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Using Green-Lindsay thermopiezoelectricity model with so-called relaxation parameters,
which influence on the way of interaction of mechanical, electrical and thermal fields in pyroelectric
materials, we formulate initial boundary value problem and corresponding variational problem for
this model in terms of vector of elastic displacements, electric potential and temperature increment.
Then, under assumption of a harmonic loading with known beforehand angular frequency, we
construct a mixed variational problem on amplitudes of harmonic waves in pyroelectrics and prove
the existence of unique and robust solution of this problem under conditions suitable for practical
applications. After that, the aforementioned problem is discretized using Galerkin-scheme with
standard for Sobolev spaces basis functions constructed via finite element method (FEM). A priori
estimates of FEM-approximations errors are found. The estimates show the dependence of FEM-
approximations convergence velocity both on the order of polynomial basis function and on
regularity of solution of the problem. Finally, we demonstrate the results of numerical experiment,
which show the influence of Green-Lindsay relaxation parameters on the characteristics of harmonic
wave, which emerge in pyroelectric bar under harmonic heat loading with preset angular frequency.
Key words: pyroelectric specimen, thermopiezoelectricity, Green-Lindsay model, initial boundary
value problem, variational problem, Galerkin-discretization, finite element method.

1. INTRODUCTION

Pyroelectric and piezoelectric materials are nowadays widely utilized in various
modern devices [12, 17, 18]. That is why computer modelling of their behaviour becomes
more and more relevant. During the last decades many researchers contributed to
developing various mathematical models, which are then used as a basis for that computer
modelling.  Firstly, Mindlin [10] proposed the classic theory of linear
thermopiezoelectricity, where the interaction of thermal, electrical and mechanical fields in
pyroelectric materials was studied. Nowacki [1, 11] performed further development of this
theory. In parallel, a classic thermoelasticity model, which is obtained by eliminating the
electrical field from the scope, was studied by other researcher. The main drawback of the
latter theory (and therefore the classic thermopiezoelectricity theory too) is the assumption
of infinite speed of heat propagation in the materials. To overcome it, Green and Lindsay
[8] proposed a modified theory of thermoelasticity (GL-theory), where heat conduction
equation became hyperbolic with introduction of two so-called "relaxation time"-
parameters. Similar generalizations of the thermoelasticity model can be found in [2]. Later,
the modifications of thermoelasticity model were extended to the scope of
thermopiezoelectricity. Nowadays a set of generalization theories for thermoelasticity and
thermopiezoelectricity is known, namely Lord-Shulman, Chandrasekharaiah-Tzou, Green-
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Naghdi, etc. A comprehensive review of the existing generalization theories can be found in
[7,9]. Researchers wused different techniques for solving the generalized
thermopiezoelectricity problems, see [13, 16].

In authors™ previous works [3, 5, 6, 14] the classic thermopiezoelectricity problem
was considered. In article [4] Green-Lindsay theory of thermopiezoelectricity for dynamical
problems was investigated. In our paper [15] forced vibrations of pyroelectric materials
under Lord-Shulman theory were studied. In this article, similar techniques as in [15] are
applied to GL-theory of forced vibrations of pyroelectric materials.

In  section2 the initial boundary value problem of Green-Lindsay
thermopiezoelectricity is described. Section3 is dedicated to construction of the
corresponding variational problem and variational problem for the special case of forced
vibrations. In section 4 we prove the well-posedness of the constructed variational problem.
Section 5 describes how Galerkin-discretization allows us to build a numerical scheme for
solving this variational problem. Section 6 shows the results of numerical experiments.
Finally, in section 7 the conclusions are made.

