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We consider the construction of a posteriori error estimator (AEE), based on the reference
solution for one-dimensional hp-adaptive finite element method (FEM). It is shown that the square of
the global error estimator can be represented as a sum of squares of single element error indicators,
which are calculated independently on the elements of the selected mesh. The obtained
decomposition can be used to justify the iterative algorithms of hp-adaptive FEM schemes. The
proposed estimator can be used to calculate the error decrease rates for different local mesh
refinement of just single finite element without re-calculating the entire reference solution on the
whole problem domain. In addition, by choosing the system of Lobatto functions as a finite element
basis, we propose an efficient scheme for calculating the local indicators.
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1. INTRODUCTION

Adaptive finite element schemes are one of the most commonly used in practice
algorithms for discretization of boundary value problems for both ordinary differential
equations and partial differential equations [2, 3, 9]. The key problem in constructing such
schemes is a reliable estimate of the error of the approximation found on each finite
element. The distribution of values of the obtained estimates allow us to find the regions of
the solution’s domain of definition with the increased level of error and, in turn, carry out
the local refinement of the mesh in these regions in order to achieve the given accuracy of
approximation with the most economical use of computing resources [1, 2, 4-6, 13, 14]. In
addition to the above-mentioned local coarsening/refinement of a finite element mesh at
each adaptation step (h-adaptivity), we can also increase the order of polynomial
approximations on selected elements with higher levels of error (p-adaptivity) [13, 10-12].
The combination of the described adaptation options is the basis of the so-called hp-
adaptive FEM schemes [4-6, 10-14]. The latter, giving a greater freedom to construct the
approximation spaces, introduces a complex problem of optimal choice between the local
spatial refinement of a mesh and/or an increasing the order of the basis functions on finite
elements [4, 13]. Successful resolution of this optimization problem requires, in particular,
the construction of error estimates for high order approximations, which will allow a certain
homogenity of computational procedures to be achieved on finite elements. However, the
difficulty in solving these problems can be compensated by the potentially exponential
convergence of the calculated sequence of finite-element approximations [10-12].

In this article, we consider a posteriori error estimator, based on the reference
solution, which can be used regardless of the type of boundary value problem, the order of
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approximation and the dimension of the problem domain of definition. Such estimator can
be seen in the fundamental papers of Demkowicz [4] and Solin [14]. It was used there to
construct automated software packages for engineering computations using hp-adaptive
finite element method. It should be noted that in these works there are local error indicators
considered without a strict justification of the overall error estimator across the entire
problem domain. The latter requires the establishment of a certain link between the global
estimator of the error and the distribution of its local indicators, which is the main purpose
of this article.

For an one-dimensional case, it will further be proved that the square of the
considered AEE, determined on the whole domain of the problem, is equal to the sum of
squares of the same estimators, but calculated separately and independently on each finite
element. We provide further exploration of the established fact and alternative proof of it,
which is based on a more general considerations using Green’s function. For one-
dimensional space, such AEEs are used to estimate the approximation of the FEM
approximation for convection-diffusion-reaction problems (which, in fact, are the most
general linear problems in this case):

given coefficients of diffusion x = u(x), convection g = S(x),
reaction o =o(x), and sources f = f(x)
and numbers ,y,d,,9, € R;
find function u =u(x), such that M)

Au z—(,uu’)'+,8u’+au=f on Q=(0,L),

wu'| o =alu(0)—-gol, —wu'|, | =yu(b)-g.]
Problem (1) admits the following variational formulation:

{find function u eV :=H(Q), such that 2
CouV)=(l,,V) VeV,
where
Co(U,V) = (uu' V)+(pu',v)+(ou,v) @)
+auwv|,_, +yuv|,_, VuyvevV,
(Ig,V) = (f,V) +agov(0)+yg V(L) wveV. 4
Here

(f,v)= jﬂ fOvO)dx  VF,ve l2(Q).

We assume that the data of considered problem (1) guarantee the variational formulation is
(2) well-posed.

