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OPTIMAL HIDDEN LAYER NEURONS NUMBER IN TWO-LAYER
PERCEPTRON AND PIXEL-TO-SCALE STANDARD DEVIATIONS RATIO FOR
ITS TRAINING ON PIXEL-DISTORTED SCALED 60-BY-80-IMAGES IN SCALED

OBJECTS CLASSIFICATION PROBLEM
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A classification problem is considered. Objects to be classified are presumed distorted with
linear scaling effect. The classifier is two-layer perceptron. The object model is the monochrome
60-by-80-image of the enlarged English alphabet capital letter. Thus general totality is formed of
monochrome 60-by-80-images of alphabet letters, and it is of 26 classes. The goal is to show how
hidden layer neurons number in the two-layer perceptron and an element of the topological
configuration for training it can be optimized for scaled objects classification problem. The
topological configuration element is a pixel-to-scale standard deviations ratio. This ratio allows
importing feature-distorted objects into the training set. The feature distortion is actually formed by
adding the normal noise with zero expectation and variance regulated by the ratio. The two-layer
perceptron is modeled, trained and tested within MATLAB. Factually, this is an optimization problem
of two variables, where the two-layer perceptron performance is optimized in the sense of decreasing
classification error percentage. The percentage is a function evaluated on the Cartesian product of the
ranges of hidden layer neurons number and pixel-to-scale standard deviations ratio. This product is a
horizontally-striped rectangle which is subsequently sampled to a lattice. The optimization result is
150 neurons in the hidden layer and the ratio equal to 0.02, allowing to identify a classifier which
produces an error only on an object from 37 objects whose scaling effect distortion is maximal.

Key words: scaled objects classification, two-layer perceptron, monochrome image, training set,
classification error percentage, optimal hidden layer neurons number, optimal pixel-to-scale standard
deviations ratio.

1. SCALING IN OBJECTS CLASSIFICATION

Effects of scaling are common for object recognition (classification) systems,
working via photographing or scanning. If even there is no scaling in a photograph or a
scan, say, faces of a child and an adult are always viewed differently in their outlines,
although they are captured at the same distance. Other scaling effects occur when the object
data are processed or transformed, bringing linear stretching or reduction of the imaged
object. Notwithstanding this, scaling in objects classification mustn’t lower the
classification quality, what is achieved and maintained with scaling-proof classifiers.

2. WAYS OF IMPROVING THE CLASSIFIER FOR OPTIMIZING ITS
PERFORMANCE OVER SCALED OBJECTS

Whatever the scaling-proof classifier is, there at any time may appear a scaling
amplitude which breaks its proofness. Thus there will be a need to optimize the classifier.
Anyway classification error percentage (CEP) in the classifier performance is non-zero, and
such CEP is tried to have it lowered anyhow. Especially, when it is about the classifier
performance over scaled objects. This performance depends on the scaling range and its
peak values, on the general totality of those objects and number of classes in it. The greater

© Romanuke V., 2017



V. Romanuke
ISSN 2078-5097. BicH. JIbBiB. yH-Ty. Cep. mpuki. MateMm. Ta ing. 2017. Bum. 25 113

all these properties and attributes are, the harder it is to identify a classifier, producing low
CEP, which is tolerable [1, 2]. So, the classifier performance optimization over scaled
objects is always actual as the scaling range is extending, the classes” number is increasing
or the general totality is becoming denser.

But along with lowering CEP the improvement of the classifier concerns also its
operation speed. And here classifiers based on hierarchical multilayered neural networks or
convolutional neural networks lose much [3]. The matter is that they are pretty slow-acting,
though being capable of robust visual pattern recognition (object classification) through
learning. Besides, those neural networks are grown huge in resources consumption as,
saying, the scaling range is extended. Multilayered perceptron, quite the contrary, performs
fast and easy, but its performance over scaled objects needs an optimization. Main ways of
improving the perceptron for classifying the scaled objects are selecting its neurons number
optimally and optimal configuration of the training set [1]. However, the optimal neurons
number and the training set optimal configuration are determined deeply on the object type
and its features, not to mention the number of the general totality classes and others above.

3. GOAL OF ARTICLE AND TASKS

Before stating the goal of this article, the type of objects for their classification must
be appointed. Once the object type is modeled, the general totality and number of classes
will be defined. Only then the article goal can be stated explicitly.