2. PROBLEM STATEMENT

Let Q be the bounded connected domain of points X=(X,...,X;) € R with
Lipschitz-continuous boundary oQ=T", and n={n}", is unit outer normal vector,
n =cos(n,x). Also let us consider time interval [0,T], 0<T <-+oo. Like in classic
thermopiezoelectricity problem, our goal is to find vector of elastic displacements
u={u,(x,t)},, electric potential p= p(x,t), and temperature increment &=6(x,t),
which satisfy the following equations in Qx(0,T] (here and everywhere below the
ordinary summation by repetitive indices is expected):

pu—f) =05 =0, @)
Dk',k + ‘]k,k =0, (2)
P(TS" —wW)+q;; =0, @)

The above expressions (1)-(3) are equation of motion, differentiated Maxwell’s equation
and heat conduction equation and below we will explain the meaning of each notation more
thoroughly. Here o is a stress tensor, which is defined by the following constitutive

equation:
Tii = Cijkm [6 (U) — 4, (O +1,0)] + ik €im u)- i By (p)- (4)
Constitutive equation for electric displacement D, is shown below:
Dy = XinEn(P) + 48 () + 7, (0+1,0"). (%)
Entropy density S is defined via
PS = pCT5 (0 +1,0") + Cyyon @&y (U) + 72, E (D). (6)

Here, in the equations (4-6), parameters t, >t; >0 are of time dimension and were
introduced by Green and Lindsay in [8] to eliminate the effect of infinite speed of heat
propagation from the classic heat conduction problem. These parameters are also known as
so-called “relaxation times” and their values are always taken as less than 107°s. Setting
t, =t, =0 we come to the classic thermopiezoelectricity model.
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Vector g, describes heat flux in different directions and it relation with temperature
increment is determined via classic Fourier's law:

o =—4;0;. )

Vector J, is the electrical current density, generated by a free electrical charge

density. We assume that pyroelectric material is not an ideal dielectric, and the electric
current runs through the pyroelectric specimen and satisfies standard Ohm’s law, i.e.

Ik = ZnEn(P)- ®)
Strain tensor ¢,, and electrical field vector E, are assumed to satisfy the relations
gkm (U) = % (uk,m + um,k ) '
E.(P)=-P,
where comma in the subscript stands for the partial derivative by the spatial variable, i.e.
g, =09/0x,.
Notation p is a mass density of pyroelectric material, c, is its specific heat and T,
is a fixed uniform reference temperature of the specimen. Notation f, is a vector of volume

and cy,, describe

©)

mechanical forces and w represents volume heat forces. Tensors a,,
the viscosity and elasticity properties of a pyroelectric material with the common properties
of symmetry and ellipticity. Notation e,; depicts a piezoelectricity coefficients tensor with

symmetric properties:
€ij = €y (10)

Coefficients z,,, z;, 4;, @ define the symmetrical and elliptical electrical

1) !
conductivity, dielectric susceptibility, heat conductivity and thermal expansion coefficients
respectively. Notation 7z, describes pyroelectricity coefficients, which satisfy the
inequality[11]:
TiaYiYn + 27 Y&+ pC,E7 20, VY eR (11)
To finalize the formulation of the initial boundary value problem of Green-Lindsay
thermopiezoelectricity, the system of partial differential equations (1)-(3) is then
complemented by boundary conditions
u=0 on I,x[0T] I'ycI, mes(l,)>0,
oyn; =0, on I, x[0T] I, =I\Tl,
p=0 on I, x[0,T], I'y =1 mes(I",)>0,
(Dg+J3In =0 on I'yx[0,T], I'y I, I'ynl, =9,

jFE(D; +3ndy=1 on I,x[0,T], I,=T\(IyNT,), (12)
E.(p)—nE,(p)n, =0 on I, x[0,T],

=0 on I,x[0,T], I'ycI, mes(l,)>0,
gn =h on I ,x[0,T) I,=I\T,,

and the initial conditions
u |t:o=u0v u’|[:0=v0, plt:0= Py gltzoz ‘901 g’lt:ozalo in Q. (13)
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Here 6={G(xt)} , 1=1(xt) h=h(xt)represent vector of mechanical
loading, external electric current, and applied heat flux correspondingly.

