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We consider numerical solving the Cauchy problem for backward heat equation via the
generalized method of Lie-algebraic discrete approximations. Discretization of the equation is
performed by all variables in equation leading to a factorial rate of convergence in the case of quasi
representations for differential operator are built by means of Lagrange interpolation. The rank of a
finite dimensional operator is determined and approximation properties are investigated. Error
estimations and the factorial rate of convergence are proven.

Knwouosi cnosa: generalized method of Lie algebraic discrete approximations, backward heat
equation, finite dimensional quasi representation, Lagrange’s polynomial, factorial convergence.

1. INTRODUCTION

Backward heat equation has applications in different fields: image processing, signal
processing, eliminating of diffusion. Hence effective numerical solution is an important
problem besides the variety of different approaches [16]. In this paper we propose a
numerical scheme built via generalized method of Lie-algebraic discrete approximations for
backward heat equation [20] and prove the factorial rate of convergence of numerical
scheme.

The generalized method of Lie algebraic method was introduced in [3] and
developed in [4, 18, 19], which is based on classic Lie algebraic method of discrete
approximations. The history of classical approach, open questions in this field and further
development guidelines are analyzed in [1]. Key findings of classical approach may be
foundin [6, 7, 9 — 16, 21, 22].

The main problem analyzed in these papers is the Cauchy problem for evolution
equation which is considered in a bounded domain Q:=(a, b) c R with time limit T <+

and cylinder Q; =Qx (0, T]:
find function u=u(x,X,,....X,,t) such, that
u, = K(t,x;0)u+ f(x,t), xeQcRY, t>0, 1)
u|t:0 =p(x) e B,

where B denotes some functional Banach space, linear operator K is assumed to be a
formal polynomial of elements from the Lie algebra {x,a/ ax,l} and can be represented as
ak k+1 ak+p

K :ak %+ak+lw+...+ak+pm,
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where a,,; R for all i :Tp and a, =0 and k >1. Similarly, as in Calogero’s method,

q
the Heisenberg-Weyl algebra G = _@1{xj,6/8xj,l} has been used as a basic algebraic tool
iz

q
for constructing the corresponding discrete approximations X ",z 1™ e §<)1R”‘ .
J:

Using g-dimensional Lagrange interpolation scheme problem (1) is reduced to the
Cauchy problem in the following form:

find function u,, =u, (t) such, that

du

— = KU + Ty t>0, )
dt

U)o = P € By

where K, denotes finite dimensional quasi representation of differential operator K, and

(")
B, denotes finite dimensional space of approximations. System (2) is solved by means of
Euler’s or Runge-Kutta’s method [1, 7, 9, 12].

Since reduced problem (2) is solved making use of some numerical algorithm the
rate of time convergence is constrained by the convergence rate of the method based on,
hence Lie-algebraic discrete approximations for spacial variables rate of convergence is
factorial [7, 9].

This restriction led to development of the Generalized Method of Lie-algebraic
discrete approximations proposed in [3], convergence rate for the time variable becomes
factorial [18].

The main idea of Generalized Method of Lie-algebraic discrete approximations is
the following. We take the Banach spaces V =C};"(Q;)nC(Q;), C=C(Q;) and
formulate the Cauchy problem

find function u=u(x,t) eV such, that
u, =Ku+f, v(xt)eQ;, 3)
u|t:o =peV,
where ¢ =@(x) eV denotes initial conditions, f = f(x,t) eC represents internal sources
and K denotes the differential operator of a problem.

According to [3, 4] we introduce substitution u(x,t) =v(x,t)+@(x) into (3) which

leads to considering the auxiliary Cauchy problem with homogeneous initial condition
find function v =v(x,t) eV such, that
v, =Kv+ Ko+ f, V(x,1) eQ;, 4)
v, =0.

The idea of such substitution is to reduce the computation effort with preserved
accuracy which was demonstrated in the case of boundary value problem for elliptic
equation [2].

The solution of problem (4) we seek in the subspace of such functions which are
homogeneous at the initial moment of time: B = {v eV :v|t:0 = 0}.
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Denoting the structure elements in (4) by

we obtain a problem for operator equation:
{for given operator A:B — C and element f €C,

find element v e B such, that Av= f~

The Cauchy problem was reduced into the problem for the operator equation. This
operator equation was solved by means of the generalized method of Lie algebraic discrete
approximations and there is proven its convergence for some particular cases [3, 18, 19].
We focus on application of the scheme to Cauchy problem for backward heat equation in
this paper.