Generally, the goal is to show how neurons number in the perceptron and an element
of the topological configuration for training it can be optimized for scaled objects
classification problem. Certainly, that the show is going to be stated over some pattern of
those objects. So, its results are locally applied, although the way of optimization of the
perceptron performance will be saved out.

May the type of objects for their classification be the monochrome image. It is very
convenient as the monochrome image is naturally watched with its any feature distortions.
Moreover, the monochrome image is easily modeled for the object, and number of its
features is directly calculated on the image format.

For classifying monochrome images it is adequate to have two-layer perceptron
(2LP). Perceptrons are described and simulated best in MATLAB, having powerful Neural
Network Toolbox. Subsequently, a MATLAB function for training the perceptron ought to
be chosen, and a model of a specific training set will be stated. Then boundaries for the
neurons number in the perceptron single hidden layer are to be given. Also boundaries for a
distinctive parameter of the specific training set are to be evaluated. This parameter is that
element of the topological configuration for training, helping in acceleration of the training
process over scaled images. Having boundaries for the hidden layer neurons number
(HLNN) and boundaries for the training set distinctive parameter, there is the Cartesian
product of two ranges, whereupon CEP is to be minimized on that product. The solution of
the correspondingly stated math problem will be verified as testing the trained 2LP by those
two optimized parameters. Finally, suggestions for further 2LP performance optimization
will conclude this article.

4. GENERAL TOTALITY AND NUMBER OF CLASSES
BY THE OBJECT MODEL

An appropriate format for the monochrome image is 60x80. This medium format
allows accelerating the investigation procedures and acquiring the classification results. The
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file format is bitmap, which is naturally coded by MATLAB with ones and zeros. Thus 60-
by-80-image is modeled as 60x80 matrix of ones and zeros, and there is the finite general

totality of ones-and-zeros 60x80 matrices, containing altogether 2“° monochrome
images.

May there 26 enlarged English alphabet capital letters [1] be imaged within the
general totality. This gives 26 classes in it. Neither the small number, nor the great, what is
acceptable for hitting the article goal at the proper term.

For configuring the advanced training on sample sets of scaled images from such
general totality, there is the training set distinctive parameter, having involved the pixel
distortion [1, 4]. Pixel distortions are added to the linear scaling effect, and these two types
of distortion are attributed by their standard deviations (SD) [1]. Hence, the explicit goal of
this article is to minimize CEP in the scaled objects classification problem on the pattern of
the general totality of ones-and-zeros 60x80 matrices, modeling 2**® monochrome
images, where optimal HLNN in 2LP and optimal pixel-to-scale standard deviations ratio
(PSSDR) for its training on pixel-distorted scaled 60-by-80-images (PDS60801) would be
applied.

5. MATLAB FUNCTION FOR TRAINING THE PERCEPTRON

There is the backpropagation algorithm, having several specialized methods to train
2LP. The fastest method in backpropagation algorithm for training on medium-number-
featured objects is implemented as the training MATLAB function “traingda”. This function
effectively trains the perceptron, updating weight and bias values according to gradient
descent with adaptive learning rate [1]. Henceforward, the training MATLAB function
“traingda” will be used in all training processes below. Then, testing the trained 2LP under
previously assigned HLNN N, and PSSDR r, there will be obtained the function

pmr(r, N,y ) on the Cartesian product of HLNN and PSSDR ranges, whose values are
averaged CEP over a distortion type range of SD.

6. MODEL OF PDS6080I

The training set for 2LP to classify scaled 60-by-80-images (S6080I) is formed in
F e N stages. This training set is filled with PDS60801, modeled as 4800x 26 matrices of

F
PDS6080I {Aﬁ,@smgo,}k X whose g -th column is the q -th class representative, reshaped into

4800-length-column:

Q2

i (k):| = A<Sl;>080I + O-é’kD> B 1)