3. VARIATIONAL PROBLEM STATEMENT
Let us introduce the spaces of admissible elastic displacements, electric potentials
and temperature increments (relatively to the initial temperature T, ) respectively:
V={Ve[H1(Q)]d :v=0o0n Fu},
Pz{reHl(Q): r=0 Oan,r:constonFe} (14)
Z ={§e HY(Q): < =0o0n FB}.
Here symbol H™ () means a standard Sobolev space. We denote @ :=V xPxZ , the dual

space @ :=V'xP'xZ"and H=[L2(Q)]". Then the initial boundary value problem of

Green-Lindsay thermopiezoelectricity (1)-(9), (12)-(13) can be rewritten in the following
variational formulation:

given y, = (Uy, Py, 6,) €@, v, e H, 6, € L(Q) and(l,r, 1) € L*(0, T; ®");
find y ={u(x,t), p(x,t),(x,t)} € L*(0, T; ®) such that
m(u”(t),v)+a(u’(t), v) +c(u(t), v) —e(p(t), v) —

—y(0(t) +t,0'(t), v) =<I(t), v >,

2(p'(t). &) +e(S,u'(®) +z(p(t), &) + 7 (6'(1) +1,0"(1), &) =<r (1), & >,
S(0'(t) +1,0"(t), 1) + k(6(t), 17) + = (17, P'(1)) +

+y(n,u'(t)) =< u(t),n > Vte(0,T],

m(u’(0)-v,,v)=0, c(u()-u,v)=0 VveV,
2(p(0)-pp.8)=0 VSeP,

s(6(0)+t,0'(0)— (6, +t,0,,),m) =0 VneZ.

The introduced bilinear and linear forms are as follows:

m(u,v) = _[puividx = jpu.vdx, a(u,v) = _[aijkmgij (we,, (V)dx,

(15)

c(u,v) = jcijkmgij e, (V)dx, <l,v>= Ipfividx + j ov.dy,
Q Q T,

o

7(7,V) = [t (V)UK (E,V) = [, E, (&5 (V)dX VU, v eV,

2(p.&) :=1 ZwE (PE, ()X, 2(p, 2) = j 2, E (P)E,, (£)X, (16)
7(7,8) = [nm E(&)dx,<r,&>=1&] Vp,EeP,

s(6,17) = jﬂ p0,T5 "0ndx, k(0,7) = [T,*2,0,m dx,

< pn>= _[To’landX— jTo’lﬁfyd}/ Vn,0el.
Q Ty
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We suppose that the harmonic loadings with angular frequency @ are applied to the
piezoelectric specimen:
I(t) = (I, +il,)e™,
r(t) = (r, +ir,)e """, (17)
p(t) = (i +ig)e ™, Ve (0Tl
Then the approximate solutions of problem (15) can be looked for in the form of the
following expansions:

u(x,t) = (U, (x) +iu, (x))e ™,
P(x,t) = (p,(x) +ip, (x))e™, (18)
O(x,t) = (6,(x) +i6,(x))e ',

where u,(x), u,(x), p,(X), p,(X), &(x), 6,(x) are the unknown amplitudes of vector of

mechanical displacements, electric potential and temperature increment respectively.

Substituting expressions (17) and (18) into variational problem (15) and neglecting
its initial conditions, we obtain the variational problem for force harmonic vibrations of
piezoelectric specimen:

given >0,t >t, >0, (I,1,, 1,1, 1, 1,) e W = D' x D';

find y = (u,, p,,6,,u,p,,6,) € W =®x® such that

YV (v, &Yy, 1) eW =D x @

-w’m(u,,v,) +wa(u,,v,)+c(u,,v,)—e(p,V,) —

—7(6,V,) - ot y(6,,v,) =<1,,v, >,

—o’m(U,,V,) —oa(u,,V,) +c(U,,v,) —e(p,,V,) - (19)
—y(6,,v,)+ ot y(6,v,) =<l,,v, >,

oy (p,, &)+ we(&,uy) + z(pl,fl)+a)7r(92,§1)—w2t17z(91,§1) =<I,& >
_wZ(pl’gz)_we(‘fz’ul)"‘Z(p2|§z)_w”(elvgz)_a)ztlﬂ'(ezvgz) =<1,,& >,
@8(6,,11,) = @*t,8(0,,17,) + K(6,,7,) + @7 (11, ;) + @y (71, U,)) =< p43, 73, >,
~8(6,,17,) — @*t,5(6,,71,) + K (60,,1,) — @ (11, py) = 0y (11, ;) =< 15,77, >

