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In this paper we use scaling of the independent variable to introduce similarity criteria of
Péclet and Strouhal as indicators of singular perturbations of considered diffusion-advection-reaction
equation with Robin boundary conditions. In the terms of these criteria, we analyze the corresponding
variational problem for well posedness and establish sufficient conditions for this. Finally we
transform the original problem to the equivalent problem of minimization for quadratic functional.
Furthermore we introduce hp-adaptive finite element scheme for solving the considered problem.
Constructed scheme combines classic explicit and implicit error estimators for selecting elements for
refinement and making decision for each selected element about its bisection or incrementing of
polynomial order on it respectively. In the end we present some numerical examples and comparison
with the results, obtained using reference solution algorithm.
Kniouosi cnosa: diffusion-advection-reaction boundary value problem, Péclet criteria, Strouhal
criteria, well-posedness of variational problem, symmetrization, minimization of quadratic functional,
finite element method, condensation of internal degrees of freedom, a posteriori error estimator, hp-
adaptive scheme, reference solution.

1. INTRODUCTION

Finite element method is an universal tool for solving boundary value problems for
partial differential equations (see [1]). It is applicable for problems on very complex
domains in 2- and 3-dimensional spaces. During last years the main focus is on the adaptive
algorithms for FEM. The main idea is to adapt mesh (h-adaptivity), element polynomial
order (p-adaptivity) or both mesh and order (hp-adaptivity) to minimize computational cost
needed for solving the given problem. Such algorithms are implemented using local a
posteriori error estimators. It’s naturally to interpret hp-schemes as most advanced as they
give us most wide approximation capabilities. Theoretically it is proven that they can
produce exponentially convergent sequences of approximations to original solution of
boundary value problem [2].

In this work we construct hp-adaptive algorithm for solving the diffusion-advection-
reaction boundary value problems with self-adjoint operators. We prove the optimality in
some sense of refinement selection step used in algorithm. Also we introduce
symmetrization procedure which can be used to transform given nonsymmetrical variational
problem to equivalent symmetric problem, therefore making possible application of
constructed algorithm to nonsymmetrical problems too.

To drive adaptation process we introduce two a posteriori error estimators. For
element selection for refinement procedure we use explicit estimator, i.e. explicit formula
which gives upper bound of actual error on finite element. After elements for refinement
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were selected we need to choose on each element refinement pattern: bisection with original
element order preservation or increment of polynomial degree on element by one.

Also we studied precisely conditions which problem data needs to satisfy to make
boundary value problem to be well-posed.

The paper is structured according to the following order: in section 2 we define
model problem; in section 3 we provide some specific problem transformations; in section 4
we construct variational formulation; in section 5 we study conditions of well posedness of
variational problem; in section 6 we introduce transformation of initial variational problem
to bring its symmetric equivalent; in section 7 we make review of general finite element
method schemes; section 8 is devoted to finite element optimality investigation; in section 9
we provide error estimators which will be used in adaptation algorithm; in section 10 hp-
adaptation algorithm is described. In section 11 we demonstrate some numerical results.

2. MODEL PROBLEM

We consider the following boundary value problem for diffusion-advection-reaction
equation
given diffusion coefficient fi = [i(x), convection B = B(x),
reaction & =o(x), sources f = f(x)
and a,7,0,.0, €R;
find function u=u(x) such that

1
—i(‘iujﬂ_}iu +ou=f in G=(0,L) ®
dx | M ax dx T

(‘iu—au)
Hdx

3. SCALING OF VARIABLES
In order to show specific of the boundary value problem (1) we introduce a scaled
variable t €[0,1], in such way that x:= Lt, transforming dependent variables
w=alnlls, B=BlIBI, o=5l5l, =L f,

a=allp ”;lev y=7LlK ”;1(37 g, =L (Im ”:ole G, 0, =L I ”;10 g.-
and after small algebra we rewrite problem (1) in the following form
find function u=u(t) such that

:gL'

x=L

S
“P M

x=0

—(pu') +Pe[ pu'+Shou]=f in Q=(0,1), 2)
(MU'—OLU)II:(F Oy, (—pu'—yu)| =0,

dv . .
where V' = r and dimensionless numbers

_IBllc L

G L
e _I5le

[ e IBI..c
are well-known Péclet criteria and Strouhal criteria respectively.

