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A classification problem is considered. Objects to be classified are presumed distorted with 

linear scaling effect. The classifier is two-layer perceptron. The object model is the monochrome  

60-by-80-image of the enlarged English alphabet capital letter. Thus general totality is formed of 

monochrome 60-by-80-images of alphabet letters, and it is of 26 classes. The goal is to show how 

hidden layer neurons number in the two-layer perceptron and an element of the topological 

configuration for training it can be optimized for scaled objects classification problem. The 

topological configuration element is a pixel-to-scale standard deviations ratio. This ratio allows 

importing feature-distorted objects into the training set. The feature distortion is actually formed by 

adding the normal noise with zero expectation and variance regulated by the ratio. The two-layer 

perceptron is modeled, trained and tested within MATLAB. Factually, this is an optimization problem 

of two variables, where the two-layer perceptron performance is optimized in the sense of decreasing 

classification error percentage. The percentage is a function evaluated on the Cartesian product of the 

ranges of hidden layer neurons number and pixel-to-scale standard deviations ratio. This product is a 

horizontally-striped rectangle which is subsequently sampled to a lattice. The optimization result is 

150 neurons in the hidden layer and the ratio equal to 0.02, allowing to identify a classifier which 

produces an error only on an object from 37 objects whose scaling effect distortion is maximal. 

Key words: scaled objects classification, two-layer perceptron, monochrome image, training set, 

classification error percentage, optimal hidden layer neurons number, optimal pixel-to-scale standard 

deviations ratio. 

 

1. SCALING IN OBJECTS CLASSIFICATION 

Effects of scaling are common for object recognition (classification) systems, 

working via photographing or scanning. If even there is no scaling in a photograph or a 

scan, say, faces of a child and an adult are always viewed differently in their outlines, 

although they are captured at the same distance. Other scaling effects occur when the object 

data are processed or transformed, bringing linear stretching or reduction of the imaged 

object. Notwithstanding this, scaling in objects classification mustn’t lower the 

classification quality, what is achieved and maintained with scaling-proof classifiers. 
 

2. WAYS OF IMPROVING THE CLASSIFIER FOR OPTIMIZING ITS 

PERFORMANCE OVER SCALED OBJECTS 

Whatever the scaling-proof classifier is, there at any time may appear a scaling 

amplitude which breaks its proofness. Thus there will be a need to optimize the classifier. 

Anyway classification error percentage (CEP) in the classifier performance is non-zero, and 

such CEP is tried to have it lowered anyhow. Especially, when it is about the classifier 

performance over scaled objects. This performance depends on the scaling range and its 

peak values, on the general totality of those objects and number of classes in it. The greater 
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all these properties and attributes are, the harder it is to identify a classifier, producing low 

CEP, which is tolerable [1, 2]. So, the classifier performance optimization over scaled 

objects is always actual as the scaling range is extending, the classes’ number is increasing 

or the general totality is becoming denser. 

But along with lowering CEP the improvement of the classifier concerns also its 

operation speed. And here classifiers based on hierarchical multilayered neural networks or 

convolutional neural networks lose much [3]. The matter is that they are pretty slow-acting, 

though being capable of robust visual pattern recognition (object classification) through 

learning. Besides, those neural networks are grown huge in resources consumption as, 

saying, the scaling range is extended. Multilayered perceptron, quite the contrary, performs 

fast and easy, but its performance over scaled objects needs an optimization. Main ways of 

improving the perceptron for classifying the scaled objects are selecting its neurons number 

optimally and optimal configuration of the training set [1]. However, the optimal neurons 

number and the training set optimal configuration are determined deeply on the object type 

and its features, not to mention the number of the general totality classes and others above. 
 

3. GOAL OF ARTICLE AND TASKS 

Before stating the goal of this article, the type of objects for their classification must 

be appointed. Once the object type is modeled, the general totality and number of classes 

will be defined. Only then the article goal can be stated explicitly. 

Generally, the goal is to show how neurons number in the perceptron and an element 

of the topological configuration for training it can be optimized for scaled objects 

classification problem. Certainly, that the show is going to be stated over some pattern of 

those objects. So, its results are locally applied, although the way of optimization of the 

perceptron performance will be saved out. 