2. PROBLEM FORMULATION
Considering a bounded domain Q:=(a,b)cR, time Ilimit T <+,

cylinder Q, = Qx (0, T] we take the Banach spaces V = Cff(QT)mC((_QT), C=C(Q,;) and
formulate the Cauchy problem
find function u=u(x,t) eV such, that
u, =-au,, + f, v(x,t) e Q;, (5)
u|t:o =peV,
where a >0 denotes heat transition parameter, ¢ =@(X) €V denotes initial conditions and
f = f(x,t) eC represents internal sources. This problem is equivalent to

find function u=u(x,t) eV such, that
u, =au, + f, v(x,t) e Q,,
u|t:T =peV.
According to [3, 4] we introduce substitution u(x,t) =v(x,t)+@(x) into (5) which
leads to considering the auxiliary Cauchy problem with homogeneous initial condition
find function v=v(x,t) eV such, that
v, =-av,, —ae"+ f, V(x,t) e Q;, (6)
v, =0
The solution of problem (6) we seek in the subspace of such functions which are
homogeneous at the initial moment of time: B = {v eV :v|t:0 = 0}.
Denoting the structure elements in (6) by
A=0/dt+ad?/ox?, T =—ag’+f eC(Q),
we obtain a problem for operator equation:
for given operator A:B — C and el~ement feC @
find elementv e B such, that Av=f.

This operator equation is in the form which allows us using the generalized Lie
algebraic approach. First of all we construct numerical scheme in third chapter,
approximation properties are investigated in fourth chapter and finally in fifth chapter there
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is given a proof of the factorial convergence of the built numerical scheme.
Multidimensional generalization of the numerical scheme is covered in sixth and seventh
chapters. Numerical example is provided in eighth chapter.

3. NUMERICAL SCHEME AND UNIQUENESS OF DISCRETE SOLUTION

Let n, denotes the count of nodes in domain Q and n, denotes count of nodes in
interval [0, T]. Set of nodes we denote Q, | .

For every variable we construct a set of Lagrange polynomials, which satisfy
property 1;(x;)=35; and I;(t;) =3, where §; denotes Kronecker symbol.

According to the Weierstrass approximation theorem the set of polynomials with
real-valued coefficients is dense set in the space of continuous real-valued functions.
Choosing I(t) = {Ij(t)}';':2 we obtain system of polynomials without polynomial associated

with initial moment of time. Its easy verifies that Vj :rnt, IJ.(t)L:0 =0 and I(t)eB,

moreover basis functions I(t) ®1(x) € B are linearly independent, hence system of these
functions create basis for approximation spaces B, =B, C, cC. Thus, we seek the
solution as a Lagrange interpolation in the following form
V(1) =D vl (01, (1) = V(IR ®1(x)), (8)
j=2ix=L
where h denotes the discretization parameter, j, and j, are indexes of nodes by
corresponding variables, j denotes the unique number of the node j :(jt —1)nx +j, and

v denotes the set of values v = {vj}

j=n,+1”
Substitution (8) into equation (7) leads to Av, = f and further using of calculations
yields
(I'®) RNX)=1O) RI"(X) N, = f,. (9)

=1n, and i,=2,n, in (9) we obtain a system of linear algebraic

Taking i
equations

X

(Z.®1,-1,822)7=f(x t), i,=Ln,, i =2

N,
Denoting A, =Z, ®1, —1,®Z2, and f, = f(x ,t.), i, =Ln,, i, =2,n,_ we obtain

y
!l

discrete formulation of operator problem

{for given operator A :B, — C, and element f~h eC, (10)

find elementv, € B, such, that A\v, = f~h

where matrices of corresponding finite dimensional quasi representations have been built
upon these rules

Zt,ij = I}(ti)!zf,ij = (I},)(Xi)' It,ij = Ij(ti)’ Ix,ij = Ij(xi)'
According to theorem determining the rank of finite dimensional quasi
representations [13] we obtain
rank(z,)=n, -1 rank(1,)=n, —1,rank(z2)=n, -2, rank(1,)=n
Using property of tensor product we verify that

X"
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rank(Z, ®1,)=n,(n, —1) rank(l, ®K, )= (n, =1)n, —2).
The rank of whole matrix A, remains an open question, and further lemmas give an
answer to this question.
Lemma 3.1. Matrix (Z;l ®Zf) is nilpotent.