®3)
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4. VARIATIONAL FORMULATION
The boundary value problem (2) admits the following variational formulation

{find ueV :=HQ) such that @
Co(uv)=<l,,v> WveV,
where
Co(U,V) = (pnu',v)+Pe-[(Bu’,v)+St-(cu,Vv)] )
+auv|_, +yuv|_, Vu,vev,
<lg,v>=(f,v)+ag,v(0)+yg,v(D) Yvev. (6)
5. WELL-POSEDNESS OF VARIATIONAL PROBLEM
We are able to prove the well-posedness of variational problem (4).
Proposition 5.1. Let data of the problem (1) satisfies the following conditions
{u e (9), @
n(x) =y, =const>0 ae. in Q ,
{B,G e L*(Q) @)
o(x)-1Pep’(x)>c, =const >0 a.e. in Q,
o—3Pep(0) >0, y+1Pep(d) >0, 9)
fel’(Q). (10)
Then
(i) bilinear form ¢, (., .):V xV — R is continuous, and the following inequality holds
| co(u,v) [< 4max{l, Pe,Pe-St, o], ||, [a+y MUl IVIL VYuvev: — (11)
(ii) bilinear form c,(.,.):VxV — R is V —elliptical, and defines energy norm
1V llo:= \JCa (v,V) weV =H'Q), (12)
moreover
GIVIRIVIE  YveV, (13)
where % = min{3 1,,Pe(Sto—3 '+ C. min{3 14,,CoH};
(iii) linear functional I, :V — R is continuous and
<o, V> f lloo + 14
+2max{| al, | 7], o4y (9 = 9o)X+ Gy ho) IVIL VVEV]
(iv) there exists one and only one solution u eV of problem (4), and
lull <=l wev. (15)
0

Proof. Let us define the linear function p = p(x) such that p(x) :=(y+a)X—a. Then
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1
UV g +YUV |y = puv fi= [ [{(r + o)x — oJuv]'dx

= I:[(y+a)uv+pu’v+puv’]dx (16)

<max{llpll, o [ v+ 3, (w]+[uv]+|uv' [
<2max{lal, [7] o+yHlulallVie — VuVveV.
(i) Using this estimation we obtain
| Co (UV) <] (', V') [+Pe[] (BU',V) [ +St-| (ou,v) [+] (puv) [o]
U llooll V' llo o +Pelllu’ [l +Stiullo o1l VIloq +1(pPuv) kil
< 2max{L, Pe,Pe-St}||ulf, || VI, (17)

+2max{| o, [y | [o+y FIull lIvIL
<amax{L Pe,Pe:St ||, 7], [a+y[HulhlIv, VuveV.
To obtain (13) we start from the following estimation

¢a(vV) = [ [u(v')? +Pe(Sto — 1p)v*]dx
+(a.— 1 PeB)V(0) + (v + 1 PeB)V (D)
> I:[uo (v')? +Pe(Sto — 1B )V 1dx + Cy [v*(0) + v (1)]
> [T g (v)* +Pe(Sto—1p)v]dx
Fmingipy, CoH[, (V)2dx +V2(0) +V2@]  WveV,
where Cj :=min{(a.—1Pep),(y+3Pep)}>0. Using Friedrichs inequality [10]
jol (v')2dx +[v3(0) +V2()] = C. j: Vidx C, =const >0 v e H(Q),
we obtain declared in (13) estimation
Ca(VV) 2 [ [21, (v)? + Pe(Sto— §p)vAIdx+ C, mingip,, Co}f, vidx
= [ [21o(v)? + Pe(Sto— 1B+ C. min{b uy, Cohv?dx

>c,||VIE WveV, c,=min{ip,,Pe(Sto—1iB'+Cp min{ip,,CoD}
(ii) To prove the continuity of the linear functional we apply the used technique, a namely
[<lg, v >I<| (F, V) [ +]agoVv(0) +yg,v(D) |
S ool VIba + 1009, = 9o) X+ goIv |
S” f ”o,g” \ “0,9 +2max{| o, [v], [a+y [} (gl - go)x+ Y9 ”19” v “LQ

< (” f ”0,9 +2max{| o, [v], [a+y [} (9, — o)X+ g, ||1,s1) Ivi, Vv eV.
(iii) Taking into account Lax-Milgram-Vyshyk lemma [8], we can simply prove that the
variational problem (2) has unique solution.
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6. SYMMETRIZED VARIATIONAL PROBLEM

For further needs we consider now the procedure of changing problem with
nonsymmetric bilinear form c,(-,-):VxV — R to identical problem with symmetric
form. It can be achieved using some decomposition of an admissible functions [7].