Now we will transform the last two equations of the variational problem (19) by
using the linear combination of the admissible functions 7, , 7,. We will obtain:

given w>0,t, >t >0, (I,1,,1, 5, 14, 1,) e W =D x D',

find y = (u,, p,,6,u,p,,6,) € W=®x® such that

V (Ve & V2, 650m) €W = DX
—a)zm(ul,vz)+a)a(u2,v2)+c(ul,vz)—e(pl,vz)—

=7(6,,V,) - oty (6,,v,) =<1,,v, >, (20)
—o’'m(u,,Vv,) - wa(u,,v,)+c(u,,v,) —e(p,, Vv,) -

=76, V1) + oty (6, V) =<1,,v, >,

wx(p,, &) +@e(&,u,) +2(py, &) + 07(6,, &) ~ 0t 7(6,, &) =<1, >,

—ox(p,, &) —we(S,,u,) + Z(pzvéz)_w”(gl’éz)_a)ztﬁ'(‘gz’éz) =<0,,& >,
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s(6,,m, + otn,) - wztos(gpm +oty,) + k(6,1 + oty,) +
+@r (1, + by, py) + @y (7, + O411,,U,)) =< py,1, + oy, >
_0)5(011 = a)t1771) - a)ztos(‘gz /7 a)t1771) + k(ez /7 a)t1’71) -

—or(n, —otn, p)— oy, — ot ) =< u,,1, —otng, >.
Having added all the equations of the problem (20) we introduce the linear form

Ko W R:

<y, W>=—<l,,v, >+ ' [<1,& >+ <, +otn, >]+ 1)
+<l,v, >+afl[< & >+<,,n,—otn > Vvw=(v,&,m,V,,5,n,) € W.

and the bilinear form IT :WxW — R

I, (y,w) = _wz[m(uy v,) —mM(uy, v,)]+ ofa(u,, v,) +a(u,, v,)] +

+[C(U1' Vz) _C(UZI Vl)]+[e( p2’V1) _e( P Vz) + e(gl’ uz) _e(gz*ul)] +

Hy (0, V1) = 7(6,V,) + oty (6, V) - oty (6, vy) +

+y (3 + @by, Uy) =y (17, — tyrpy, Uy)] +

Hr(6,,8) -ty (0,8) - 7(6,&,) - oty (6,,5,) +

+r(n, + oty p,) —7(n, — ot p)]+

Hx(p,. &)~ x(p &+ @ [2(py, &) +2(p,. &)1+

+ k(6,1 + wt,) +K(6,,77, — oty)]+

+[S(02 1/ 0)111772) - Wtos(ay h+ a)t1772) - 5(91’ U7 C‘Jt1771) - a)toS(92 11 — wtﬁl)]
Vy=(,p,0,u, p,0,)eWYw=(v,&,n,v,,&.n,) e W.

Then variational problem for forced harmonic vibrations of pyroelectric can be

(22)

rewritten as follows:

and

given w>0,t >t >0,< y, ,W>e W =®'x D',
find y =(u, p,,&,u,, p,,6,) € W=®x® such that (23)
I (y,w)=<y,w>Vw=(v,&,n,v,,%,1m,) €W.

4. WELL-POSEDNESS OF THE VARIATIONAL PROBLEM
Let us introduce a scalar product on the space W in the following way:

(W)= Y[, + 2P, &) + k(0. 7)]

Vy=(U,p,6 Uy, p,,0,) €W, VwW=(v,,§,7,,V,,E,,1m,) € W.
We also introduce a norm generated by the scalar product (24):

Ty lIP=(y.y) vy e W. (25)
Then we can easily notice the following estimations:

[TT,,(y, w) [< M, (o) [I['y [ll]ll w1II,
M, (w) =C max{o™,1 0,0’} Vy,w e W,

(24)

(26)

< X0 W< My (@) [ 2, -l WL,

o (7)
M, (@) =C max{w 1}, vw e W.
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Here and everywhere the symbol C means a positive constant value, which is not
dependent on solutions of variational problem (23).
Consider now the expression for IT_ (w,w) in order to confirm that bilinear form