4800%26

A<PkD>56080I :|:
by SD
o) :%df;w Vk=1F @)

and its maximum o™ >0 at 4800x26 matrix Z of values of normal variate (NV) with

zero expectation and unit variance (ZEUV), where AS?OSOI is 4800x26 matrix of S6080I,
whose ¢ -th column is the same q-th class representative, 4800-length-column-reshaped,

q=1 26. The matrix Aggogo, =[ajq(k)1mox26 is formed by concatenating horizontally
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4800-length-column-reshaped matrices {Aq(k)}26 , Where -th S60801 as the matrix

q=1
A, (k):[éﬁj> (k)lmx80 is the q-th class representative. Note, that generally there in left

side of (1) is not the ones-and-zeros matrix, though it is included into the training set that
will feed the input of 2LP. But as soon as elements of this matrix are compared to the value
0.5 via 0.5-crossing comparator, it already belongs to the general totality of ones-and-

zeros 60x80 matrices, modeling 2**® monochrome images. Namely, if gjq(k)go.s then

the pixel of vertical-horizontal coordinates {j, q} is set to the black color, else this pixel is

set to the white (in MATLAB, the white color is coded with ones, and the black is coded
with zeros).

For each k -th stage of forming the training set by (1) and (2), every matrix Aq (k)
is obtained after scaling separately the q-th class non-distorted representative as the ones-

and-zeros matrix A, = (afy) . An S60801 can be formed within MATLAB by means of
60x80

its function “imresize” [1] as the map

A, (K)= p(Aq, 5(ol ). 60, 80) @3)
with the scale coefficient g(o-s<:a>le) by SD
ol =X o) T F (4)

scale = " Oscale

for o{™) >0, q=1 26. Mark it out that pixel distortion SD (2) and scale SD (4) are

scale

increased simultaneously. The scale coefficient
5(oh ) = og (k) +1 (5)
is determined by the value §(k) of NV with ZEUV, raffled at the k -th stage for each q

separately. If occurs g(0<k> )go then the corresponding NV with ZEUV is re-raffled until

scale

g(as@,e)>0. The input image A, is enlarged by g(ag;e) times within the map (3) if

g(0'<k> )>1; the input image A, is reduced by

scale

times within the map (3) if
g(o-scale)

g(as@,e)<1; the input image A, remains non-scaled if g(0<k> ):1 or (5) is rounded to 1

scale

scale scale

due to that ‘g(0'<k> )—4 <0.006, and A (k)=A, as corollary. The scaled by g(0<k> );tl

scale

image is the matrix S(q, aﬁfﬁ,e) of the intermediate format V xH . If g(0<k> )>1 then the

scaled image is cropped in the following way. Integers

N, = n(%)—so{m%‘:v-signlév Ij'sign{%—n(%ﬂ , )
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H 1+signg,, . .| H H
N, :;7[?j—40+(%~5|gn|§H |j-5|gn[?—n(?ﬂ, (7

where 7(x) is a function, returning the integer part of the number x, are calculated by the
values {g“v, ;H} of two independent NV with ZEUV, raffled every time, when the function

17(x) is applied. Then in the matrix S(q, o ) lines of their numbers

scale

{{L N, | (61N, v}} ®)

and columns of their numbers

{{1, N |, (BTN, H}} 9)

are discarded. If g(6<k> )<1 then the reduced image is contoured rectangularly with the

scale

background white color: the matrix S(q, o

scale

) is padded from left for

Ny = 77(80; H j+(l+5'gn S -sign |§H |j .sign{%—nﬁgﬂ (10)
columns of ones and from right for
Niigne = 80—H — N, (11)
columns of ones, and it is padded from top for
o S (50 i o (2] 0
lines of ones and from bottom for
Npotom = 60—V — Niop (13)

lines of ones. After that the map (3) finally returns S60801 as 60x80 matrix Aq (k) into

the set {Aq (k)}ze1 for completing the addition (1).
q:

7. BOUNDARIES FOR HLNN
Obviously, boundaries N™ and N{™ for the segment [Nﬁm; Nﬁmﬁ] of HLNN

N,,, Mmust be given so that 2LP at any N, e[Nﬁﬂ?; NQT‘"*N”]ON would be trained

appropriately. Influence of traintime duration counts much less than CEP, and HLNN N,
is accepted if 2LP just can be trained. This “can” means the training process is not of hang-
like, and overtraining won’t occur. Taking into account the number 4800 of the image
features and number 26 of classes, let the left valid value of HLNN be 100. At that HLNN
cannot exceed 350 as by N, >350 2LP is no more being trained yet on non-distorted
representatives. Therefore the boundaries for HLNN are N'"") =100 and N[/ =350,

and the segment of HLNN is [100; 350]. Later, for each of 251 values from this segment,
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the averaged CEP value at some PSSDR will be determined to obtain the function
perror(r’ NHLN) Value'