To demonstrate the possibility of construction of an alternative variational
formulation for the boundary value problem (1) we prove the following

Proposition 6.1. Let z=z(x) be the function

2(x) = exp[—Pe jox WBdt]  wxe[0]. (18)

Then
(i) the variational problem (4) is equivalent to the following minimization problem of a
quadratic functional

{find ueV :=HY(Q) such that 19)
J(u) <Jw) vweV,
where
JW) =s,(z;ww)-2<l,,zw> VweV, (20)
So (Z;u,w) = (uzu',w’) + Pe-St- (ozu, w) 21)
+0ZUW |,y +YZUW], YUu,WeV;
(ii) there is the unique solution u €V of the problem (19).
Proof. In order to see relation between bilinear forms (5) and (21) we obtain
Cqo (U, zW) = (nu’,(zw)") +Pe-[(Bu’, zw) + St- (cu, zw)]
+OUZW |,_q +YUZW ], 22)
=(uu’, zw") + (uz’' + Pepz)u’,w) + Pe-St- (o u, zw)
+ouzw|_, +yuzw|l_,  vu,vev,
and note that function z = z(x) satisfies equation pz’'+PeBz =0. Hence,
So(z;u,w) =c,(u,zw) YuweV. (23)
Moreover, to take into account definition (21) we have
So (Z;U,W) =S, (Z; W, u) YuweV ,

and thus, statement of the problem (19) is a classical approach of variational analysis.
Taking into account that C,(z;.,.):VxV — R is a new scalar product on V we can

define the energy norm
lullg:= ch(z;u,u) YueV (24)

and rewrite the quadratic functional J = J(w) in the following form
JW) Flw-ullz ~lulE=lw-ulf +J(u) eV, (25)
where u eV is the solution of variational problem (19) or it equivalently (4).
Hence, at that moment we have two equivalent variational formulations (4) and (19)

for the boundary value problem (1). Then we have possibility to use a finite element
approximations for solving of (1) by the Petrov-Galerkin method or Ritz method.
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7. FINITE ELEMENT METHOD

Let {V,}., be a family of finite element approximation subspaces
V, <V, dimV, =N, <+, .V, is dense in V , moreover, for each veV there is
v, €V, such that

1V =y Il < CN* 1V s - € = CONSE > 0. (26)

H(@ ™
7.1. RITZ-GALERKIN FINITE ELEMENT SCHEME
In general case Ritz-Galerkin finite element scheme deal with following
minimization problem
given subspace V, cV,dimV, = N, <+,
find u, €V, such that (27)
J(u,) <J(w) YweV,,
Let us denote by {¢, }\., a fixed basis of the spaceV, . Consequently sought solution
of (26) will take form of the linear combination
Uy ()= 21 G0, (¥) (28)
with unknown coefficients g, ...,0,. Substituting (28) into (27), and then applying a
conditions of minimum to resulting quadratic function of variables g, ...,q, we get
algebraic problem

find g=(q,,...,q,)eR" such that
{ 9=(Cy, -~ »Cy) 9)

N .
D150 (Z9,9)0, =<lg,2¢, >i=1, ... ,N.
Matrix S, ={s, (Z; ¢, ¢, )}i“y‘k:l is symmetric positively defined. Therefore, there is a

unique solution g=(q,, -..,q,) € R" to the system of the linear algebraic equations, and
problem (27) is uniquely solvable.

7.2. PETROV-GALERKIN FINITE ELEMENT SCHEME

As an alternative the classic Ritz method we demonstrate the additional possibilities
of Petrov-Galerkin method, which generates following discrete problem:

given subspaces V, cV and W, cV,
dimV, =dimW, =N, < +o,
find u, €V, such that
Co (U, V) =<1,V > wevy,.