IT, :WxW — R is W -elliptic:
IT, (w,w) = efa(u,,u,) +a(u,,u,)]+ afl[z( Py Py) +2(p,, P)]+
+a)_l[k(01' 0,) +k(6,,6,)]+ ot —1,)[s(6,,6,) +5(6,,6,)] >
> wfa(u,,u,) +a(uy,,u,)]+ wil[z( Py Py) +2(p,, P)]+ (28)
+7'[k(6,,6,) +k(8,,6,)]> a(w)- W],
a(w) =min{w*, v} Yw e W.
Since the statements (26)-(28) are held and they are actually the conditions of Lions-

Lax-Milgram theorem, the following theorem is then correct:
Theorem 4.1. For each @ >0 and t >t, >0 the variational problem (23) has a

unique solution y € W, which satisfies the relation:
llw i< e (@M, (@)l £, Il - (29)

5. GALERKIN DISCRETIZATION

Standard Galerkin scheme implies looking for solution e W of variational
problem (23) in some finite-dimensional subspace W, =® x®, , ®, c®,
dimW, = N(h) <+oo. Thus, the Galerkin-discretized variational problem (23) looks in the

following way:
givenw >0, y, e W', W, c W, dimW, < +o;

findwy,, = (uy,, Py, & a0 Pops o) € W, such that (30)
I, (v, 0)=< 1, 0> VoW,
Since problem (23) is well-posed, the same thing we can say about problem (30). In
the space W we select some basis functions {Wi};. For each natural number m>1,

h=1/m a sequence of approximation spaces W, and operators of orthogonal projection

Pr,:W—>W, are defined so that a set {w,}  is a basis of W,, and

i=1

((w—Pry,w))=0 VyeW,Vw, eW, . Now variational problem (23) is replaced by a

sequence of the following problems:
givenw>0, y, e W, h>0, W, c W,dimW, =m < +x;

findy, = (uy,, py,, &, 0y, Py, 6y,) € W, such that (31)
I, (¢, 0) =<7, 0> VoeW,.
Theorem5.1. Let we W be a solution of problem (23) with parameter @ >0.
Then a sequence of Galerkin approximations {\yh} < W is unambiguously defined by the

solutions of the problems (31) and has the following properties:
v = ll< "My (@) inf [l =w ]| ¥'h>0; (32)

lim 1w —w, Il=0. (33)
Proof. The correctness of the inequality (32) is based on the fact that
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I, (y-y,,w)=0VweW, (34)
and the estimation
allly—w, IF<TL, (w—w,, w—w,) =TT, (¥ —w,,y —W) < (35)
<My (@) [ITw—w, (Il =Wl VweW,.
Taking into account the density of sequence of spaces {Wh} in the separable

space W:
Lirrg|||w—Prhw|||=OVWeW. (36)
Therefore, basing on the equality
inf [y =wliHl v —Prl (37

and inequality (32) we can conclude the correctness of (33), when @ >0.

Theorem 5.2. on the convergence of FEM approximations. Let y € W be a solution
of problem (23) and there exists a natural number k >1 such that y € W A[H** ()]
Let approximations v, be defined by solving problem (31) in the spaces W, < W, which

are constructed with making use of piecewise-polynomial functions of FEM and have the
following property:

for each @ e WA[H“ (Q)J“*?, k>1 there exists ¢, € W, and C =const >0
such that | @—g,ll ,,<Ch“* ™I @l ,,,, 0<m<k, where h is the diameter of finite

element mesh and k is the greatest degree of full polynomial of d variables, which is
precisely defined by base functions of W, on each finite element.

Then the convergence of sequence ¢, € W, is characterized by the estimation:

llw—w, < Ch* IR ”k+l,Q' (38)

where C =const >0 is not dependent on values we are looking for.
Proof. The estimation (38) is implied from the inequality (32), the equivalence of

norms |||+l and ||-||,, on W and the density properties defined in the theorem’s body.
Il —w, Il a’lMl(a))vavah lw=wilH w—wil ,<Ch* [yl - (39)

Let us now pay a deeper attention to the aforementioned selection of finite-
dimensional subspace W, — W. Taking into account the definition of W, , that is