8. BOUNDARIES FOR PSSDR
From pixel distortion SD (2) and scale SD (4) it follows that [1] PSSDR

(max)
O,
r = PD

. (14)
o

Boundaries r,,, and r,, for the segment [r.;r ] of PSSDR r ought to be evaluated

such that after the training process 2LP would maintain its capability to classify both
S60801 and PDS6080I. Classification of S6080I is basic. By the way, PSSDR for training
and PSSDR in PDS6080I for testing the PDS6080I-trained 2LP are different principally.
The range of (14) is not profoundly influenced with the image features number or the

number of classes. However, it influences on the traintime duration, which is longer at the
lower PSSDR, and it’s shorter at higher PSSDR. As yet SD o™/ =0.2 is sufficient to

produce S60801, watched on real practice, then the deal is just to set up the range of pixel
distortion SD agga*>. Continuing, the minimal-ultimate maximal pixel-distortion SD is

ot =0.002 as by oip™ <0.002 values in the matrix = or value &(k) of NV with
ZEUV are too insignificant, distorting pixels in S60801 sparsely. Then the lower boundary
of PSSDR is r,;, =0.01. Therefore, the upper boundary of PSSDR r,, =1 ensues from the
maximal-ultimate maximal pixel-distortion SD is o™ =0.2 as by o™ >0.2 pixel
distortions become unsuitable for training [1]. Consequently, the boundaries for PSSDR are
evaluated as r,, =0.01 and r, =1, and the segment of PSSDR is [0.01 1]. Unlike

HLNN being integer and having maximal quantity of points N/ — N +1 from its
range [N,STP; Nﬁ{ﬂi?] to be run through, PSSDR has continuum of points in any

[r i rmax] range by r_. >r... . The step of sampling the range [0.01; 1] isn’t necessary to

be equidistant: local minima may be probably discovered closer to the lower boundary
r.,=0.01, and there the sampling should be denser. Re-sampling isn’t excluded also.

Well, these questions are coming to be highlighted in the next section.

9. RUNNING THROUGH THE CARTESIAN PRODUCT OF HLNN AND PSSDR
RANGES

The Cartesian product of the abovementioned ranges of HLNN and PSSDR is
horizontally-striped rectangle (HSR)

[ T ]% {[Nm% NG ] N N} =[0.02; 1]x{[100; 350] NN} . (15)
Order of variables is surely out of importance. A two-component point from HSR (15)
[r Npn] €[fns o | {[N@Tp; N<HT;X>]QN} =[0.0%; 1]x{[100; 350] AN} (16)
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is the couple of 2LP parameters to be optimized. Mathematically, the optimization problem
lies in minimizing and gripping the starred two-component point from (16) as the function
minimum argument:

[r* N;LN]earg{ min Paror (T2 N )} (17)

[" NHLN]E["min? rmax}x{{NSiTE)? N&Tﬁ)]ﬂN}

In explicit form, the problem (17)

[r Ny J carg {[r NHLN]e[OA({PJI.]D{[lOO; 350]N} Pero (I’, Nin )} (18)

needs the function p,,, (r, Ny ), evaluated on HSR (15) as a plane lattice, which is
sampled from (15).

Primarily the range [0.01; 1] of PSSDR by N, =100, 350 should be run through
for determining the shape of the averaged CEP p,,, (r, N, ) surface. HLNN is sampled

roughly: the step is 10 neurons. Let the step within the range [0.01; 1] be 0.01 up to the
point r=0.1, and 0.1 up to the point r =1, what gives 19 points within the segment
[0.01;1] to compute the averaged CEP in 494 points altogether (this is for one 2LP).
Once local minima of the surface p,, (r, Ny, ) are roughly determined, the range
[0.01; 1] is narrowed to a subsegment of [0.0; 1] (the subsegment may be re-sampled with

a smaller step). The sequence of HLNN within the segment [100; 350] can be narrowed as
well.