(30)

Let {cpj}’j“:l and {w, }"_ be basis of V, and Y, spaces respectively. Then problem

(30) results to system of linear algebraic equations
given subspaces V, cV and W, cV,

dimV, =dimW, =N, < +o,

find u, :Z:quk@k eV, such that (31)

N .
D Ca (@ W) =<lg,w > i=1..N.
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This is a main relation between systems of linear algebraic equations (29) and (31) which
shows as we may symmetrize the algebraic problem (31). Taking w. :=zeg, into (31) we

lead to (29).

8. OPTIMALITY OF FINITE ELEMENT APPROXIMATIONS

Now we are interested in the error of a finite element approximation u, €V, , i.e.
g, =u—-u, eV.

Let approximation u, €V, is obtained as the solution of the minimization problem

(27). Than it is well-known that
(i) C,(z;8,,Ww)=0 VYweV, (errror orthogonality);

(ii) e, €V, V=V, eV,
(iii) lle, lle=inf,., llu—wllc (error optimality);
(v)  le lle=lullz —llu,llE vh>o.

If A<h,V, cV,,u, €V, and u, €V, are the finite element approximations of the
solution ueV of problem (19). Then we have the decompositions u=u, +e, €V, ®V,"
and u=u, +e, eV, ®V," respectively, and

lle, IR=lullE —llu, I}, Iley IE=IUlE ~Ilu, 2,
lluy =u, IE=lu, I =Ny, 18,
implies inequality
lluy le<lfu, lle<ulle VA<h, (32)

lle, Il —lley IlE=llu, Iz =llu, [E>0
and

e, lle<lle, lle VA<h. (33)
Therefore if the sequence finite element spaces {V,} is inclusive sequence of finite element
spaces then for finite element approximations sequence {u, } corresponding errors {e,} are
monotonically convergent to 0 as h — 0. On the other hand the error e, :=u-u, €V," is
the solution of the minimization problem

given u, eV, cV,dimV, =N, <+,

find e, eV," such that (34)
R(e,) <R(W) vweV,',
where
R(W) = s, (z;W,W) —2 < p, (U, ), W > vweV,, (35)
<p,U,),W>=<l,,zw>—s,(z;u, ,W) vweV,* (36)

Let €, be a posteriori error estimator of the finite element approximation u, €V, i.e. the
solution of discrete problem
given subspace W, cV,.*, dimW, < +o,
find & W, such that (37)
R(e,) <R(W)VweW,.
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Since

e, le=lle, —& Il +I1&, Iz vh>0. (38)
We define

d, =U, +8§ eV, =V, ®W,,
and rewrite the last equations in the following form

lu—a, [lE=lle, I —II&, II2 vh>0. (39)
As a conclusion of (39) we have the estimation
e lle<lie,lle Vvh>0. (40)

Proposition 8.1. Given finite element approximation u, €V, for the solution u eV
of the wvariational problem (19), then a posteriori error  estimator
g, €W, cV,", dimW, <+, obtained as the solution of problem (37), generates the
improved approximation

U, =u,+& eV, =V, ®W,
lu=a, lle=llu—u, lI2 -lI& llz vh>0 (41)

9. APOSTERIORI ERROR ESTIMATORS OF FINITE ELEMENT
APPROXIMATIONS

Let us describe two different ways for obtaining error level on each finite element.
Explicit estimator is an explicit formula which gives us upper bound of error estimate as one
number. Implicit estimator is obtained as function which approximates actual error of finite
element discretization. To obtain it we solve auxiliary variational problem.

9.1. EXPLICIT ERROR ESTIMATOR FOR 1D
To estimate error level we will use explicit error estimator i.e. explicit formula which
gives us upper bound to approximation error on each finite element. Let us define the
approximation error e=u—u, €V =V , the residual
Rlu,]=f+(uu,) —BPe u;, —cPeSt u,, (42)
and bubble function
o (X) =% —X)(X—X%X_,), suppe, =K VKeS3,. (43)
Proposition 9.1. The following global estimate holds

el < 4[min{ro. ¢} 3 [pu (P +DT* [, RIu, ]

where p, =deg(u,| ).

Proof see in [11].
The terms of sum in (44) can be used as error estimates on each element.

