
OleksynM., Venhenskyi P., KokovskaY.

ISSN 2078�5097. Âiñí. Ëüâiâ. óí-òó. Ñåð. ïðèêë. ìàòåì. òà iíô. 2023. Âèï. 31 149

UDC 004.4'22 doi: 10.30970/vam.2023.31.11974

ONE APPROACH TO DRAWING IMPLICIT 2D CURVES
USING INTERVAL ANALYSIS AND RUNGE METHOD TYPE

M.Oleksyn, P.Venherskyi, Y.Kokovska

Ivan Franko National University of Lviv,

1, Universytetska str., 79000, Lviv, Ukraine

e-mail: mykhailo.oleksyn@lnu.edu.ua, petro.venherskyy@lnu.edu.ua,

yaryna.kokovska@lnu.edu.ua

Implicit curve approximation stands as a foundational task in both mathematics and
computer graphics. Numerous approaches have been introduced to tackle this problem,
from algebraic techniques to numerical methods. Among these, interval analysis has gained
signi�cant attention. Its strength lies in its inherent ability to provide guaranteed bounds,
ensuring a robust estimate of the curve's location, a feature not consistently o�ered by many
other methods. In this paper, we introduce an enhancement to the curve approximation
algorithm, building upon the established foundation set by the interval algorithm that takes
into account global parametrizibility provided by John Snyder. Our primary objective is
to optimize e�ciency, with a particular emphasis on improving the boundary intersection
determination. Our ambition is to speed up implicit curve approximation by using Runge
method type instead of more traditional approach of using Newton method to take the
advantage of derivative calculation complexity.

Key words: interval analysis, implicit curves, computer graphics, curves approximation

1. Introduction

Curve approximation is a key topic in computational geometry. It's crucial for tasks
ranging from creating visuals in computer graphics to scienti�c visualizations. One of
the methods that stands out for curve approximation is interval analysis. Instead of
working with just points, interval analysis looks at a range of values. This can lead to
better accuracy because it considers more information about a function over a speci�c
range. However, while it can give us more precise results, it can also be computationally
intensive.

At the core of using interval analysis for curve approximation is �nding where the
curve meets the edges of our chosen interval, or "boundary intersection detection". Over
time, many techniques like the Newton method and binary search have been used for
this purpose. These methods are popular because they're straightforward and generally
work well. There are also more advanced methods, like the Hansen-Greenberg, that look
more closely at how a curve behaves within an interval. However, each method has its
challenges, from taking too much computation time to needing extra details about the
curve.

This is where the Runge method type comes in. It's an approach mostly used for
solving di�erential equations, but it has potential for curve approximation too. The main
advantage of the Runge method type is its ability to give a good estimate of a function's
behavior over an interval without needing to check every single value in that range. This
could lead to faster results without losing accuracy.

In this paper, we'll dive into how we can use the Runge method type with interval
analysis to approximate curves. We want to see if using the Runge method type can o�er

© OleksynM., Venhenskyi P., KokovskaY., 2023



OleksynM., Venhenskyi P., KokovskaY.

150 ISSN 2078�5097. Âiñí. Ëüâiâ. óí-òó. Ñåð. ïðèêë. ìàòåì. òà iíô. 2023. Âèï. 31

a faster way to approximate curves without losing the bene�ts of accuracy. Our goal is
to give a fresh look at curve approximation using interval analysis and o�er new ways to
tackle the challenges in the �eld.

2. Evolving into the third dimension

While 2D curve approximation holds its own set of challenges, expanding to 3D
presents a frontier �lled with novel complications. Surfaces, described by implicit func-
tions, encapsulate a richer structure and provide deeper insights, especially in applications
like �uid dynamics, architectural modeling, and scienti�c visualization.

Our interval-based algorithm, which has shown promise in 2D, can be evolved to ad-
dress the complexities of 3D. The main advantage we have is the rigorous and systematic
nature of interval arithmetic. When dealing with surfaces, the accuracy in determining
the boundaries becomes even more crucial. Using interval arithmetic can provide tighter
bounds and better guarantees on the correctness of the approximated surfaces. Moreover,
the boundary intersections in 3D involve not just points, but curves. Our methodology
can be extended to not only �nd these curve intersections e�ciently but also to ensure
they are connected correctly to form the implicit surface.

Neural networks can further augment this process. By training them on a variety of
3D surfaces, we can utilize their predictive capabilities to guide our algorithm's subdi-
visions, focusing computational e�orts on the more complex regions of the surface and
speeding up convergence in simpler areas.

3. Foundations of Interval Curve Approximation

This section is aimed to describe basic principles of each step of curve approximation.
We will describe the use of intervals, subdivision process and, most importantly, criteria
of subdivision stop. This section will also emphasis the process of resulted intervals set
border intersections lookup. We will examine di�erent approaches of this process, they
advantages and disadvantages. Additionally, we will explain edge cases when intervals
still need to be subdivided even if criteria is met to avoid ambiguous results. Finally,
this section will explore how to form the approximated curve by connecting correct
intersection points.