Running through HSR (15) implies testing the PDS6080I-trained 2LP with S6080I.
In the training process by PDS6080I, the input of 2LP is fed with the training set

~ C+F c F
{Pi<PD56080|>}i:1 - {{A}Il, {Afakgseogm}kl} (19)

of C replicas of all 26 classes’ non-distorted representatives and F matrices of PDS6080I
by the set of identifiers

T =0 (20)
with identity 26x26 matrix |. The matrix A is formed by concatenating horizontally
4800-length-column-reshaped matrices {Aq(k)}z:. The set (19), being formed

by (1)-(13) at some PSSDR (14), is passed through 2LP with identifiers (20)
for Q.. times.

pass
For obtaining preliminarily the real tolerable CEP on average, it is sufficient to take
parameters C=2, F =8, Q_.. =30. The training set
2 8
= {{A}.ly {Abgssomm | } (21)

k=1

pass

{ ﬁ»(PDSGOBOI) }

10
feeds 2LP for 30 times with identifiers {'I'i }.121 producing the PDS6080I-trained 2LP of
performance that could be improved, though.
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The PDS6080I-trained 2LP is tested with S6080I at the range of scale SD o, from

Ocale
the minimal one up to 0o’ , that is o, €[0; 0.2]. The range [0; 0.2] is going to be run

through with the step 0.02, which lets evaluate CEP in those 11 different points
of the scale SD.

Denote CEP of 2LP on S6080! by scale SD o,
Analytically, the averaged CEP
1
perror (r’ NHLN ) = W I perSrGO?80I> (r1 NHLN’ scale)do-scale =

e g0 o2

as p<55030|> (r' NHLN; Gscale) '

error

5_[ persr?)(r)goI ’ N HLN ' scale ) d O-scale ' (22)

And due to that the range of scale SD o,
computed as

is sampled with the step 0.02, statement (22) is

scale

perror HLN Z persrissm r NHLN; OOZt) : (23)
Before beginning the run, 2LP is tralned with the training set (21). Further, it is
tested through the 494-pointed lattice
9 9 25
{{o.01+00m)" , {01+01m}? hx{{100+10n}"

<[0.01; 1]x{[100; 350] N} (24)
of HSR (15), whereupon a rough mesh of the surface (23) can be drafted (fig. 1).
The local minimum at
[r Ny ]=[03 160] (25)
is rather occasional, where p,,, (0.3,160)<0.7846, indeed. By re[0.1;1] this is the

single point, at which the averaged CEP is less than 0.8, and there are eight 2LP among
those 18 ones with such a low CEP at (25). Altogether there are 12 points satisfying the

condition p,, (r, N,y ) <0.8, and, except (25), the rest 11 ones are:

[r Ny ]=[001 110], (26)
[r Ny ]=[002 240], @7)
[r N, ]=[003 140], (28)
[r Ny ]=[003 150], (29)
[r Ny ]=[003 230], (30)
[r Ny ]=[003 320], (31)
[r Ny ]=[003 350], (32)
[r Ny ]=[004 130], (33)
[r N..]=[005 150], (34)
[r Ny ]=[007 140], (35)
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[r Ny ]=[0.07 220]. (36)
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Fig. 1. A rough mesh of the surface (23) on the lattice (24) and its profiles,
where each point is the mean of the averaged CEP of 18 PDS6080I-trained 2LP
tested by feeding the input of 2LP with 400 sets of 26 classes of S60801
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Fig. 2. An evaluation of the unit-normed traintime surface on the lattice (24)
and its profiles, where each point is the mean of the unit-normed traintimes
of 18 PDS6080I-trained 2LP tested for fig. 1
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Fig. 3. A locally refined mesh of the surface (23) on the lattice (38) and its profiles,
where each point is the mean of the averaged CEP of 70 PDS6080I-trained
2LP tested by feeding the input of 2LP with 400 sets of 26 classes of S60801
(in each point, the testing results of the previously 18 PDS6080I-trained 2LP are included)
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All the points (26) —(36) have r <0.1, and only two points (31) and (32) have
N,y > 250. These two points are paid attention to, because p,,, (0.03, 320) <0.7685 and
Perror (0.03, 350) <0.7821, and there are 21 PDS6080I-trained 2LP among those 36 ones
(11 and 10 ones among each of 18, respectively) whose averaged CEP is less than 0.8.
Nevertheless, p,,, (0.03,140)<0.7995 and p,, (0.03, 150) < 0.7982, where HLNN is far

less, and there are 20 PDS6080I-trained 2LP among those 36 ones (11 and 9 ones among each
of 18, respectively) whose averaged CEP is less than 0.8. And greater HLNN requires

longer traintime — see how the unit-normed traintime &(r, NHLN) in fig. 2 varies on the

lattice (24). So, the points (31) and (32) are excluded, and HSR (15) is narrowed to a
smaller HSR