2
2

(44)

2’

9.3. IMPLICIT ERROR ESTIMATOR

Described estimator gives us only one number per finite element which we interpret
as error level. To combine h- and p- refinements of elements we need to construct some
type of estimator which:

o will give us distinct error estimate for each of available refinement patterns of element;
e will be simply computable on each element.
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For this purposes we will solve auxiliary variational problem like described by (34)
on each element, using finite element method for different finite element spaces.

Let us define XP(a,b) as a space of all polynomials of order p on closed interval [a,b].

For all refinement patterns we may define corresponding approximation spaces. We
will use only two refinements: division of the element into two elements with the same
polynomial orders and increasing element order by one. Corresponding spaces are the
following:

Vhlp(K) ={v e C(K)|ve X™ (X, [X +%]1/2),
ve X (X, +%]1/2,%).v], =0}
Vip (K) ={v e X **(K)|v], =0}

To obtain error estimate as a single number for finite element error approximation on
each space for m=1,2 we solve the next problems:

find e eV,7(K) such that
c,(erv,) :J’R[uﬁ]vhdx Wy, eV (K),
K

(45)

(46)
then error estimates for given two refinements are defined as r, = ef|_, m=12.

10. ADAPTATION ALGORITHM

The main idea in our adaptation algorithm is to use implicit error indicator to select
proper refinement pattern on each element and explicit to select elements for refinement. So
the question is, why we need to use another explicit error estimator? Let us observe
mechanics of implicit estimator under the hood. So 1) we obtain actually some error
estimate as function, and 2) this approximation depends on used approximation space. At
least, order of this space should be larger than order of space, used on element to obtain
global solution. As we will have in general case different degrees on all elements so it is
problematic to compare error values between two different elements because for example
the larger value will just say that the error estimate was obtained with larger accuracy. So
there is no any sense to compare different values of using implicit estimates. Also we need
to note than from (41) we can conclude that we should use refinement which gives
approximation to error with larger norm.

Let us define: TOL - acceptable relative error level in percent, p,, — maximum

element order (polynomial degree),
. -1/2
C:=2[min{p,.c}|
Step 1: Find FEM solution on the current mesh — u,, .
Step 2: Stop condition check. For all elements K compute

ne =CIpe P+ Vo RIS, . - 47
Define
(T
Then if

nflu, | x100% < TOL
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we stop the algorithm (TOL is an acceptable relative error level in percent), else
Step 3: Choose elements for refinement. Compute n,,, = maxny .We will change

those elements K , for which
Ne > Q-0 0€(0,D
is fixed value. The set of all selected elements we name as A, .
Step 4: Mesh  modification. For all selected elements K =[X_,,%]

(pe = deg(uh|K)) choose between bisection and increasing of polynomial degree on it by
one.

If pe =P, then we divide element into two with orders (p,, p.) ., otherwise: Let
us compute values

o =[e]e m=1.2

by solving problems (46).

Consider the difference

A=r,—1.

If A>3, where & is predefined value, then we increase element order by 1, otherwise we
bisect it into two elements with approximation polynomial orders (p,, py) -

Step 5: Go to Step 1.

Remark 10.1. From the theoretical point of view we should set =0 but in
practice, according to errors in numerical quadratures and round-off errors, furthermore the
maximum order of approximating polynomial is bounded — so it’s logically to use bisection
in case when A is very small. For this purposes we choose small number >0.

Remark 10.2. Parameters & and 6 need to be set manually for each iteration as
“optimal” in some sense. There is unsolved problem of automation of selection & and 6 on
all iterations. Parameters & and 6 have the following meanings:

& set the priority between element bisection and order increasing;

0 is a percent of elements need to be refined.

11. NUMERICAL RESULTS
In this chapter we present results of our algorithm in comparison with reference
solution one [3] for singular perturbed problems. Parameters & and 6 are equal for all

iterations and are selected using search from several values to provide “optimal” values
which minimize final number of iterations and final count of degrees of freedom.