General purpose of hp-adaptive FEM algorithms is to build the sequence of finite-
dimensional piecewise-polynomial approximation spaces {V, },V,, <V, dimV,  <+o,
which allows you to compute the sequence of convergent approximations i.e.

find approximation u,, €V, , suchthat ¢, (u,,.v)=(l,,v) WveV,. (5)

With a given value of the tolerance parameter tol >0 the algorithm should

guarantee fulfillment of the criteria
llu—u, I}, <tol (6)
with the least computational cost. Here
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VIl = Ca(v.v)

is the energy norm of the variational problem (2).

As it was mentioned in the beginning, in this article we will study the specific a
posteriori error estimator and will concentrate our attention on the computational scheme
for it. The structure of this article is as follows: in section 2 the general definition of the
error estimator, based on the reference solution, is provided; in section 3 the scheme of
calculation of the estimator is provided and we discuss aspects of its effective
implementation; in section 4 the main theorem on the representation of a global AEE, based
on the reference solution, in the form of the sum of the squares of the corresponding local
indicators is proved; in section 5 we further explore the problem of estimator decomposition
and consider alternative proof of the main theorem based on more general criteria.

2. APOSTERIORI ERROR ESTIMATOR BASED ON REFERENCE SOLUTION

Let us consider the mesh Xz{xi}iN:O’

0=x, <X <..<X, =L, denote

h =% —X_,i=1..N, and introduce the finite element partition <, ={ (xH,xi)}iN:l. We

assume, that on each finite element K=(x_,x) space X, (K) of all possible
polynomials, degree of which does not exceed p, is constructed (we will also use the
notation p, =p,). We define vectors h=(h,h,,.. h,) and p=(p,p,,..,py), that

uniquely define a mesh of finite elements and polynomial degrees of approximations on the
corresponding elements. Now we can define the space of approximations on the entire
problem domain of definition

X, (@) ={veC@)|V|, X, (K), K=(%_,%),i=L..,N}.

Let us construct finite element approximation u, , € X, ,(€2) for problem (2). Define
operation R" 3 (V,,V,,...,Vy) =VI>V=(V,V,V,,V,,...,Vy,Vy) € R*N . Let us also assume
that if we have defined the wvector v=(v,v,,..Vy), then denote
v+1=(v,+1v, +1..,v, +1) . Consider a global estimator 7, that is calculated as a certain
distance between the current approximation u, , and another approximation
Upszpia € Xnizpa (€) - Let us recall that mesh defined by the pair (h/2,p+1) is obtained
from mesh (h, p) by applying uniform bisection and increasing by 1 approximation order
on each new sub-element. We will use the following formula to compute the estimator:

Mo =l Un/2,p41 ~Unp ”Hl(ﬂ): 2775 , (7
\I K

where local indicators 7, are computed as:
M = Unjzpea —Un,p ”Hl(K) : (8)
Approximation u,, .., We will call reference solution [4, 14].

Considered a posteriori estimates has advantage over other estimates because it can
be used regardless of the adaptation scheme and/or boundary value problem or mesh
structure. On the other hand, in the context of hp-adaptation algorithms we need to compare
different refinement patterns on each finite element. Such comparison is done by comparing
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the error estimates for different refinements. Thus, if we want to proceed with such
technique and use indicator (8), we will need to calculate estimate

e =l Un/zpi1 —Un IlHl(K) )
where mesh defined by (h’, p") is obtained from current mesh by refinement of single
element K. In this case it is not possible to find »™ efficiently, without calculating
approximation u,, . on entire domain. Taking into account that we have many elements and

on each of them we should compare different refinements, we can conclude that obtained
estimate is not efficient. To improve indicator 7, , in [4,14] it is proposed to modify (8) in

such way that for fixed reference solution we will calculate its projection onto the current
mesh rather than direct FEM approximation:

~ K
Nk = |uh12,p+l _Hh,p L'Ih/2,p+1

)

HA(K)

where || is defined as:

HY(K)
2

|W HY(K)

=[(w) dx vweH'(K), (10)

Hr’ip :Hl(K)—>XpK (K) is an orthogonal projection operator onto the mesh defined by the

pair (h, p) . Introduced projector is constructed later in (12).
We can compute the same estimator on the entire domain:

L e
Mo = |uh/2,p+1 h,p Un/z,pat WY@ (11)

In this article we study the relation between quantities of the estimator 7, and
indicators 7, .