[0.01; 0.1]x{[100; 250] N} = [0.01; 1]x {[100; 350] N} . @37)

Owing to the narrowing, PDS6080I-trained 2LP is tested through the 160-pointed
lattice

{{o.01+001n}  fx{{100+10n}" } =[0.03 0.1]x{[100; 250] N}

<[0.0%; 1]x{[100; 350] N} (38)
of HSR (37), but now each point is evaluated over 70 PDS6080I-trained 2LP (fig. 3).
The locally refined mesh in fig. 3 has two local minima at
[r Nyw]=[0.02 150] (39)
and
[r Nyw]=[0.04 250] (40)
with very low CEP: p,,, (0.02,150) <0.8165 and p,,, (0.04, 250) <0.819, respectively.

Here we get slightly greater CEP because of averaging over 70 PDS6080I-trained 2LP
instead of 18 ones (fig. 4). Thus, the scattering of the averaged CEP decreases.

At the point (39), the averaged At the point (40), the averaged
CEP is less than 0.7526 CEP is less than 0.7571

TTTT

(39)

N A A A T A A A O
12345678 91011121314151617 1819 20 21 22 23 2425 26 27 28 29 30 31 32 33 34 3536 37 38 30 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 5850 60 61 62 63 64 65 66 67 68 69 70

Fig. 4. The averaged CEP scatter polylines disclosed for points (25), (39), (40),
where abscissa axis is a number of PDS6080I-trained 2LP; the averaged CEP at (39) reaches 0.7526 if it is
calculated over the 18-pointed window starting off the 20-th point, and the averaged CEP at (40) reaches 0.7571
if it is calculated over the 25-pointed window starting off the 40-th point
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Fig. 5. A re-evaluation of the unit-normed traintime surface on the lattice (38)
and its profiles, where each point is the mean of the unit-normed traintimes
of 70 PDS6080I-trained 2LP tested for fig. 3
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Fig. 6. The averaged performance and SD {0.02’£}t:0 -disclosed performance
of 10 PDS6080I-trained 2LP by the points (25) and (39); each 2LP is tested
by feeding the input of 2LP with 800 sets of 26 classes of S6080I

In selecting between the points (39) and (40), the unit-normed traintime helps again.
Fig. 5 prompts that selection of the point (39) is appropriate owing to its traintime is almost
40 % shorter. Another finding in favor of the point (39) is simplicity of the classifier, where
the lesser HLNN corresponds to the simpler 2LP.

Eventually, the points (25) and (39) remain pretending to be solutions of the problem
(18). Due to 10 neurons difference, advantage of the point (39) is minor. To ascertain the

global minimum of the surface p,, (r, N,y ) as the single solution, 2LP shall be trained
and tested at the points (25) and (39) more punctiliously.

10. SOLUTION OF THE PROBLEM (18) AND ITS VERIFICATION

The preliminarily reached tolerable CEP (about 0.82) can be decreased if pass the
training set (21) through 2LP longer. So take Q, =50 and increase the testing sets’

number of 26 classes of S60801 feeding the input of 2LP up to 800. Then it turns out, that
2LP in the point (39) is trained better (fig. 6).
By the data to fig. 6, the mean of the averaged CEP of 10 PDS6080I-trained 2LP in
the point (39) is slightly lesser:
Perror (0.02, 150) <0.6389 < 0.6577 < Py, (0.3, 160) . (41)

Anyway, according to (41) and fig. 3 and 5, the point (39) is treated as the solution of the
problem (18). Hence,

[r" N |=[0.02 150] (42)
and, for verification, let us see the performance within an HSR neighborhood, containing

the point (42). We don’t need to break the lattice (38) denser, because stochasticity is very
high, and the solution is going to be approximate through both axes.
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Fig. 7. A re-evaluation of the surface (23) mesh on the lattice (43) and its profiles, where each point is the mean of
the averaged CEP of 200 PDS6080I-trained 2LP by Q . =50 tested with 800 sets of 26 classes of S6080I

pass

Therefore, 2LP ought to be trained by nine points of the 3x3 lattice
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{0.01, 0.02, 0.03} {140, 150, 160} = [0.0%; 0.1]x {[100; 250] 1N} =
<[0.01; 1]x{[100; 350] N} . (43)
But the point (39) is already re-evaluated by Q,,, =50 and 800 testing sets of 26 classes of
S6080I (for fig. 6), and there remain eight points.