Problem 1. We consider boundary value problem (1) with the following data
u=1B=06=10", f =10°,a=y=10% 0, =0, =0, L=1.
Fig. 1 and Table 1 demonstrate numerical results which we obtained using algorithm
with the following parameters: TOL = 5%, p,,, =9, 6=2,06=0.6.
Fig. 2 and Fig. 4 show relation between error indicator and number of degrees of

freedom for constructed algorithm and algorithm based on reference solution.
Fig. 3 and Table 2 shows corresponding results obtained using reference solution algorithm.
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0065 012 0.13 0,25 0.31 032 D44 05 0,56 062 0,69 075 :0.81 0.88 0,94

Fig. 1. Approximation to solution of Problem 1, obtained on final iteration of algorithm described in Section 9.
The row below the table shows corresponding polynomial degrees on finite elements. The solid horizontal
line represents x-axis

Table 1
Convergence history for Problem 1: n is an iteration number, N count of degrees of
freedom, £ =n absolute error indicator, r> =n||u, ||c* x100% relative error,

Q Q
Ing; —Ine,,

=———1 1= rate of convergence.
P = T IND —In NG g
n Nl &y e P,
0 3 12579,37 6045 -
1 5 3998,07 1695 2.24
2 9 1457,71 599 1.72
7 34 25,53 10,19 1.49
8 39 24,94 9,95 0.16
9 43 7,59 3,03 12.19
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\

\

Q
Ing

3 a B

2
In N,

Fig. 2. Plot of dependency between absolute error indicator 8? and number of degrees

of freedom Ndof in logarithmic scale for Problem 1 for algorithm from Section 9

0,06 012 013 9025 031 038 044 05 05 062 D63 075 031 088 054
1,28 1.2
1.15 1.15
1.04 1.04
i . 9% -
*n 82 \’9@‘5 0.52
-|‘.1 71 ““—EL@_E 071
6.6 _— Tﬂ(;_&_t X
-
6,45 R W, 6,49
-
0.27 0.2
0.16 0.14
0,05 0,04
0.06 0.0
047 2.1
5,38 57
006 012 013 025 031 038 044 05 055 062 059 075 081 083 094

Lz izlzizizizizizlslslslalslalalsl LTI

Fig. 3. Approximation to solution of Problem 1, obtained on final iteration, using reference solution algorithm
(see [3,4]). The row below the table shows corresponding polynomial degrees on finite elements. The solid
horizontal line represents x-axis
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Table 2
Reference solution algorithm convergence history for Problem 1.
n Ndof 8? rnQ pn

12 32 3,60 28,08 -1.05

13 35 3,14 23,81 1.53

30 333 0,77 5,52 1.14

31 379 0,70 5,04 0.70

32 437 0,58 4,19 1.32

Q
Ing,

1

Fig. 4. Plot of dependency between absolute error indicator 8? and number of degrees

of freedom N, in logarithmic scale for Problem 2 for reference solution algorithm

Comparing tables 1 and 2 shows than constructed algorithm obtain up to 3 time less
iterations and 10 times less final system of linear equations in comparing to reference
solution algorithm.

Problem 2. We consider boundary value problem (1) with following data

u=1p=e*-200, c =100(cos X + 2),
f =1000e 1000 o =y =10°, 0, =0, =0, L=1.

Fig. 5 and Table 3 demonstrate numerical results which we obtained using algorithm with
the following parameters: TOL = 5%, p,., =9, 6=0, 6=0.6. We should note, that in this

example algorithm is applied to the problem without using symmetrization, demonstrating
the capability of handling nonsymmetric problems by algorithm itself.
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Fig. 6 and Fig. 8 show relation between error indicator and number of degrees of freedom
for constructed algorithm and algorithm based on reference solution.
Fig. 7 and Table 4 shows corresponding results obtained using reference solution algorithm.