May the type of objects for their classification be the monochrome image. It is very 

convenient as the monochrome image is naturally watched with its any feature distortions. 

Moreover, the monochrome image is easily modeled for the object, and number of its 

features is directly calculated on the image format. 

For classifying monochrome images it is adequate to have two-layer perceptron 

(2LP). Perceptrons are described and simulated best in MATLAB, having powerful Neural 

Network Toolbox. Subsequently, a MATLAB function for training the perceptron ought to 

be chosen, and a model of a specific training set will be stated. Then boundaries for the 

neurons number in the perceptron single hidden layer are to be given. Also boundaries for a 

distinctive parameter of the specific training set are to be evaluated. This parameter is that 

element of the topological configuration for training, helping in acceleration of the training 

process over scaled images. Having boundaries for the hidden layer neurons number 

(HLNN) and boundaries for the training set distinctive parameter, there is the Cartesian 

product of two ranges, whereupon CEP is to be minimized on that product. The solution of 

the correspondingly stated math problem will be verified as testing the trained 2LP by those 

two optimized parameters. Finally, suggestions for further 2LP performance optimization 

will conclude this article. 
 

4. GENERAL TOTALITY AND NUMBER OF CLASSES  

BY THE OBJECT MODEL 

An appropriate format for the monochrome image is 60 80 . This medium format 

allows accelerating the investigation procedures and acquiring the classification results. The 
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file format is bitmap, which is naturally coded by MATLAB with ones and zeros. Thus 60-

by-80-image is modeled as 60 80  matrix of ones and zeros, and there is the finite general 

totality of ones-and-zeros 60 80  matrices, containing altogether 48002  monochrome 

images. 

May there 26 enlarged English alphabet capital letters [1] be imaged within the 

general totality. This gives 26 classes in it. Neither the small number, nor the great, what is 

acceptable for hitting the article goal at the proper term. 

For configuring the advanced training on sample sets of scaled images from such 

general totality, there is the training set distinctive parameter, having involved the pixel 

distortion [1, 4]. Pixel distortions are added to the linear scaling effect, and these two types 

of distortion are attributed by their standard deviations (SD) [1]. Hence, the explicit goal of 

this article is to minimize CEP in the scaled objects classification problem on the pattern of 

the general totality of ones-and-zeros 60 80  matrices, modeling 48002  monochrome 

images, where optimal HLNN in 2LP and optimal pixel-to-scale standard deviations ratio 

(PSSDR) for its training on pixel-distorted scaled 60-by-80-images (PDS6080I) would be 

applied. 
 

5. MATLAB FUNCTION FOR TRAINING THE PERCEPTRON 

There is the backpropagation algorithm, having several specialized methods to train 

2LP. The fastest method in backpropagation algorithm for training on medium-number-

featured objects is implemented as the training MATLAB function “traingda”. This function 

effectively trains the perceptron, updating weight and bias values according to gradient 

descent with adaptive learning rate [1]. Henceforward, the training MATLAB function 

“traingda” will be used in all training processes below. Then, testing the trained 2LP under 

previously assigned HLNN 
HLNN  and PSSDR r , there will be obtained the function 

 error HLN,p r N  on the Cartesian product of HLNN and PSSDR ranges, whose values are 

averaged CEP over a distortion type range of SD. 
 

6. MODEL OF PDS6080I 

The training set for 2LP to classify scaled 60-by-80-images (S6080I) is formed in 

F  stages. This training set is filled with PDS6080I, modeled as 4800 26  matrices of 

PDS6080I  PDS6080I
1

F
k

k

A , whose q -th column is the q -th class representative, reshaped into 

4800-length-column: 

  PDS6080I S6080I PD
4800 26

k k k

jqa k 


    
  

A A Ξ  (1) 

by SD 

 
max

PD PD

k k

F
    1,k F   (2) 

and its maximum 
max

PD 0   at 4800 26  matrix Ξ  of values of normal variate (NV) with 

zero expectation and unit variance (ZEUV), where S6080I

k
A  is 4800 26  matrix of S6080I, 

whose q -th column is the same q -th class representative, 4800-length-column-reshaped, 