Proof. Since finite dimensional quasi representation of operator d?/dx® has the
form z? =2, Z, and matrix Z? is nilpotent, hence 3me N,vn>m: (Zf)n =0.
The property of tensor product [5, 13] Vne N (A®B)" = A" ®B" yields
ImeN,vn=m: (2 ®z2) =(z;*) ®(2?) =(z.*) ®(z, )" =0,

hence matrix (Z{1 @Zf) is nilpotent.
Lemma 3.2. Matrix (|t®|x+az;1®zf) has an inverse matrix and its rank is

(n, =2)n, i.e. has full rank.

Proof. Let us rewrite matrix (It ®I1,+az* ®Zf)ﬁ1 as a formal series:
(o1, +azi i ®@z?)  =a> ()" ©z2) =a> (-1)"(z;*) ®(z2) .
n=0 n=0

Since matrices Zf,(Z;l ®Zf) are nilpotent (Lemma 3.1) we obtain that the inverse

matrix exists because of the existence of finite expansion
(@1, +az®z2)" = ami(—l)”(zt’l ®22) = amj(—l)"(zf)” ®(z2) .
n=0 n=0

However matrix has n, (n, —1) rows and columns and has an inverse matrix therefore
it has full rank: rank(l, ® 1, -Z,* ®K, )=n,(n, -1).

Using these lemmas we can prove the next theorem.

Theorem 3.1. The rank of finite dimensional quasi representation A, of operator A
has full rank and its rank is n,(n, —1) and there exists a unique solution of discrete problem
(10).

Proof. Let us rewrite

A =20l +al ®22=(z,®1)I,®1, +az ' ®2?).
However rank(Z, ®1,)=n,(n, 1) and due to lemma 3.2
rank(l, ®1, +aZ* ®Z22)=n,(n, 1)
using property for two square matrices A, B: rank(AB)=min{rank(A) rank(B)}, yields
rank(z, ®1, +al, ®2?)=n,(n, -1).
Since matrix has full rank then a unigque solution of the problem (10) exists there.

4. APPROXIMATION PROPERTIES OF NUMERICAL SCHEME

According to construction of finite dimensional quasi representation of the operator
it can be verified that (Av—Av), =(Av(M)—Av,(M)) _ , where v, denotes Lagrange

M=M
interpolant and M, = (xix ., )denotes node from Q; .

Let the dimension of finite dimensional subspaces B,, C, be dimB, =dimC, =N, .
In these spaces we can define the norm in a similar way as it was proposed in [5] namely
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10,
Mls, =M, = N—h;\h— :

Assume that veW ™"~ = {v :Qr »>R:DVel”(Q) Va|< nxnt} which means that
all possible derivatives till order n,n, are bounded.

The residual of Lagrange interpolation polynomial can be written in the following
form:
@, () 2™ v(E, 1) , O () "v(x,m) @, (X) @y (¥) 3™ "v(E;,m,)

R O R G Y B G O I CY =Ty

where
O, (x) Zﬂ(X—Xi )v ®, ) :l_y[(y_ yi) and &, €Q,nn, €(0,T).

Theorem 4.1. Finite dimensional quasi representation A, of the operator A
approximates the operator A on element ve B and error estimation of approximation has

the following form
n,—2
+a(|n(nx)|n(nx—1))[ ! J

n -1 n, n,
A=AV <Inn)| ——| [V il T
A, Ch t _

©

n, —1 ot" ox™

Proof. Since the norm of space C, is vector norm then according to the construction
of finite quasi representation A, of operator A it can verified that
(Av—AV), =(AV(M) - Ay, (M))M:MI ,

where v, denotes Lagrange interpolant and M, =(xix,ti‘)denotes node from Q, . Using
the definition of the norm in space C, after calculations we obtain

JAv=Au, <[av-Av, =|Av-v,)

Acting with operator A on residual of Lagrange polynomial we obtain

o) (X) o™v o (t) o™y
by o oy o

n, -1

|oo

AV(x,t) -V, (x,t))~a

Estimation

1\
of, O] <(n) In(n»(mJ ,

and veW ™" (Q,) "B yields

oy, (¥)| <(n,)1(In(m,) In(n, —1))[n 1—1] Xi

oMv
o™

o™v
ox™

n-1
|Av—Av,| < In(nt)[iJ

n -1
and finally (11) can be obtained.

X

+a(In(n,)In(n, —1))[ - 1_1J .