W, =V, xB, xZ, xV, xR, xZ,, where
V,cV,R cP,Z cZ,

40
dimV, <+co, dimP, <+, dimZ, <+, (
we can write the expansions of solution amplitudes as following:
N N
uah = y Uaiq)iv (X)’ pah = 4 Paigoip (X)’
|; i=0 (41)

Hah =Z G)aigoiz (X)v a =1121

i=0
where @, (x), " (X), ¢ (X) are the basis functions of spaces V,,P,,Z, respectively. Then

we obtain the system of linear equations for finding nodal values of the unknown
amplitudes:
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oA B 0 E -—etY" Y ][u] |l
B oA -ET 0 Y —etY'||U| [L
0 E ©'Z G -am’ W ||P| |@R @)
-E 0 -G w'Zz -M - P, o 'R, '
otY Y oeotll IO D -H 0o, o 'F, +tF,
| -Y oty -II otll H D 19, | o'F, —tF,

where B=-0’M+C, D=0"'K+ao(t, -t,)S, H=-(1+ott,)S+tK.
Here the elements of the matrices and vectors are computed using the bilinear and
linear forms defined in (16), for example A :{aij}:{a(<piv,(p‘j’)}. The matrix of the system

of equations (42) is positively defined, but not the symmetric one. More precisely, it can be
represented as the sum of positively defined symmetric matrix and a skew-symmetric one.

6. NUMERICAL EXPERIMENTS
We consider a piezoelectric bar with length L =10"®m made of PZT-4 ceramics. A
harmonic heat loading with angular frequency @ =310°rad /s is applied to the right edge
of the bar. So, the boundary conditions for thermal field are:
6,(0)=0K, 6,(0)=0K, h(L)=100J-m?s™, h,(L)=0J-m?2s™. (43)
On the left edge of the bar the boundary conditions for mechanical and electric fields
are homogeneous and of Dirichlet type:
u @) =0m, u,(0)=0m, p,(0)=0V, p,(0)=0V. (44)
On the right edge of the bar the boundary conditions for mechanical and electric
fields are homogeneous and of Neumann type:

5,(L)=0N-m?, &,(L)=0N-m?, I,(L)=0A, 1,(L)=0A (45)
We take the coefficients of PZT-4 as in [16]:
p =7500kg /m®, ¢, =350J / kg'K,
A=11IW /mK, c=115x10° N/ m?, (46)
e=15.1C/m?, r=27x10"C/Km?

7=6.46x10°C?*/N-m?, a=3.13x10°K™.

Also we take z=5x10"7Q™"m™, a=40m’s™ and T, =298K . Unfortunately,
the exact values of relaxation time parameters t,, t, are unknown for majority of materials,
PZT-4 ceramics inclusive. However, it is experimentally determined that these values can
vary between 10™°s for gases and 10 s for metals. To demonstrate the effective

influence of tyand t, on solutions, we will perform a set of numerical experiments with
such pairs of relaxation time parameters:

t, =10"s, t,=10"s,

=610"s, t, =510 s,
E 0 (47)
t, =310, t, =210,

t, =10"s, t,=10"s.
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For discretization by spatial variable we divide the interval [0,L] into N =256

finite elements with piecewise linear solution approximations on them.
The experiments show that almost all the solution amplitudes do not depend on
relaxation times t, and t and practically coincide with the solution amplitude of the

classical thermopiezoelectricity problem. The only difference is in the values of temperature
increment amplitude @, , which is shown on Figure 1. Concerning Fig. 1, it is worth noting

that amplitude @, at relaxation time parameters t, =10™'s and t, =10 s coincides with
the solution of classical thermopiezoelectricity forced vibration problem and making t, and
t, even lesser does not give any effect on the solution amplitude 6, .