1, 26q  . The matrix  S6080I
4800 26

k

jqa k


 
 

A  is formed by concatenating horizontally 
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4800-length-column-reshaped matrices   
26

1
q

q
k


A , where q -th S6080I as the matrix 

   
60 80

q

q uvk a k


 
 

A  is the q -th class representative. Note, that generally there in left 

side of (1) is not the ones-and-zeros matrix, though it is included into the training set that 

will feed the input of 2LP. But as soon as elements of this matrix are compared to the value 

0.5  via 0.5 -crossing comparator, it already belongs to the general totality of ones-and-

zeros 60 80  matrices, modeling 48002  monochrome images. Namely, if   0.5jqa k  then 

the pixel of vertical-horizontal coordinates  ,j q  is set to the black color, else this pixel is 

set to the white (in MATLAB, the white color is coded with ones, and the black is coded 

with zeros). 

For each k -th stage of forming the training set by (1) and (2), every matrix  q kA  

is obtained after scaling separately the q -th class non-distorted representative as the ones-

and-zeros matrix  
60 80

q

q uva


A . An S6080I can be formed within MATLAB by means of 

its function “imresize” [1] as the map 

     scale, , 60, 80
k

q qk   A A  (3) 

with the scale coefficient  scale

k
   by SD 

 
max

scale scale

k k

F
    1,k F   (4) 

for 
max

scale 0  , 1, 26q  . Mark it out that pixel distortion SD (2) and scale SD (4) are 

increased simultaneously. The scale coefficient 

    scale scale 1
k k

k      (5) 

is determined by the value  k  of NV with ZEUV, raffled at the k -th stage for each q  

separately. If occurs  scale 0
k

   then the corresponding NV with ZEUV is re-raffled until 

 scale 0
k

   . The input image qA  is enlarged by  scale

k
   times within the map (3) if 

 scale 1
k

   ; the input image qA  is reduced by 

 scale

1

k
 

 times within the map (3) if 

 scale 1
k

   ; the input image qA  remains non-scaled if  scale 1
k

    or (5) is rounded to 1 

due to that  scale 1 0.006
k

    , and  q qk A A  as corollary. The scaled by  scale 1
k

    

image is the matrix  scale,
k

q S  of the intermediate format V H . If  scale 1
k

    then the 

scaled image is cropped in the following way. Integers 

 
1 sign

30 sign sign
2 2 2 2

V

V V

V V V
N


  

     
          

      
, (6) 
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1 sign

40 sign sign
2 2 2 2

H

H H

H H H
N


  

     
           

      
, (7) 

where  x  is a function, returning the integer part of the number x , are calculated by the 

values  ,V H   of two independent NV with ZEUV, raffled every time, when the function 

 x  is applied. Then in the matrix  scale,
k

q S  lines of their numbers 

     1, , 61 ,V VN N V  (8) 

and columns of their numbers 

     1, , 81 ,H HN N H  (9) 

are discarded. If  scale 1
k

    then the reduced image is contoured rectangularly with the 

background white color: the matrix  scale,
k

q S  is padded from left for 

 
left

1 sign80
sign sign

2 2 2 2

H

H

H H H
N


  

      
          

      
 (10) 

columns of ones and from right for 

 
right left80N H N    (11) 

columns of ones, and it is padded from top for 

 
top

1 sign60
sign sign

2 2 2 2

V

V

V V V
N


  

      
         

      
 (12) 

lines of ones and from bottom for 

 bottom top60N V N    (13) 

lines of ones. After that the map (3) finally returns S6080I as 60 80  matrix  q kA  into 

the set   
26

1
q

q
k


A  for completing the addition (1). 