Fig. 7 confirms optimality of the point (42). Performance of the best PDS6080I-
trained 2LP at this point is
Perror (0.02, 150) <0.4507 . (44)

However, there is even better performance which is p,,, (0.01,160)<0.4022,

though. But this incongruity is just an outcome of stochasticity and small percentages. And,

statistically, mathematical expectation of CEP at the point (42) is the closest to minimum.
As the solution (42) of the problem (18) has been verified, now the question is about

PDS60801. Denote CEP of 2LP on PDS6080I by scale SD o, and r =1 (this PSSDR

scale

relates to the testing sets) as pemefGOm(r, Npn s Ouae ) - Analytically, the averaged CEP

perror ( 1 HLN 5_[ I:)e:)roDr56080| (r7 NHLN ' scale )d O-scale (45)
is approximated to

perror r NHLN Zperprgrseoam r NHLN; OOZt) (46)

like the averaged CEP in (22) and (23). The optimized PDS6080I-trained 2LP maintains its
capability to classify PDS6080I accurately:
Perror (002, 150) <0.5582 and p,,, (0.0L 160) < 0.5097 . 47

The best PDS6080I-trained at { ol™) 0.2, ot = 0.004} 2LP by the training set
(21) has been tested at the highest scale SD o,,, =0.2 for S6080I and at r=1 for

PDS6080I, respectively. Fig. 8 shows of how much the monochrome image is distorted
when it’s been scaled at SD o, =0.2, and nonetheless S60801 or PDS6080I is classified

scale

excellently. The mere one letter from so-scaled 37 objects is classified wrong. One letter
PDS6080I is classified wrong from 35 objects.

Fig. 8. S6080I at scale SD O, = 0.2 and PDS6080I (beneath) at scale SD o, =0.2 by I =1,

where the mere one letter from so-scaled 37 objects is classified wrong
by the PDS6080I-trained 2LP with optimal HLNN and PSSDR

At the average, the one letter from the 220 scaled objects is classified wrong. If the
scaling amplitude is slight ( o,,, <0.05), possibility of wrong classification is negligibly

small. Assuredly, non-scaled objects are classified correctly ever.
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11. CONCLUSION AND SUGGESTIONS FOR FURTHER 2LP PERFORMANCE
OPTIMIZATION

This article is a show of how neurons number in the perceptron and an element of the
topological configuration for training it can be optimized and verified for the definite
classification problem over a fixed pattern of objects. The results of this article lie in the
shown way of 2LP performance optimization over its two parameters. The optimization
process goes on while the classifier is identified. This process concerned CEP solely,
without referring to traintime. In furthering, the other parameters can be optimized to
decrease the averaged CEP more. For 2LP, they are the number C for the training set (19);
the number F for (19), indicating at smoothness in the training process with (19) by (20) —
the greater this number, the smoother training process is; the number Q__ (if passing the

pass
training set through 2LP is strictly limited). Being subsidiary, the traintime duration could
be optimized if it is supposed to be limited when the classifier is constrained everywhen to
become fine-adjusted to a new general totality of the previous type objects. Optimums,
however, clearly may vary when type of objects changes from the monochrome image to the
colored or elsewise. The same happens when number of the object features changes (the
image is re-formatted).

It is obvious the problem (18) can be solved only numerically, analyzing the mesh
(23). And another open question is how to speed up the process of evaluating the function
(23) and similar ones. Parallelization techniques [5] are believable to serve it.
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ONTUMAJILHE UM CJIO HEMPOHIB IPUXOBAHOI'O IIIAPY JIBOIIIAPOBOI'O
INEPCENITPOHA TA CHHIBBIJIHOIIEHHS CKB INIKCEJIBHUX CIIOTBOPEHb
I MACIHITABYBAHHSI JIJIS1 HOI'O HABYAHHSI HA MACIITABOBAHUX
30BPAKEHHSIX ®OPMATY 60-HA-80 3 IIIKCEJIbHUMMU CIIOTBOPEHHSIMHA
V 3AJAUI KJIACU®PIKALIL MACHITABOBAHUX OB’EKTIB