©

5. CONVERGENCE AND ERROR ESTIMATIONS

According to the Kantorovich convergence theorem [8] of abstract approximation
scheme Lirro1||v—vh||B =0 holds if
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1. there exists a unique solution of equation Av = f :

2. for all operators approximating A, operator A exist inverse bounded operators,

3. operator A, approximates operator A onelement ve B: Lirrg||Av—Ahv||C =0.
— h

The first requirement can be easily verified and the third requirement has been
already satisfied in theorem 2, thus we should prove the second requirement.
Theorem 5.1. If finite dimensional quasi representation A, of operator A has a full

rank and is the same as finite dimensional subspace B, then the bounded inverse operator
exists i.e.:
VA, IM > 0,377 [ <M <00 (12)

Proof. Although the norm satisfies the axiom of positivity, we obtain
|AV], 20, wweD(A,) and [Av|, =0 Av=0 .

Let |AV|. =0, then Av=0. . For v#0, it is possible if detA =0 and
rankA, <dimB, . However A : rankA, =dimB, then Av=0; is possible if v=0g
only. Thus Wve D(Ah)\{OBh}:||Ahv||C >0. Since values [AV|. >0 and [v|, >0 are
strictly positive for Vv e D(Ah)\{OBh} then there exists such constant p>0 such that
[Awle, = v, -

According to the theorem of existence of bounded inverse operator [5] setting

M= 1 >0 we obtain (12).
n

Theorem 5.2. If Llrg f- Fh = 0holds and conditions of theorems 3.1, 4.1, 5.1 are

J (13)

satisfied then Lino1||u —Uy|, =0 i.e. numerical scheme (10) is convergent and
—| h

u-u,], < M(In(nt)(ﬁj w +|aa|[ﬁ(ln(nx _k))][ 1_1)

k=0 nx
Proof. Let us consider |v—v, ||Bh ;

v-vill, =[A*AG-v ), <[A]IAG-v ) -
Since the inverse operator is bounded (12) then

[A 1A= ), <MIAL-v )

o™v
ox™

o™v
o™

Let us estimate ||Ah(v—vh]|Ch :
"Ah(v_vh ]'ch = "Aﬁv_ AV+AV =AY, "ch = "Ahv_ AV”Ch +||AV_ Ahvh"ch )
Since Av=f and AV, = Fh , We obtain

A6, <lav-ad, 77,

Ch
Finally we obtain
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vl =M {Jav-ad,, -7

}
o

Substitution leading to homogeneous initial condition u=v+¢ implies u, =v,+¢

and

v, < M(Iim||Ahv—Av||ch Aimlf -7,

h—0 h—0 h—0

thus Liﬂ}"\’_vh"sh =0.

which yields the estimation |u—u,|=|v+¢@-v, —¢|=|v—V,|. However f, is Lagrange

approximation of f , error estimation of ” fo f~h
B,

1) 1)
< +
B \n -1 n, -1

My n -1
! J tends to zero faster than (Llj when n, —oco, then

has the following form:

o
at"

o™ f
ox™

-

©

Since (11) and (

t nt

ng Ny
neglecting terms with ( ! J and ( ! J yields to error estimation (13).
t X

6. THE CAUCHY PROBLEM FOR BACKWARD HEAT EQUATION IN
SEVERAL DIMENSIONS

The results obtained in previous sections can be generalized in natural way for a
multidimensional case. Let us consider g-dimensional bounded domain

Q:=(a, b)x(a,, b,)x..x(a,, b,) = R?, time limit T <+c0 and cylinder Q; =Qx(0, T].
Let diamQ, denote the length of the range(a,,b,). We assume, that linear differential

q
operator K is formal polynomial of elements from Lie algebra @{xj,alaxj,l} [3, 10]. Let

a, denotes coefficient standing by second derivative by variable x; .
Let operator K has the following representation

K q o? 0. —
_—; aia_xi ,a >0,i=1q

and let us consider Banach spaces V =C}~%" (Q)NC(Q,), C=C(Q,) and formulation

of the Cauchy problem with linear backward heat equation [20] is given below
find function u=u(x,...X,,t) eV such, that
ut=Ku+f,v(xl,...,xq,t)eQT, (14)
u|t:0 =peV,

where @ =@(x,,...,X;) €V denotes initial conditions and f = f(x,,...,x;,t) €C represents

internal sources and
According to [3, 19] we introduce substitution
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u(xl,...,xq,t) =v(xl,...,xq,t)+(p(x1,...,xq)
into (14) which leads to considering an auxiliary Cauchy problem with homogeneous initial
condition:
find function v=v(x,...,x,,t) €V such, that
v, =Kv+ Ko+ f, V(x,...x,,t) €Qr, (15)
v, =0
The solution of problem (15) we seek in the subspace of such functions which are
homogeneous at initial moment of time: B = {v eV :v|‘:0 = O}.
Denoting structure elements in (15) by
A=0ldat—-K, f =Ko+ Tf eC(Q;)
we obtain the problem for operator equation:

for given operator A:B — C and element feC (16)

find elementv e B such, that Av= f.