3. PROJECTIONS OF THE REFERENCE SOLUTION AND THEIR EFFICIENT
COMPUTATION
Let now describe a construction of the projector, mentioned above. Without loss of
generality, we will proceed with projection on the entire domain Q . In the completely same
manner, we can find a projection on the single element K or even on every other interval.
For every function we H'(Q) its orthogonal projection W, = ﬁp w is defined as

follows:
find w, , € X, ,(€2) such that

W, 5 (0) = w(0), w, , (L) = w(L),

(12)
| W_Wh,p |

< |W—thp | W, , € Xh'p(Q),

HY(Q) HY(Q)

Vi,p (0) = W(0), v, , (L) = w(L),
or using the next definition, which is equivalent to (12):
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find w, , € X, ,(Q2) such that
Wy (0) = w(0), w, , (L) = w(L),

(13)
J.(W;W -w)V'dx=0, WVveX, (Q),
Q
v(0) =v(L) =0.

Consider now the general scheme of computation of projection, which is defined by
(13). Inspace X, ,(€2) we choose Lobatto basis {(pj}ﬁ":0 of the following kind [4, 14]:

X X
@y (%) :1_I’ @ (x) = Il
2x/L-1 (14)
?.(X) = j I,(t)dt, n=2,..,M,
-1
where |, :[-L1]—>R is a Legendre polynomial of degree n—1.
It should be noted that computing the values of basis functions ¢, directly by the

given formula (14) is inefficient. For a more effective formula, let’s consider the known
Legendre equation

[t =D O =n(n+D)1, (1), te[-L11]. (15)
By substituting n—1 instead of n and integrating (15) on a segment [-1, 2x/L-1]

we will obtain an alternative representation of the basis bubble functions:

0.(x) = ((2x/ L-1)? —1).ﬁ|;1(2x/ L-1), n=2,.,M. (16)

Differentiation of (16) brings us to similar formula for derivatives ¢, n=2,..,M :

2
——— | @x/L=DI'_ (2x/ L=1)+((2x/ L-1)* =1 (2x/L-1) |. (17
opC L@/ LDhLC )+ (( ) DI )] an
Now, using the linear recurrence relation (18) for Legendre polynomials (see

recurrence equations for orthogonal polynomials in [7, 8])
2

0 =tln(t)—ﬁln,l(t), n>1 (18)

it is not hard to construct an appropriate recurrence relations for derivatives of these

polynomials by using simple differentiation of (18):
2

n
@)=L @@+t @t)———I.,(t), nx=1
n+1() n() n() 4n2 _1 nfl()

n2

.= 2I;(t)+t|n”(t)—mln”fl(t), n>1.
Now we can calculate the values of functions ¢,,¢,, n=2,..,M by using obtained
recurrence relations (18) and (19) and combining them with formulas (16) and (17).

Now to solve the problem (13) we present the projection w, ,(x) in the form

P (X) =
n

(19)

W, o (X) = W(O)%(X)+W(L)¢1(X)+Zq 125, (20)
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and by using Galerkin procedure we can find coefficients q; as the solution of the system of
the linear algebraic equations (or simply, linear system):

M
>a; [l dx = [ (W - w(0)p; —W(L)p)p{dx, i=2,...M. (21)
=2 q Q

Taking into account the structure of the Lobatto basis functions (14) and the
orthogonality of the Legendre polynomials, we can see, that the matrix of system (21) is
diagonal, what makes the calculation of the projection a trivial problem.

Now, since the function u,, ., is a polynomial and having a polynomial

K
np Unizps W CaN accurately calculate the value of the error

K
uh/Z,p+1 _Hh,p uh/2,p+1

Hl(K) = \/_[ (ur:/Z,pﬂ - (Hllfp uh/Z,p+1),)2 dX (22)
K
on each finite element, for example, by the Gaussian quadrature formulas [7, 8].