 

7. BOUNDARIES FOR HLNN 

Obviously, boundaries 
min

HLNN  and 
max

HLNN  for the segment 
min max

HLN HLN;N N 
 

 of HLNN 

HLNN  must be given so that 2LP at any 
min max

HLN HLN HLN;N N N 
 

 would be trained 

appropriately. Influence of traintime duration counts much less than CEP, and HLNN 
HLNN  

is accepted if 2LP just can be trained. This “can” means the training process is not of hang-

like, and overtraining won’t occur. Taking into account the number 4800 of the image 

features and number 26 of classes, let the left valid value of HLNN be 100. At that HLNN 

cannot exceed 350 as by 
HLN 350N   2LP is no more being trained yet on non-distorted 

representatives. Therefore the boundaries for HLNN are 
min

HLN 100N   and 
max

HLN 350N  , 

and the segment of HLNN is  100; 350 . Later, for each of 251 values from this segment, 
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the averaged CEP value at some PSSDR will be determined to obtain the function 

 error HLN,p r N  value. 

 

8. BOUNDARIES FOR PSSDR 

From pixel distortion SD (2) and scale SD (4) it follows that [1] PSSDR 

 

max

PD

max

scale

r



 . (14) 

Boundaries 
minr  and 

maxr  for the segment  min max;r r  of PSSDR r  ought to be evaluated 

such that after the training process 2LP would maintain its capability to classify both 

S6080I and PDS6080I. Classification of S6080I is basic. By the way, PSSDR for training 

and PSSDR in PDS6080I for testing the PDS6080I-trained 2LP are different principally. 

The range of (14) is not profoundly influenced with the image features number or the 

number of classes. However, it influences on the traintime duration, which is longer at the 

lower PSSDR, and it’s shorter at higher PSSDR. As yet SD 
max

scale 0.2   is sufficient to 

produce S6080I, watched on real practice, then the deal is just to set up the range of pixel 

distortion SD 
max

PD . Continuing, the minimal-ultimate maximal pixel-distortion SD is 

max

PD 0.002   as by 
max

PD 0.002   values in the matrix Ξ  or value  k  of NV with 

ZEUV are too insignificant, distorting pixels in S6080I sparsely. Then the lower boundary 

of PSSDR is 
min 0.01r  . Therefore, the upper boundary of PSSDR 

max 1r   ensues from the 

maximal-ultimate maximal pixel-distortion SD is 
max

PD 0.2   as by 
max

PD 0.2   pixel 

distortions become unsuitable for training [1]. Consequently, the boundaries for PSSDR are 

evaluated as 
min 0.01r   and 

max 1r  , and the segment of PSSDR is  0.01; 1 . Unlike 

HLNN being integer and having maximal quantity of points 
max min

HLN HLN 1N N   from its 

range 
min max

HLN HLN;N N 
 

 to be run through, PSSDR has continuum of points in any 

 min max;r r  range by 
max minr r . The step of sampling the range  0.01; 1  isn’t necessary to 

be equidistant: local minima may be probably discovered closer to the lower boundary 

min 0.01r  , and there the sampling should be denser. Re-sampling isn’t excluded also. 

Well, these questions are coming to be highlighted in the next section. 
 

9. RUNNING THROUGH THE CARTESIAN PRODUCT OF HLNN AND PSSDR 

RANGES 

The Cartesian product of the abovementioned ranges of HLNN and PSSDR is 

horizontally-striped rectangle (HSR) 

         min max

min max HLN HLN; ; 0.01; 1 100; 350r r N N   
 

. (15) 

Order of variables is surely out of importance. A two-component point from HSR (15) 

           min max

HLN min max HLN HLN; ; 0.01; 1 100; 350r N r r N N    
 

 (16) 
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is the couple of 2LP parameters to be optimized. Mathematically, the optimization problem 

lies in minimizing and gripping the starred two-component point from (16) as the function 

minimum argument: 

 
     

 
min max

HLN min max HLN HLN

* *

HLN error HLN
; ;

arg min ,
r N r r N N

r N p r N
  
  

 
 

    
  

. (17) 

In explicit form, the problem (17) 

 
      

 
HLN

* *

HLN error HLN
0.01; 1 100; 350

arg min ,
r N

r N p r N
 

 
    

 
 (18) 

needs the function  error HLN,p r N , evaluated on HSR (15) as a plane lattice, which is 

sampled from (15). 

