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We establish apriori estimate for the solutions of a degenerate non-divergence nonlinear
elliptic equation.
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1. INTRODUCTION
Let us consider in some ball B, —R" with radius 2r,r>1, a solution u(x) in
C(EZ,) NW,.2"(B,,) of the non-divergence type nonlinear elliptic equation

loc

Zn:aij (x,u(x), Du(x))D?u(x) + f (x,u, Du(x)) =0, 1)

ij=1

forae xeB, . Here a; =a;, i.d. A(x,y, p) set of symmetric matrices of size nxn and

i’

vy eR, VX, p,&eR" coefficients satisfying

AP EF< (& AKX Y, P)E) < AM(P)o(X) | E]*

F(xy,p) < CA AP P ) @

for some A>1k >1 and some continuous mapping A:R" — R, for which there exist A,
and M >0 such that A(z)>A, for |z|>M. (x) is Muckenhoupt weight function

(see [1]). Let u: §2, — R be a bounded and continuous solution of (1).

The first results of Holder estimates for solution of divergence form equation were
obtained by De Giorgi and Nash (see [2, 7]). The case of non-divergence equations is
considered by Krylov and Sofonov in [4, 5]. The case of divergence type quasilinear elliptic
equations was investigated by Serrin [8] and Ladyzhenskaya, Uraltseva [6].

The goal of this paper is to prove a similar result for degenerate quasilinear elliptic
equations of non-divergence form.

Our results are new and can be expanded to the following non-divergence equation

||Du||”‘2w(x) . Zn:[|n +(p—2)( Du|?-Du)D%l],

ij=1

where 1 is the unit matrix of size n.
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2. MAIN RESULTS

Theorem 1. Suppose that the aforementioned assumption for equation (1) is
satisfied. Then u(x) is Holder continuous on I§r. Moreover, there exist consts B,C, only
depend on n,A,A, and M , such that

| o(u(x) ~a(y)u(y) < C|x-y [ (1+SU|0(| u I)J

Bar
forany x,yeB, .

The proof relies on a probabilistic interpretation of the quasilinear equations. For
linear equation in case A and f are in dependent of y and p. The original proof consists
of introducing a diffusion process X , solution to the Stochastic Differential Equation(SDE)

dX, =o(X,)dW,,t >0
where W is a n- dimensional Wiener process and o a continuous version of the square
root of the matrical mapping 2A. The basic idea that the generator of diffusion process has
some smoothing property in the surrounding space with a nontrivial probability. Let f

vanish and u is smooth, u(X,),., is martingale. In this case u(x) may be expressed as the
expectation E[u(X))] for any well-controlled stopping time t and the exponent X
indicates the initial position of the diffusion process. As a consequence, u(x) may be

understood as a mean over the values of u in a neighborhood of x, since X visits the
surrounding space around X, almost all the values of u in the neighborhood of x. In this
case the probabilistic representation formula has the form

U0 = E[U(X))+ [ F(X)ds] ©)

The probability that the diffusion process X hits a Borel subset of non-zero
Lebesgue measure included in B,,. In our non-linear case, when A(x,y, p) and u(x) are

smooth, we can define X similarly by setting
dX, = o(X,,u(X,), Du(X,))dW,,t>0 4)
(X, y, p) > o(x,y, p) being a smooth version of the square root of 2A(X, Y, p).

We show this can force the stochastic system on the areas of degeneracy by an
additional drift to push it towards the desired Borel subset.

Theorem 2. Suppose that o:R" — R™" be a Lipschitz continuous mapping such
that the function a(x) = o-o"(x) satisfies the following estimates: Vx,& e R"

A0 €< (& a()8) < AL &, 5)
where A>1 and X:R”—>[O,1]. Also suppose that (C,F,(F).,.P) be a filtered
probability space satisfying the usual conditions endowed with an (F,),., Brownian motion
(W,)o,» @ be a positive real number and Q, be some hypercube of R" of radius r. Then,
for any p in (0,1) there exist some positive constants g(w), R(n) and (I, (W)),<,<, ONlY
depending on d,o, A and u, such that for any pe(0,1) and x, €Q_,, we can find an
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integrable n-dimensional (F,),., progressively measurable process b,),., such that both
b,).., and the process X, solution to the SDE

t t
X, = %, + [o,ds + [o(X ) X,dB,,t >0
0 0
satisfy the following:
vt>0, MX)Za=Db =0 vpe[l,2), E[|b | dt<T,(up"?,
0

and for any Borel subset V < Q, we have that
1Q\V I<lQ, = Py < (RGP NSy [2 (w)
where T, is the first hitting time of V and S, the first exit time from Q, by X and |-|
P

is a Lebesgue measure.
The connection with Theorem 1 may be understood as follows when u(x) is a strong

solution of the (1), then we choose a(x) in the statement of Theorem (2) as
2A(x,u(x),Du(x)). The term A(Du(x)) in Theorem 1 plays the role of X(x) in
Theorem 2. By choosing o in the Theorem 2 equal to A, given in Theorem 1, we deduce
that
| Du(X,) [ M = A(Du(X,)) =1, = A(X,) = a=b, =0.
In other words the resulting drift b,),, just acts whem the gradient is small, i.e. is

bounded by M.
Later we can show how to deduce Theorem 1 from Theorem 2. We prove Theorem 2
when the proportion of V inside Q, is large enough. Compared with the original argument

given by Krylov and Safanov, the main difference in the application of the probabilistic
estimate follows from the interpretation of the underlying PDE. In the paper of Krylov and
Safonov the PDE is understood in the strong sense, i.e. the solution u(x) is assumed to be

in C(B,, ) "W,%"(B,,) . To complete the proof of Theorem 1 we also used to Gilbarg and

loc

Trudinger [[3], lem. 8.23]. In a future paper we will give strong proof these facts.
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OIIHKA T'EJIJAEPA IS PO3B’SI3KY BUPO/KEHUX HEJTHIHHAX
EJHIITUYHUX PIBHAHDb HEJUBEPI'EHTHOTI'O TUITY
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3HalIeHO anpiopHy OLIHKY Ul PO3B’SI3aHHS BHPOKEHOTO HE AUBEPTEHTHOTO HENiHIHHOTrO
PIBHSHHSL.
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