The Cauchy problem has been reduced into problem for operator equation. This

operator equation we solve by means of Generalized Method of Lie algebraic discrete
approximations.

7. APPROXIMATION PROPERTIES AND CONVERGENCE IN
MULTIDIMENSIONAL CASE

The numerical scheme for problem (16) is built using dimensional Lagrange
interpolation. Let n, denote the count of nodes by variable x; .
Discrete problem is formulated below

{for given operator A :B, — C, and element f~h eC, 17)

find elementv, € B, such, that Ayv, = Fh
Theorem 7.1. The rank of finite dimensional quasi representation A, of the operator

q
A has a full rank and its rank is (n, ‘1)an. and there exists a unique solution of the
i=1
discrete problem (17).
Proof. Using property that finite dimensional quasi representation K, of operator

K is nilpotent matrix. Similarly, as in proof of theorem 3.1, we obtain that finite
dimensional quasi representation has a full rank and hence a unique solution of discrete
problem (17) exists there.

Theorem 7.2. Finite dimensional quasi representation A, approximates operator

A on element and error estimation of approximation has the following form

n-1
1) o
|Av— Ay ¢ <In nt(_nt j v

-1 ot"

©

,2 n
0"V
ox™

+i la[(In(n, ) Inn, —1)){n 1_J

0
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Proof. Using formula of dimensional Lagrange interpolation and acting by operator
A on residual yields (18).

Theorem 7.3. If Ihing“F— fh =0 holds and conditions of theorems 5.1, 7.1, 7.2

Ch

are satisfied then limju—u, | . =0 and
h—0 By,

n-1
1
ju-u, SM[mn{mj
ey

+i la|(In(n,, ) In(n, —1){n 1_1} o

Proof. According to the Kantorovich convergence theorem of abstract approximation
scheme all requirements are satisfied, thus similarly to theorem 5.2 using inequality

lu=ualls, <v=valls, <MJAv=AV].

o™v
+
ot™

(19)

0

1

t

Xi

Ny q
J we obtain (19).

i=1

and neglecting terms (il] and (

8. NUMERICAL EXAMPLE

We consider model problem with backward heat equation which is similar to model
problem in [4, 12]
find function u =u(x,t) such, that:

ou o
EZ—y,V(X,t)EQT, (81)
Ul-o=sinx,

having the exact solution u(x,t) =e'sinx.
If the exact solution is known, we use the following rule for evaluating the rate of

convergence:
e
ph - Ing{”u _uh/2" .

If we get value |u—u,|=0 and |Ju—u,,|=0, thus the value 0/0 is shown as NaN (not a

number).

The model problem is investigated by means Lax—Wendroff scheme of finite
differences method (FDM), method of Lie-algabraic discrete approximations (MLADA)
and generalized method of Lie-algebraic discrete approximations (GMLADA). The solution
of Cauchy problem with the system of differential equations was performed using
Mathematica.

Let us denote Ax=1/(n,—1) — the step of discretization by space variable,

At =1/(n,—1) — the step of discretization by time variable. If discretization steps by both
variables are equal then we use h=Ax=Atfor FDM and GMLADA. Nevertheless h
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denotes the step of discretization by space variable, because time step is chosen

automatically while solving the Cauchy problem with the system of differential equation by
means of Mathematica software.