[ TIA[101 1 [ 1 J2[2] 8 [ 5 [ 8 1 8 [ 2 [2[2] 1 [ 1]

Fig. 5. Approximation to solution of Problem 2, obtained on final iteration of algorithm described in Section 9.
The row below the table shows corresponding polynomial degrees on finite elements. The solid horizontal
line represents x-axis

Table 3
Convergence history for Problem 2.
n Ndof 8? rnQ pn
0 3 65,86 47675 -
1 5 56,51 580 0.2
2 9 54,02 296 14
13 68 0,55 572 0.07
14 72 0,49 5,07 2.13
15 77 0,43 4,51 1.75

On Fig. 5 algorithm constructed mesh with many low-order elements near boundary
layer and few high-order at smooth solution part. It’s a good example of “well” mesh
according to theoretical investigations [2].
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Fig. 6. Plot of dependency between absolute error indicator 8? and number of degrees

of freedom NdOf in logarithmic scale for Problem 2 for algorithm from Section 9
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Fig. 7. Approximation to solution of Problem 2, obtained on final iteration, using reference solution algorithm

(See. [3,4]). The row below the table shows corresponding polynomial degrees on finite elements. The solid

horizontal line represents x-axis
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Table 4
Reference solution algorithm convergence history for Problem 2.
n Ndof 8? rnQ pn

14 39 2,11 131,42 -0.02

15 46 2,10 130,70 0.01

31 171 0,45 9,92 -0.002

32 196 0,43 9,43 0.4

33 224 0,18 3,85 6.6

Q
Ing,

ab i i J J i i i i
1

mi

15 2 25 35 4 4.5 5

lof

3
InN,
Fig. 8. Plot of dependency between absolute error indicator 8? and number of degrees

of freedom NdOf in logarithmic scale for Problem 2 for reference solution algorithm

12. CONCLUSIONS

In this work we constructed hp-adaptive algorithm for solving the diffusion-
advection-reaction boundary value problems with self-adjoint operators. We proved the
optimality in some sense of refinement selection step used in algorithm. Also we introduced
symmetrization procedure which can be used to transform given nonsymmetrical variational
problem to equivalent symmetric problem, therefore making possible application of
constructed algorithm to nonsymmetrical problems too. Also we studied precisely
conditions which problem data needs to satisfy to make boundary problem well-posed.

To drive adaptation process we introduce two a posteriori error estimators. For
element selection for refinement procedure we use explicit estimator, i.e. explicit formula
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which gives upper bound of actual error on finite element. After elements for refinement
were selected we need to choose on each element refinement pattern: bisection with original
element order preservation or increment of polynomial degree on element by one. For this
purpose we use classic implicit error estimator (i.e. in the form auxiliary variational problem
for error function). Using explicit estimator gives us way of homogeneous computation of
per-element error, needed for proper selection elements for refinement. Respectively, using
auxiliary error problem gives us elegant way to choose between different types of elements
refinement.

In the end we provide the results of some numerical experiments comparing them to
the corresponding results, obtained using reference solution algorithm.

REFERENCES

1. BrennerS. The Mathematical Theory of Finite Element Methods /S. Brenner,
L. Scott. — Springer, 2008, 3ed. — 404 p.

2. Schwab Ch. p and hp-Finite Element Methods. — Clarendon Press, 1998.

3. Demkowicz L. Computing with hp-adaptive finite elements. I. One- and Two
Dimensional Elliptic and Maxwell Problems / L. Demkowicz. — Austin, 2005. — 418 p.

4. Doolan E.P. Uniform numerical methods for problems with initial and boundary layers
/ E.P. Doolan, J.J.H. Miller, W.H.A. Schilders. - BOOLE PRESS, 1980. — 198 p.

5. Dorfler W. Convergence of an adaptive hp finite element strategy in one space
dimension. / W. Dorfler, V. Heuveline // Applied Numerical Mathematics. — 2007. —
No. 57. - P. 1108-1124.

6. Logan J.D. Transport modeling in hydrogeochemical systems /J.D. Logan.— New-
York: Springer, 2001. — 226 p.

7. Sinchuk Y.O. Finite element method approximation with exponential weighting
functions / Y.O. Sinchuk, G.A. Shynkarenko // App. Problems Mech. Math. — 2007. —
Vol. 5. — P. 61-70. (in Ukrainian).

8. Solin P. Higher-Order Finite Element Methods /P. Solin, K. Segeth, 1. Dolezel. -
Chapman & Hall, 2003. — 388 p.

9. Solin P. Static Condensation, Partial Orthogonalization of Basis Functions, and ILU
Preconditioning in the hp-FEM / P. Solin, T. Vejchodsky // The University of Texas at
El Paso, Department of Mathematical Sciences Research Reports Series, Research
Report. —2007. — No. 4.