Primarily the range  0.01; 1  of PSSDR by 
HLN 100, 350N   should be run through 

for determining the shape of the averaged CEP  error HLN,p r N  surface. HLNN is sampled 

roughly: the step is 10 neurons. Let the step within the range  0.01; 1  be 0.01 up to the 

point 0.1r  , and 0.1 up to the point 1r  , what gives 19 points within the segment 

 0.01; 1  to compute the averaged CEP in 494 points altogether (this is for one 2LP).  

Once local minima of the surface  error HLN,p r N  are roughly determined, the range 

 0.01; 1  is narrowed to a subsegment of  0.01; 1  (the subsegment may be re-sampled with 

a smaller step). The sequence of HLNN within the segment  100; 350  can be narrowed as 

well. 

Running through HSR (15) implies testing the PDS6080I-trained 2LP with S6080I. 

In the training process by PDS6080I, the input of 2LP is fed with the training set 

       PDS6080I

PDS6080I11 1

,
C F FC k

i li k



 

P A A  (19) 

of C  replicas of all 26 classes’ non-distorted representatives and F  matrices of PDS6080I 

by the set of identifiers 

    
1 1

C F C F

i i i

 

 
T I  (20) 

with identity 26 26  matrix I . The matrix A  is formed by concatenating horizontally 

4800-length-column-reshaped matrices   
26

1
q

q
k


A . The set (19), being formed  

by (1) – (13) at some PSSDR (14), is passed through 2LP with identifiers (20)  

for passQ  times. 

For obtaining preliminarily the real tolerable CEP on average, it is sufficient to take 

parameters 2C  , 8F  , 
pass 30Q  . The training set 

       
10 82PDS6080I

PDS6080I11 1

,
k

i li k 

P A A  (21) 

feeds 2LP for 30 times with identifiers  
10

1i i
T , producing the PDS6080I-trained 2LP of 

performance that could be improved, though. 



V. Romanuke 

ISSN 2078–5097. Вісн. Львів. ун-ту. Сер. прикл. матем. та інф. 2017. Вип. 25 119 

 

The PDS6080I-trained 2LP is tested with S6080I at the range of scale SD 
scale  from 

the minimal one up to 
max

scale , that is  scale 0; 0.2  . The range  0; 0.2  is going to be run 

through with the step 0.02 , which lets evaluate CEP in those 11 different points  

of the scale SD. 

Denote CEP of 2LP on S6080I by scale SD 
scale  as  S6080I

error HLN scale, ;p r N  . 

Analytically, the averaged CEP 

    
max

scale scale

S6080I

error HLN error HLN scale scalemax

scale 0;

1
, , ;p r N p r N d

 

 
  

  

   

  
0.2

S6080I

error HLN scale scale

0

5 , ;p r N d   . (22) 

And due to that the range of scale SD 
scale  is sampled with the step 0.02 , statement (22) is 

computed as 

    
10

S6080I

error HLN error HLN

0

1
, , ; 0.02

11 t

p r N p r N t


  . (23) 

Before beginning the run, 2LP is trained with the training set (21). Further, it is 

tested through the 494-pointed lattice 

        9 9 25

0 1 0
0.01 0.01 , 0.1 0.1 100 10

n m h
n m h

  
      

     0.01; 1 100; 350   (24) 

of HSR (15), whereupon a rough mesh of the surface (23) can be drafted (fig. 1). 

The local minimum at 

    HLN 0.3 160r N   (25) 

is rather occasional, where  error 0.3, 160 0.7846p  , indeed. By  0.1; 1r  this is the 

single point, at which the averaged CEP is less than 0.8, and there are eight 2LP among 

those 18 ones with such a low CEP at (25). Altogether there are 12 points satisfying the 

condition  error HLN, 0.8p r N  , and, except (25), the rest 11 ones are: 

    HLN 0.01 110r N  , (26) 

    HLN 0.02 240r N  , (27) 

    HLN 0.03 140r N  , (28) 

    HLN 0.03 150r N  , (29) 

    HLN 0.03 230r N  , (30) 

    HLN 0.03 320r N  , (31) 

