAIiH

BIAJIOCS CYTTEBO 3MEHIIUTH KUTBKICTh apH(PMETHYHHX OTEpaliil 3 BUKOPUCTAHHSAM IPOMOHOBAHOTO
HAMH TiIX01y.
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CKIHYCHHOBUMIpPHE KBa3i300paxkeHHs, oiHOM Jlarpanxa, MeToJ] MaJioro mapamerpa, (akropiaibHa
301KHICTB.