4. DECOMPOSITION OF THE A POSTERIORI ERROR ESTIMATOR

In this section we present the base proof of the theorem on the decomposition of
AEE (11) based on the reference solution. Next, we prove an auxiliary criteria that provides
sufficient condition for the approximation of the FEM to be an interpolation function for the
exact solution on the considered set of mesh nodes. On the basis of the proven criteria, an
alternative proof of Theorem 1 is constructed.

Theorem 1. (on the decomposition of AEE based on the reference solution).

Let us consider the finite element partition

N

Sh ={ (Xifl’xi)}izl’
where 0=x, <X <..<Xy, =L and Q=(0,L). Next, we define high-order finite element
approximation space

X, o (@) ={veC@)IV|, € X, (K), K=(xx),i=1..,N},

where X, (K) is the local approximation space on element K with polynomial order p, .
On arbitrary interval D = (a, ) < Q consider the operator of orthogonal projection

Ep :Hl(D)—>Xh'p(D) :

X p(D)={v|3ue X, (©):v=ulp},

defined in (13) in respect to seminorm |~|H1(D) .

For an arbitrary function we H*(QQ) the following equality holds:
Q 2 _ _TIK
|W_H“vp \NIHI(Q) N Kz |W Hh,p W

€3,

(23)

2
HY(K) '

and therefore
o= D M (24)
Ke3,

where indicators 77, and 7, are defined in (9) and (11) respectively.
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Proof. Consider the space X, ,(€2) . Let us construct local Lobatto basis in the form
of (14) on each finite element. Global basis on domain € will contain nodal functions ¢,

and bubble functions ;. We will show that for an arbitrary function we H'(Q), its

projection
_TIQ
o~ Lihp

is an interpolation function for w in respect to the node system
o~ N

3= { X; }i:O !
i.e. w, (x;)=w(x;). Obviously, for the boundary nodes, the latter equality holds (this

follows directly from the definition of the projection). Let us construct global linear system
for finding projection. Substituting into equality

W, w

[(w; , —w)v'dx =0 (25)
Q

instead of v nodal function ¢,, which corresponds to the internal node of the mesh, we get:

Xjs1
! ’ ! ’
W, @ dx = I W, @ dx =

X1

O ey

Xj Xjs1

_ ! ' ! ! _

= J'whypqﬁj dx + I Wy 8 dx =
Xj1 Xj

Xjs1

:hi f W';"’dx_hi I W, , dX =

J Xja i1 x (26)
_ 1 W X; 1 W Xjs1 _
= Waol, T Whoel,
hj -1 hj+l ]
1 1 1 1
:__Wh,p(xj1)+(_+_th,p(xj)__ h,p(xj+l):
hi hj hi+l hj+1

= JI:W'¢J-' dx, j=1,..,N-1.
Let us now consi;er an arbitrary bubble function y, and take into account, that by
definition its support does not cross single element boundaries. Moreover
supp(w;) = K =[xy, X1,
where K is some finite element, for which v, is also its local basis function.
Obviously, for the restriction of w, , onto the element K we have:

Wh,p|K = Wh,p(xj71)¢j—1 +Wh,p(xj)¢j + z 7qsl//s ) (27)

K: supp(ys)=K

Substituting y; into (25) we get:
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L
Jwi pwridx = [w] Ly dx =
0 K

= [, 06 )8+, () + X awTydx =

K: supp(ys )=K
1 ’ 1o
:_[Wh,p(xj)_wh,p(xjfl)] Vi dx + Z O, | vV dx = (28)
h _
i K K:supp(ys)=K K

=0

= Y o fwiydx=

K:supp(ys)=K K
L

= j Wy dx.
0

In (28) we take into account that i/ is the Legendre polynomial scaled to K
(see (14)) and therefore it is orthogonal to constant, i.e.