H=10"0s t =101 5

(]

101, K

Lx10%.m

Fig. 1. Temperature increment amplitude &, depending on relaxation times t; and t,

7. CONCLUSIONS

The harmonic vibrations of the pyroelectric materials have been studied under
generalized Green-Linsay thermopiezoelectricity theory. We have formulated the
variational problem for this special case and proved its well-posedness. Then this special
variational problem has been discretized using standard Galerkin-method. The bases of
approximation spaces of the discretized problem have been constructed using finite element
method. The rate of convergence of FEM-approximations has been studied theoretically.
The numerical experiment of applying a harmonic heat loading to the pyroelectric bar has
been set up and studied. The results of the experiment showed that in some special cases the
"relaxation time"-parameters have a significant influence on the nodal values of solution
amplitudes.
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CKIHYEHHOEJIEMEHTHHUH AHAJII3 TAPMOHIMHAX XBUJ1h
Y MOJEJII TEPMOITI’€30EJIEKTPUKHU I'PIHA-JITHACESA

B. Creabmamyxk?, IT'. Illunkapenko®?

Ylveiecoxuti nayionanouuii ynisepcumem imeni leana Ppanka,
eyn. Yuigsepcumemcoka, 1, JIvgis, 79000, e-mail: kis@Inu.edu.ua
2[Tonimexnixa Ononvewka, eyn. Ilpyoickoscvka, 6, Onone, 45758, Honvwa,
e-mail: h.shynkarenko@po.opole.pl

BuKOpHCTOBYIOUH MOjeNb TepMol’e3oenektpukn [ 'pina-Jlinacest (G-L) 3 Tak 3BaHMMHU
rapaMeTpaMH penakcalii, sSKi BIUIMBAaIOTh Ha XapakTep B3a€MOJIl MEXaHIYHOTO, eNEKTPUYHOTO Ta
TEIJIOBOTO IOJIB y MipOeNeKTPUKaxX, HO0JaHO (HOPMYITIOBAHHS [TOYAaTKOBO-KPaioBOI 1 BIAMOBIAHOI Ti
BapianiiiHol 3a7a4 wiei MozeNi B TepMiHaX BEKTOpa MPY)KHHUX 3MillleHb, eJIEKTPUYHOTO HNOTEHIiaIy,
NIPUPOCTY TemrepaTypu. [laimi, 3a NONMYLIEHHSM LIOJO TapMOHIHHOTO HABaHT)XXEHHS i3 BiIOMOIO
KPYTOBOIO 4acTOTOI0, TOOY0BAaHO 3MilllaHy BapialiiiHy 3aady Mpo aMIDTiTYAd TapMOHIHHNX XBHJIb Y
MPOENEKTPHUKY 1 32 NPUIATHHUX U MPAKTUYHHX 3aCTOCYBaHb YMOB JOBEICHO iCHYBaHHS €JMHOTO
CTIHKOTO PO3B’sI3Ky pO3riLIyBaHoi 3amadi. Ilicis 1poro 3rajgaHa 3agadya JUCKPETU3YETHCS CXEMOIO
lanpopkiHa 3i ctaHgapTHUMHE JJst ipocTopiB CoboneBa 6a3MCHUMU (QYHKIIISIMH METOIY CKiHUCHHUX
enementiB (MCE). B HopMmax mmX camMpuX HpOCTOpPIB 3HAWAEHO ampiopHi OLIHKH IOXHOOK
anpokcuManiii MCE, ski BHSBISIOTH 3aJeXKHICTh LIBHAKOCTI iXHBOI 30DKHOCTI Bil MOPSIIKY
MOJIIHOMIabHUX 0a3ucHHUX (DYHKIINH Ta Bij 3amacy peryJispHOCTI IyKaHOTo po3B’s3ky. HaeemeHo
pe3yJIbTAaTH YHCIIOBOTO EKCIIEPUMEHTY, KM JEMOHCTPYe BIUIMB 3HAueHb IMapaMeTpiB penakcamii
I'pina-Jlinacess Ha XapaKTEpUCTHKY TapMOHIMHMX XBHIJIb, SIKI BHHHKAIOTH y MipOENEKTPUYHOMY
CTPYDKHI, IO MiAJAETHCS TEIUIOBOMY HaBaHTAXKEHHIO 33JaHOT YaCTOTH.

Knrouogi cnosa: mpoenekTprUK, TEPMON €30€IeKTpruKa, Mozaenb ['pina-Jlinaces, moyaTkoBo-KpaiioBa
3ajada, BapialiifHa 3aada, qUCcKpeTu3anis [anpopkiHa, METO/I CKIHUCHHUX eJIEMEHTIB.
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