    HLN 0.03 350r N  , (32) 

    HLN 0.04 130r N  , (33) 

    HLN 0.05 150r N  , (34) 

    HLN 0.07 140r N  , (35) 
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    HLN 0.07 220r N  . (36) 

 

 

Fig. 1. A rough mesh of the surface (23) on the lattice (24) and its profiles,  

where each point is the mean of the averaged CEP of 18 PDS6080I-trained 2LP  

tested by feeding the input of 2LP with 400 sets of 26 classes of S6080I 
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Fig. 2. An evaluation of the unit-normed traintime surface on the lattice (24)  

and its profiles, where each point is the mean of the unit-normed traintimes  

of 18 PDS6080I-trained 2LP tested for fig. 1 
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Fig. 3. A locally refined mesh of the surface (23) on the lattice (38) and its profiles,  

where each point is the mean of the averaged CEP of 70 PDS6080I-trained  

2LP tested by feeding the input of 2LP with 400 sets of 26 classes of S6080I  

(in each point, the testing results of the previously 18 PDS6080I-trained 2LP are included) 

 

 

0.01
0.02

0.03
0.04

0.05
0.06

0.07
0.08

0.09
0.1

100
110

120
130

140
150

160
170

180
190

200
210

220
230

240
250

0.8

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

HLNN

 error HLN,p r N

r

 error HLN,p r N

r

HLNN

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.945

100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250
0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.945



V. Romanuke 

ISSN 2078–5097. Вісн. Львів. ун-ту. Сер. прикл. матем. та інф. 2017. Вип. 25 123 

 

All the points (26) – (36) have 0.1r  , and only two points (31) and (32) have 

HLN 250N  . These two points are paid attention to, because  error 0.03, 320 0.7685p   and 

 error 0.03, 350 0.7821p  , and there are 21 PDS6080I-trained 2LP among those 36 ones 

(11 and 10 ones among each of 18, respectively) whose averaged CEP is less than 0.8. 

Nevertheless,  error 0.03, 140 0.7995p   and  error 0.03, 150 0.7982p  , where HLNN is far 

less, and there are 20 PDS6080I-trained 2LP among those 36 ones (11 and 9 ones among each 

of 18, respectively) whose averaged CEP is less than 0.8. And greater HLNN requires 

longer traintime – see how the unit-normed traintime  HLN,r N  in fig. 2 varies on the 

lattice (24). So, the points (31) and (32) are excluded, and HSR (15) is narrowed to a 

smaller HSR 

          0.01; 0.1 100; 250 0.01; 1 100; 350   . (37) 

Owing to the narrowing, PDS6080I-trained 2LP is tested through the 160-pointed 

lattice 

           
9 15

0 0
0.01 0.01 100 10 0.01; 0.1 100; 250

n h
n h

 
       

     0.01; 1 100; 350   (38) 

of HSR (37), but now each point is evaluated over 70 PDS6080I-trained 2LP (fig. 3). 

The locally refined mesh in fig. 3 has two local minima at 

    HLN 0.02 150r N   (39) 

and 

    HLN 0.04 250r N   (40) 

with very low CEP:  error 0.02, 150 0.8165p   and  error 0.04, 250 0.819p  , respectively. 

Here we get slightly greater CEP because of averaging over 70 PDS6080I-trained 2LP 

instead of 18 ones (fig. 4). Thus, the scattering of the averaged CEP decreases. 
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0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

(25) 

(40) 

(39) 

At the point (39), the averaged 
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At the point (40), the averaged 

CEP is less than 0.7571 

 

Fig. 4. The averaged CEP scatter polylines disclosed for points (25), (39), (40),  

where abscissa axis is a number of PDS6080I-trained 2LP; the averaged CEP at (39) reaches 0.7526 if it is 

calculated over the 18-pointed window starting off the 20-th point, and the averaged CEP at (40) reaches 0.7571 

if it is calculated over the 25-pointed window starting off the 40-th point 
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Fig. 5. A re-evaluation of the unit-normed traintime surface on the lattice (38)  

and its profiles, where each point is the mean of the unit-normed traintimes  

of 70 PDS6080I-trained 2LP tested for fig. 3 
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Fig. 6. The averaged performance and SD  
10

0
0.02

t
t


-disclosed performance  

of 10 PDS6080I-trained 2LP by the points (25) and (39); each 2LP is tested  

by feeding the input of 2LP with 800 sets of 26 classes of S6080I 

 

In selecting between the points (39) and (40), the unit-normed traintime helps again. 