J.!//i'dX = Jl-l//{dX =0.
K K
All equations of global linear system for finding projection are present in (26) and

(28). We can also observe that equations (28) do not contain nodal values w, ,(x;) . Thus,
for finding nodal values we get the linear system consisting of the values in the boundary
nodes from (13) and equations (26).
Similarly, after performing the same transformations, as in (26), but now directly for
L
Jw’v’dx ,
0
we obtain
1 1 1 1 s .
_h_w(xj1)+[h_+h_JW(Xj)_h_W(Xj*l) :IW gidx, j=1..,N-L (29)
i i ia j+1 0
By adding to the relations (29) the values w(x;) in the boundary nodes and
comparing them with the previous relations (26) for w, (x;), we see that the values
w, ,(x;) and w(x;) are solutions of identical linear systems, and therefore they are equal.

Taking into account the above property, we can attach conditions of equality in mesh
nodes to the definition of a projection w, ,, obtaining the next, equivalent, definition:

find w, , € X, ,(€2) such that
w, ,(x;) =w(x;), j=0,..,N

'f(w,;,p -W)V'dx=0, WveX, (Q),
Q

v(xj)=0, j=0,..,N.
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Now, taking into account structure of the space X,  (€2), we can obtain a sequence
of well-posed variational problems for determining local operators H,fp for finding
projections W, , = :,p w on each finite element K = (X4:%;), 1=0,..,N:

find w, , € X, (K) such that

W, (Xj—l) = W(XH), Wh,p(xj) = W(Xj)

! ! ’ (30)
J‘(wh‘p -w)V'dx=0, Ve X, (K),
K

v(X; ,) =Vv(x;)=0.

From (30) we get, that ( ,’ipw)(x)z( ffpw)(x), xeK=(x_,, %), i=0,...,N.
Now we can obtain equality (23) using simple transformations:

= J.(W—H?p W)2 dx

HY@)
Q

= 30 [(w-1g, W) dx= 3 [ (w15, w)'ox

Ke3, k Ke3y k

=> |W—H|f‘p w

Ke3,

2

|W—Hffpw

2
HI(K)'

Equality (24) is obtained from (23) by taking w:=u,, ., . Each of the problems of
the resulting sequence (30) is directly reduced to the linear system of the form (21).

5. ALTERNATIVE PROOF OF THE THEOREM 1 BASED ON THE GREEN’S
FUNCTION

Analyzing the last proof, we see that it is based on the proven fact of equality of
projection and projected function in the nodes of the selected mesh. Consider the alternative
proof of this fact, based on more general considerations. First, we prove the assertion:

Theorem 2. (on the finite element approximation in mesh nodes).

Let us consider Dirichlet boundary value problem on the domain Q=[0,L] for a

linear second-order differential equation Au= f with sufficiently smooth data. Consider
also approximation u, eu, +V,, u, € H'(Q), V, = H;(Q), dimV, <+o0, obtained using
Galerkin method (in the standard way, with reduction of the original problem to a problem
with homogeneous boundary conditions). If for the Green’s function G(x,s) of the

corresponding boundary value problem with homogeneous boundary conditions at a point
X, € Q the following condition holds:

G(%,) €Viys 31)

then u, (x;) =u(x,)-
Proof. Choose a function u, e H*(€2) that satisfies the boundary conditions of the

problem. Thus, the original problem is reduced to finding a function e H; () that is a
solution of the equation LO=g where g=f —Lu,. An approximation of the solution of
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the original problem will be computed in the form u, =u, +0, where 0, is a Galerkin
approximation of the corresponding problem with homogeneous boundary conditions. We

denote, for simplicity, (u,v) = (u,v)Lz(Q) . Obviously that
(LG,v) =(g,V), YV e H (Q). (32)
Since G e H(Q), then also
(LG,,v,) =(9,V,), YV, €V, (33)
From the properties of the Green’s function and the form of the equation, we obtain
a(x) = (G(x,), 9) = (L4, G(x,-)). (34)

Obviously, the error & =0-0, e H(Q) also satisfies the homogeneous Dirichlet
boundary conditions and it is the solution of the equation L& =g-—LU,. Taking into
account that the Green’s function does not depend on the right-hand side of the equation, we
obtain by analogy with (34):

&(x) = (L&,G(%,)). (35)

Now by subtracting the equality (32) (at v eV, ) and (33) we obtain, in essence, the
Galerkin orthogonality condition:

(Lé,v,) =0, Wy, eV,. (36)

Comparing (35) and (36) we see that if G(x,,-) €V, for some point X, € Q, then
€(X,)=0. Now, it is not difficult to obtain the assertion of the theorem:
(U=, )(%) = ((U—Ug) — (U, —Ug)) (%) =€(x%,) =0.