Table 1
Error estimations in L*(Q,) space
Step h FDM MLADA GMLADA
h=1/2 0.129611 0.256518 0.0844799
h=1/4 0.0713553 0.0808159 0.020411
h=1/8 0.0380837 0.00404986 0.000689873
h=1/16 - - 1.43891-10°”7
Table 2
Error estimations in L”(Q; ;) space
Step h FDM MLADA GMLADA
h=1/2 0.420034 0.976364 0.36965
h=1/4 0.241512 0.356581 0.099300
h=1/8 0.130843 0.0212378 0.0038209
h=1/16 - - 9.1009-10”"
Table 3
Error estimations in W**(Q; ) space
Step h FDM MLADA GMLADA
h=1/2 0.413269 0.984519 0.374173
h=1/4 0.232347 0.360836 0.104918
h=1/8 0.124427 0.0239794 0.00464834
h=1/16 - - 1.49632-10°°
Table 4
Rates of convergence in L*(Q,) space
Step h FDM MLADA GMLADA
h=1/2 0.861099 1.66635 2.04926
h=1/4 0.905849 4.3187 4.88687
h=1/8 _ _ 12.2271
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Table 5
Rates of convergence in L”(Q;) space
Step h FDM MLADA GMLADA
h=1/2 0.798413 1.45319 1.89631
h=1/4 0.884252 4.06952 4.69979
h=1/8 — — 12.0356
Table 6
Rates of convergence in W**(Q, ) space
Step h FDM MLADA GMLADA
h=1/2 0.830802 1.44808 1.83445
h=1/4 0.900985 3.91147 4.4964
h=1/8 _ _ 11.6011

9. CONCLUSIONS

We present the application of the generalized method of Lie algebraic discrete
approximations for solving the Cauchy problem for backward heat equation in this paper.
The key finding of this research is the opportunity to provide a factorial rate of convergence
by all variables in the equation, including time variable. The Cauchy problem for backward
heat equation has been reduced to a system of linear algebraic equations.

There were compared different numerical schemes (finite difference method,
classical method of Lie-algebraic discrete approximations and generalized method of Lie-
algebraic discrete approximations) for solving the Cauchy problem for backward heat
equation.

Substitution allows the rapid solving of the problem when initial data or internal
sources are mutable but coefficients of differential operator in the problem remained
constant. That was available by keeping in memory the inverse matrix and multiplying it on
the vector which represents initial data and/or internal sources. Such substitution
encapsulates the idea which in some way separates the data of the problem and the internal
structure of the problem.
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PO3B’SA3YBAHHSI OBEPHEHOI'O PIBHSIHHS TETIIJIOITPOBIJHOCTI
JI-AJITEBPUYHUMHA JUCKPETHUMU AITPOKCUMAIISAMU

Anpiana Kingu6amok!, Apkaniii Kinguoamox?, M. lpury.aa®

YKuiscokuti nayionanouuii ynieespcumem 6yoienuymea i apximexmypu,
Tosimpogromcokuii npocnexkm, 31, Kuig, 03680,
23Shape, Ioawosa 21, Kuis, 03056, e-mail: kindybaluk.arkadii@outlook.com
3 /Ivsiscoruii nayionanvuuil ynisepcumem imeni leana dpanka,
eyn. Yuisepcumemcoka, 1, Jlvgis, 79000, e-mail: mykola.prytula@gmail.com

Po3rnsHyTO OGUYMCIIOBAIBHY CXeMy JUIS HAOMMXKEHOTo po3B’s3yBaHHs 3amaui Komri s
00EpHEHOTO PIBHSIHHS TEIUIONPOBIAHOCTI 3 BUKOPUCTaHHIM y3arajlbHeHoro Merony Jli-anreOpuaHux
JUCKPETHUX anpoKcUMallid. JlMckpeTwsariro piBHSAHHS BHKOHAaHO 3a YyciMa 3MIHHUMH, LIO
YMOXJIMBIIOE (DaKTOpiabHy 30DKHICTB 3a yciMa 3MIHHUMH, SIKI BXOASTH O PIBHSHHSA y BHIIQJKY
noOyoBH  KBa3i3o0pakeHb IH(EPEeHIIIATEHOTO oneparopa 3 BHKOPHCTAHHAM  IHTEPHOJIIT
Jlarpamka. BusHaueHO paHr CKIHYEHHOBHMIPHOTO OIIepaTopa, a TaKo)X 3’JCOBaHO HOTro
anpOKCHMAIliiHI BIACTHBOCTI. HaBeleHO OILIHKK MOXHOOK, JOBENeHO (akTopiaibHy UIBUAKICTH
301KHOCTI.

Key words: y3zaransaenunit metox Jli-anreOpuvHUX IUCKPETHUX AmpOKCHUMAIii, oOepHEHe piBHSHHS
TEIUIOTIPOBIAHOCTI, CKIHUCHHOBHMIpHE KBa3izoOpakeHHs, momiHOM Jlarpamka, QakropiambHa
301KHICTB.
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