Fig. 5 prompts that selection of the point (39) is appropriate owing to its traintime is almost 

40 % shorter. Another finding in favor of the point (39) is simplicity of the classifier, where 

the lesser HLNN corresponds to the simpler 2LP. 

Eventually, the points (25) and (39) remain pretending to be solutions of the problem 

(18). Due to 10 neurons difference, advantage of the point (39) is minor. To ascertain the 

global minimum of the surface  error HLN,p r N  as the single solution, 2LP shall be trained 

and tested at the points (25) and (39) more punctiliously. 
 

10. SOLUTION OF THE PROBLEM (18) AND ITS VERIFICATION 

The preliminarily reached tolerable CEP (about 0.82) can be decreased if pass the 

training set (21) through 2LP longer. So take pass 50Q   and increase the testing sets’ 

number of 26 classes of S6080I feeding the input of 2LP up to 800. Then it turns out, that 

2LP in the point (39) is trained better (fig. 6). 

By the data to fig. 6, the mean of the averaged CEP of 10 PDS6080I-trained 2LP in 

the point (39) is slightly lesser: 

    error error0.02, 150 0.6389 0.6577 0.3, 160p p   . (41) 

Anyway, according to (41) and fig. 3 and 5, the point (39) is treated as the solution of the 

problem (18). Hence, 

  * *

HLN 0.02 150r N     (42) 

and, for verification, let us see the performance within an HSR neighborhood, containing 

the point (42). We don’t need to break the lattice (38) denser, because stochasticity is very 

high, and the solution is going to be approximate through both axes. 
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Fig. 7. A re-evaluation of the surface (23) mesh on the lattice (43) and its profiles, where each point is the mean of 

the averaged CEP of 200 PDS6080I-trained 2LP by pass 50Q   tested with 800 sets of 26 classes of S6080I 

 

Therefore, 2LP ought to be trained by nine points of the 3 3  lattice 
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         0.01, 0.02, 0.03 140, 150, 160 0.01; 0.1 100; 250     

     0.01; 1 100; 350  . (43) 

But the point (39) is already re-evaluated by 
pass 50Q   and 800 testing sets of 26 classes of 

S6080I (for fig. 6), and there remain eight points. 

Fig. 7 confirms optimality of the point (42). Performance of the best PDS6080I-

trained 2LP at this point is 

  error 0.02, 150 0.4507p  . (44) 

However, there is even better performance which is  error 0.01, 160 0.4022p  , 

though. But this incongruity is just an outcome of stochasticity and small percentages. And, 

statistically, mathematical expectation of CEP at the point (42) is the closest to minimum. 

As the solution (42) of the problem (18) has been verified, now the question is about 

PDS6080I. Denote CEP of 2LP on PDS6080I by scale SD 
scale  and 1r   (this PSSDR 

relates to the testing sets) as  PDS6080I

error HLN scale, ;p r N  . Analytically, the averaged CEP 

    
0.2

PDS6080I

error HLN error HLN scale scale

0

, 5 , ;p r N p r N d    (45) 

is approximated to 

    
10

PDS6080I

error HLN error HLN

0

1
, , ; 0.02

11 t

p r N p r N t


   (46) 

like the averaged CEP in (22) and (23). The optimized PDS6080I-trained 2LP maintains its 

capability to classify PDS6080I accurately: 

  error 0.02, 150 0.5582p   and  error 0.01, 160 0.5097p  . (47) 

The best PDS6080I-trained at  max max

scale PD0.2, 0.004    2LP by the training set 

(21) has been tested at the highest scale SD 
scale 0.2   for S6080I and at 1r   for 

PDS6080I, respectively. Fig. 8 shows of how much the monochrome image is distorted 

when it’s been scaled at SD 
scale 0.2  , and nonetheless S6080I or PDS6080I is classified 

excellently. The mere one letter from so-scaled 37 objects is classified wrong. One letter 

PDS6080I is classified wrong from 35 objects. 
 