Corollary 1. (alternative proof of accuracy of the projection in the mesh nodes).

Consider the problem (13). It is obvious that it is a discrete problem of the Galerkin method
for the corresponding boundary value problem:

findw e C*(Q), such that
-w"=q, (37)
w(0) =u(0), w(L)=u(L),
where g =-u". The exact solution of the last problem is w=u. Let us find the Green’s
function of the corresponding problem with homogeneous boundary conditions:
find w e C?(Q), such that
-w"=q, (38)
w(0) =w(L)=0.
From the definition of Green’s function we obtain that
-G’ (x,8) = 5(x-5), (x,5) € Q,
{G(O, s) =G(L,s) =0,
where § is a Dirac ¢ -function. Now we fix an arbitrary point seQ. Consider the
decomposition:

(39)

G, (x,9), <s,
G(x.s) = 1(X,8), X
G, (x,8), X>s.
Integrating equation from (39) on x e[s—&,5+¢], & >0 brings us to:
G,(s—¢,5)—G,(s+¢&,5) =1 (41)

(40)
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Passing formally & — 0 in (41), we obtain a relation that is postulated additionally
in the classical definition of the Green’s function:
G,(s—0,5)-G,(s+0,s)=1. (42)
Taking into account (40):
(G),(s-0,5)—(G,),(s+0,s) =1. (43)
In addition, it should be noted, that from the continuity of the Green’s function we
obtain:
G (5,5) =G, (s,5). (44)
In addition to the last equality by a combination of (39) and (40) we obtain the
following:
—(G))5(x,8) =0, x<s,
—(G,)r (x,5)=0, x>s, (45)
G, (0,s) =G, (L,s)=0.
From the first two equations (45) we can write a general form of the desired
functions:

{G. (X,8) = XA () + B, (5), )
G, (x,8) = XA () + B, (s).
Taking into account the relation (43)-(46), we obtain a system of equations:
find functions A (s), B, (s), A (s), B, (s),such that
B| (S) =0,
LA (s)+B,(s) =0, (47)
SA (s)+ B, (s) = sA () + B, (5),
A()-A () =1
By directly solving the obtained system and taking into account (46) and
decomposition (40) we finally get:
x(l—ij, X<s,
L

G(x,s) = (48)

s(l—ij, X>S.
L

We see that formula (48) defines a piecewise-linear function with respect to x, for
every fixed s with a discontinuity of the derivative at the point x =s. Given the symmetry
of the Green’s function (which, in particular, is easy to see in this particular example), we
obtain that for every fixed x function G(x,s) will be a piecewise-linear with respect to s,
having discontinuity of the derivative at the point s=x. Taking into account now the
structire of the approximation space of the problem (13), we obviously obtain the condition
(31) of Theorem 2 in the mesh nodes x; . Hence, in accordance with the scheme of proof of
theorem 1, we obtain the possibility of elementwise calculation of the error by solving
problems (30). The graph of the function G(x,s) with fixed s is depicted in Fig. 1.
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Fig. 1. The graph of the function G(x,s) with fixed s

6. CONCLUSION

We consider the construction of a posteriori error estimator based on the reference
solution which was proposed in the papers of Demkowicz [4] and Solin [14] for the one-
dimensional hp-adaptive finite element method schemes. Using the Green’s function, it is
shown that the square of the constructed global error estimator can be represented by the
sum of squares of element-defined indicators, which are independently calculated on the
elements of the selected grid. The obtained correlation makes it possible to substantiate the
iterative algorithms for solving optimization problems that arise during the construction of
the FEM hp-adaptive schemes and is a refinement of the results from [4]. The effective
scheme of calculation of local indicators is highlighted.
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HOEJIEMEHTHA JEKOMIIO3UIIA AITOCTEPIOPHOTI'O OOIHIOBAYA
INIOXUBKHU HA OCHOBI KOHTPOJIBHOT'O PO3B’A3KY JJIS HP-
AJATITUBHUX CXEM METOAY CKIHHEHHHUX EJIEMEHTIB