B. Pomaniok

Xmenbnuyvbkuii HayionanebHuil ynieepcumen,
eyn. lncmumymcoka, 11, m. Xmenonuyoxuii, 29016

PosrmsiayTo 3amauy knacuikarii. O6’exTn i knacudikarii crioTBopeHi 3 eheKToM JiHIHHOTO
Macmrabysanas. Kiacugikatopom € nonraposuii mepcentpoH. Mojens 06’ekta — MOHOXpoMHe 60-Ha-
80-300pakeHHsT 30UTBIIEHO] BENUKOI JIiTepH aHTifcekoro angasiTy. Binrak reHepanbHa CyKyIHICTH
chopMoBana 3 MOHOXpoMHUX 60-Ha-80-300pakeHb angaBiTHUX JiTep, CTAaHOBISUM 26 Kiaci. Hamra
MeTa — JIOBECTH, SIK YHCJIO HEHPOHIB NMPUXOBAHOTO IApy Y IBOIIAPOBOMY IIEPCENTPOHI W eIeMeHT
TOMNOJIOTIYHOT KOHQIryparii ;11 foro HaBYaHHS MOXYTh OyTH ONTHMI30BaHi JUIA 3a1advi Kiacuikarii
MacmraboBaHuX 00’ekTiB. IluM exemeHTOM TOmONOTIYHOT KOH(QIrypanii € cmiBBizHomenns CKB
IKCEeTBHUX CIIOTBOPEHb i MacmTaOyBaHHs. Lle CIiBBiJHOIICHHS Ha€ MiJCTaBH JOJABATH Y HABYAIBHY
MHOXHHY 00’€KTH 31 CIIOTBOPEHHMH O3HaKaMH. Lle CrioTBOpeHHsT 03HaK (OPMYEThCs depe3 JT0IaBaHHS
HOPMAJIBHOTO IIyMy 3 HYJIBOBHM CEPEIHIM 1 JHCIIEPCIElO0, SIKa PETYIIOETHCS UM CITiBBITHOIIECHHSM.
JIBomiapoBuii MEPCENTPOH MOJICIIOEThCS, HaBYaeThes Ta TecTyeTbess y MATLAB. daktuuno, 1€
onTHMi3aNiiHa 3a7aya 3 ABOMa 3MiHHHMH, A€ NMPOAYKTHBHICTH HEPCENTPOHA ONTHMI3YETBCS Y CEHCI
3MEHIIIEHH! BiJICOTKA MOMMIIOK Kiacudikanii. BiH e dyHKIi€ero, sIKy OLIHIOIOTE Ha IeKapTOBOMY JOOYTKY
Jliara30HiB YKCIa HeHPOHIB IpHXxoBaHoro mapy Ta chisBinHonreHHss CKB. Lle# 100yToK MpsSMOKYTHUK 3
TOPM3OHTAIGHIMH CMYyTaMH, SIKHH Yy TOJAIBIIOMY IHUCKPETU3YETBCS JO TpaTkh. PesyibraToM
ontumizanii € 150 HeHpoHIB y MPHXOBaHOMY IIapi Ta CHiBBiJHOIICHHS, 110 popiBHIoE 0.02, sKi IaloTh
3MOTy OTpUMYBAaTH Kjacudikarop, Ie JHWIIe OJHA IOMWIKAa TparusieTbcss Ha 37 00’ekTiB 3
MaKCHMaJILHUM e()eKTOM MacITabyBaHHsL.

Knrouogi cnosa: knacudikamis MacmTaboBaHUX 00’€KTiB, ABOIIAPOBHHA MEPCENTPOH, MOHOXPOMHE
300pakeHHs, HaBYaJlbHa MHOXXHHA, BiICOTOK MOMMJIOK KiIachdikamii, ONTUMAaIbHE YUCIO HEHPOHIB
MIPUXOBAHOTO IIapy, ONTHMAalbHE CITIBBiTHOMIEHHS CEPEIHBOKBAAPATUYHUX BiIXHMICHb IMIKCETHHUX
CIIOTBOPEHB 1 MacIITaOyBaHHSI.
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