10. Rektorys K. Variational Methods in Mathematics, Science and Engineering. Second
edition. — Dr. Reidel Publishing Company, 1980. — 589 p.

11. Drebotiy R. HP-adaptive finite element method for 1d diffusion-convection-reaction
boundary value problems / R. Drebotiy, H. Shynkarenko // Opole 2014, in preparation.

Cmamms: nadituina 0o peokonezii 15.04.2015
doonpayvosarna 20.05.2015
npuiinama 0o opyky 27.05.2015



R. Drebotiy, H. Shynkarenko
72 ISSN 2078-5097. BicH. JIbBiB. yH-Ty. Cep. mpuki. Matem. Ta ing. 2015. Bum. 23

CUMETPH3ALISA KPAMOBOI 3AJIAUI TU®Y3Ii-AABEKIII-PEAKIIII TA HP-
AJIAIITUBHI AITPOKCUMAIIE METOJY CKIHYEHHUX EJIEMEHTIB

P. JIpedoriii, I'. llunkapenko?

YUlvsiscoruii nayionanvhuil ynisepcumem iveni lsana ®panka,
eyn. Yunisepcumemcoka, 1, JIvsis, 79000, e-mail: roman.drebotiy@gmail.com
20nonvcvxuii norimexnivnuii yuisepcumen,
eyn. Ilpywikoscoka, 76, Onone, 45-758, e-mail: h.shynkarenko@gmail.com

3a OMOMOT00 MacIITa0yBaHHS HE3alIeKHOT 3MIHHOT BBOJIAThCS KpHTepii moaioHocTi [Teke i
Crpyxais, sIKi CHTHAJI3YIOTh IIPO CHHTYILSIPHY 30YpeHICTh po3risimyBaHoi KpaifoBoi 3amadi audysii-
ajBeknii-peakmii 3 kpaifoBumu ymoBamu PoGena. B TepMmiHax mmx KpuTepiiB INpoaHaji30BaHO
BIATIOBIHY BapialliifHy 3aady 01010 KOPEKTHOCTI 11 popMysroBaHHs, BU3HAYECHO JOCTATHI IS IOTO
YMOBM Ha I 3amadi. MU CHMETpU3yEMO OCTaHHIO 3aJady 1 IOJaEMO EKBIBAICHTHY il 3amady
MiHiIMi3alii KBaIPaTHYHOTO (YHKITIOHATA.

Ha miii migcrasi mami OGymayerbest hp—amanTUBHHNA aTOPUTM METOAY CKIHYEHHHX €JIEMEHTIB
JUISL BiJIIYKaHHS ONTHMAJIbHUX alPOKCHMAliil po3B’sI3Ky po3riisityBanoi 3axadi. [IporoHoBaHa cxema
BHUKOPUCTOBYE SIBHUH 1 HESIBHUI KpUTEpil afanTyBaHHS CXeMH , SKi JalOTh 3MOTY Ha KOXKHiH iTeparii
ONTHMI3YBaTH IPUHHATTS PIlIEHHS CTOCOBHO JIOKAJIBHOTO 3TYIIEHHS CITKH UM IiJBHIIEHHS HOPSIKY
anpoKcuMallii Ha CKIHUCHHOMY CJICMEHTI.

Tlomano pe3ynmbTaTé pO3B’SI3yBaHHSA JCAKMX MOJCIBHHX 3aJad 1 MOPIBHSIHHA iX 13

pesyibTaTaMu, SIKi OTPHMAaJd 3a JIOMOMOTOK alfOPUTMY METOAY B3ipieBoro po3s’ssky (reference
solution).
Key words: kpaiioBa 3amaua audysii-agsekuii-peakuii, kpurepiii Ilekne, kpurepiii Crpyxans,
KOpPEKTHICTh BapiamiiiHOi 3afayi, cHMeTpH3allisl, MiHiMi3amisd KBaApaTHYHOTO (PYHKIiOHANA, METOI
CKIHUECHHHX €JIEMEHTIB, KOHJAEHCAIlisl BHYTPIIIHIX MapaMeTpiB, aloCTEPiOpHUNA OILIHIOBAaY MOXHUOKH,
hp-ananrtuBHa cxema, B3ipLeBHii pO3B’S30K.
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