P. Jipe6oriiil, I'. Illunkapenko?

Ylveiecoxuti nayionansuuii ynisepcumem imeni leana @panxa,
eyn. Yuisepcumemcuoka, 1, Jlveis, 79000, e-mail: roman.drebotiy@gmail.com
2[Tonimexnixa Ononvcwvra, Onone, Ionswya, e-mail: h.shynkarenko@po.opole.pl

PosrnsHyTO TMMTaHHS €(EeKTHBHOTO OOYHMCICHHS amoCTEPiIOPHOTO OLiHIOBada MOXHOKH Ha
OCHOBI KOHTPOJIBHOTO pO3B’s3Ky. JloBemeHo, MO KBagpaT IIIOOANBFHOTO OIIHIOBAaYa ampoKCHUMAIlil
Merony ckiHueHHHX eieMeHTiB (MCE) MokHa momaTw CyMOI0 KBapaTiB JIOKAIFHHX 1HIUKATOPIiB
MOXMUOKM KOJKHOTO efleMeHTa CiTki. OTpuMaHa BIIACTHBICTH € HACIIIKOM JIOBEICHOTO 3arajbHINIOro
daxry. Hexail Ha 065acTi BU3HaueHHs KpaioBoi 3a1aui () 3aaH0 KyCKOBO-TIOJNIHOMIaIbHUI IPOCTIip
anpokcumantiii MCE rcoxoro nopsiiky X, ,(€2) , Ta ans nosimsroro inreppany D = (a, ) = Q

D .4yt
BU3HAYEHO omeparop OpPTOTOHAEHOTO HPOEKTYBaHHS np -H (D)= X, (D),

X, p(D)={v|3ue X, () :v=ul,} crocoHo nanizropmu |- | TO JUIS OBUTBHOIT (ByHKIIIT

HY(D) ’
we HY(Q) crpapmkyerscs Taka piBHICTS:

2
|W—Hﬁpw

2
K

=Y |lw-I] WI ,

HY(Q) ;| h.p Tlht (k)

ne cyma GepeTbest To Beix enementax K citku. Ha wiii migcrasi micist 0GYMCIIEHHS KOHTPOILHOTO

PO3B’A3KY Uy, . OymyeTsest amocrepiopHuit ouinroBau noxu6kn anpokcnmauii MCE y surini

. OCHOBHHI pe3ynbTaT — JOBEACHHS PiBHOCTI

Mo =2 »
K

~ s )
Mo = |Unizpsa Hh,p Un/2,p41 H(D)
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sIKa BU3HAYA€ BaXKIIMBHH 3B’5130K MK TII0GAIIBHAM alloCTepiopHIM OLiHIOBAYEM MOXHOKH 7], i HOro

JIOKAIbHUMH {HAMKaTOpaMu 7, . Ha Jo#aTok 10 1bOrO TEOPETHYHOro MiArpyHTs hp-aganTHBHOL
cxemu MCE, HaBeneHO TakoX €(peKTHBHY cxeMy OOUYHMCICHHS PO3MOALTY JOKAIbHUX 1HIHKATOPiB
7]y i3 BuKopucTanHsM Gasucis Jlobarro.

Knrouogi cnosa: MeTonl CKIHUCHHUX €JIEMEHTIB, MeTo] ['anbopkiHa, OPTOTOHAIbHA MPOEKIis, 0a3zuc

Jlo6arro, ¢yskuis ['pina, hp-agantuBHICTE, anoCTepiopHMIA OLIHIOBAY MOXHOKH, KOPEKTHA 3a/aua,
KpaiioBa 3amaya qudysii-agBekuii-peaxiii, KOHTPOJIBEHUK PO3B’I30K.