 

 

Fig. 8. S6080I at scale SD 
scale 0.2   and PDS6080I (beneath) at scale SD 

scale 0.2   by 1r  ,  

where the mere one letter from so-scaled 37 objects is classified wrong  

by the PDS6080I-trained 2LP with optimal HLNN and PSSDR 

 

At the average, the one letter from the 220 scaled objects is classified wrong. If the 

scaling amplitude is slight ( scale 0.05  ), possibility of wrong classification is negligibly 

small. Assuredly, non-scaled objects are classified correctly ever. 
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11. CONCLUSION AND SUGGESTIONS FOR FURTHER 2LP PERFORMANCE 

OPTIMIZATION 

This article is a show of how neurons number in the perceptron and an element of the 

topological configuration for training it can be optimized and verified for the definite 

classification problem over a fixed pattern of objects. The results of this article lie in the 

shown way of 2LP performance optimization over its two parameters. The optimization 

process goes on while the classifier is identified. This process concerned CEP solely, 

without referring to traintime. In furthering, the other parameters can be optimized to 

decrease the averaged CEP more. For 2LP, they are the number C  for the training set (19); 

the number F  for (19), indicating at smoothness in the training process with (19) by (20) – 

the greater this number, the smoother training process is; the number 
passQ  (if passing the 

training set through 2LP is strictly limited). Being subsidiary, the traintime duration could 

be optimized if it is supposed to be limited when the classifier is constrained everywhen to 

become fine-adjusted to a new general totality of the previous type objects. Optimums, 

however, clearly may vary when type of objects changes from the monochrome image to the 

colored or elsewise. The same happens when number of the object features changes (the 

image is re-formatted). 

It is obvious the problem (18) can be solved only numerically, analyzing the mesh 

(23). And another open question is how to speed up the process of evaluating the function 

(23) and similar ones. Parallelization techniques [5] are believable to serve it. 
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Розглянуто задачу класифікації. Об’єкти для класифікації спотворені з ефектом лінійного 

масштабування. Класифікатором є двошаровий персептрон. Модель об’єкта – монохромне 60-на-

80-зображення збільшеної великої літери англійського алфавіту. Відтак генеральна сукупність 

сформована з монохромних 60-на-80-зображень алфавітних літер, становлячи 26 класів. Наша 

мета – довести, як число нейронів прихованого шару у двошаровому персептроні й елемент 

топологічної конфігурації для його навчання можуть бути оптимізовані для задачі класифікації 

масштабованих об’єктів. Цим елементом топологічної конфігурації є співвідношення СКВ 

піксельних спотворень і масштабування. Це співвідношення дає підстави додавати у навчальну 

множину об’єкти зі спотвореними ознаками. Це спотворення ознак формується через додавання 

нормального шуму з нульовим середнім і дисперсією, яка регулюється цим співвідношенням. 

Двошаровий персептрон моделюється, навчається та тестується у MATLAB. Фактично, це 

оптимізаційна задача з двома змінними, де продуктивність персептрона оптимізується у сенсі 

зменшення відсотка помилок класифікації. Він є функцією, яку оцінюють на декартовому добутку 

діапазонів числа нейронів прихованого шару та співвідношення СКВ. Цей добуток прямокутник з 

горизонтальними смугами, який у подальшому дискретизується до гратки. Результатом 

оптимізації є 150 нейронів у прихованому шарі та співвідношення, що дорівнює 0.02, які дають 

змогу отримувати класифікатор, де лише одна помилка трапляється на 37 об’єктів з 

максимальним ефектом масштабування. 

Ключові слова: класифікація масштабованих об’єктів, двошаровий персептрон, монохромне 

зображення, навчальна множина, відсоток помилок класифікації, оптимальне число нейронів 

прихованого шару, оптимальне співвідношення середньоквадратичних відхилень піксельних 

спотворень і масштабування. 
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