3.0.1. Global parametrizability

Current section dives into all aspects of global parametrizability, property that allows
to focus on important areas of the grid for speci�c curve and reject not relevant. We will
describe the criteria that dictate global parametrizability, explain how the intervals are
determined to satisfy this criteria and will cover some edge cases that are not handled
by the algorithm.

3.0.2. Parametrizability criteria

A curve is globally parametrizable if there exists a bijective mapping between its
parameter domain and the curve itself. In simpler terms, for each point on the curve,
there should be exactly one parameter value that maps to it. Similarly, for each parameter



OleksynM., Venhenskyi P., KokovskaY.

ISSN 2078�5097. Âiñí. Ëüâiâ. óí-òó. Ñåð. ïðèêë. ìàòåì. òà iíô. 2023. Âèï. 31 151

value, there should be at most one point on the curve it represents. Considering the fact
that our case is 2D curve let us refer to Appendix A of [1] for more practical formulation.
Let f : Rn → Rn be continuously di�erentiable in an interval domain X. As Appendix
A of [1] states, we are considering an r-dimentional manifold de�ned as the solution to a
system of n− r equations in n parameters (r ∈ {0, 1, ..., n− 1}) :

f1 (x1, x2, ..., xn) = 0

.

.

.

fn−r (x1, x2, ..., xn) = 0

Given a set of parameter indices, B = {k1, k2, ..., kr}, and intervalX ∈ In, the subinterval
X over B is a set depending on r parameters (y1, y2, ..., yr), yi ∈ Xki

, de�ned by{
x ∈ X|

xi = yi, ifi = kj ∈ B

xi ∈ Xi, otherwise

}
2J{k1,k2,...,kr}(X) is interval Jacobian submatrix, as an (n − r) × (n − r) interval

matrix given by

2J{k1,k2,...,kr}(X) ≡
[
2
∂Fi

∂xj
(X)

]
j /∈{k1,k2,...,kr}

F is an interval extension of f . According to IntervalImplicit Function Theorem, the
solution of equations fi (x) = 0 is globally parametrizable in r parameters indexed by
{k1, k2, ..., kr} over X if

det2J{k1,k2,...,kr} (X) ̸=0

Talking strictly, we need to calculate both partial derivatives of the input function,
for x and y parameters respectively. In case at least one of those derivatives contains 0
for any speci�c interval, this interval is guaranteed to be parameterizable in at least one
of parameters.

3.0.3. Criteria satisfaction and corresponding

actions

There are multiple approaches we may want to consider during the recursive subdi-
vision of the initial interval:

1. Even subdivision. Ignoring curve behavior inside each speci�c interval we might
divide the interval into 4 smaller even parts until all the resulted intervals satisfy
the criteria. As a result we will receive the set of square shaped intervals that will
contain approximate curve.

2. We might want to ignore global parametrizability and proceed with the subdivision
into 4 even parts until all intervals reach some size threshold. As a result, we will
receive a set of intervals each of the same size.



OleksynM., Venhenskyi P., KokovskaY.

152 ISSN 2078�5097. Âiñí. Ëüâiâ. óí-òó. Ñåð. ïðèêë. ìàòåì. òà iíô. 2023. Âèï. 31

3. On the other hand, we might be interested in some insights provided by global
parametrizability and adjust the subdivision. Each speci�c interval might be
parametrized for single parameter but not for the other. At this point we might
subdivide an interval into 2 parts (instead of 4) thus forming non-squared rectangles
and improving the precision and e�ciency.

We will consider a third approach that avoids not needed subdivision until threshold
and achieves better precision with rectangles.

3.0.4. Edge cases

There are some exceptional cases of curve behavior inside the interval that are not
allowed by an assumption:

1. The curve shouldn't loop inside an interval and cross its borders simultaneously.

2. The curve should not lie entirely inside an interval without looping.

3. The curve should not cross interval border once without looping.

For more detailed information and visual examples please refer to section 4.1 of [1].

3.1. Boundary intersection algorithms

This section will examine multiple algorithms and approaches that narrow down line
and implicit curve intersection lookup problem. We will dive into basic theoretical de-
sign and expected complexity of each of them. Finally, this section will provide some
comparisons between them.

3.1.1. Binary search

Theoretically binary search is powered by Intermediate Value Theorem. It compares
signs of the function values for both inf and sup of an interval and subdivides an interval
iteratively in two halves in case signs di�er.

In each iteration, the size of the interval is halved which gives us the O(log n) time
complexity. The algorithm only needs to store current interval thus the space complexity
is O(1). This algorithm doesn t require knowledge of function s derivative (unlike Newton
s method) and is e�cient with a logarithmic time complexity. Generally slower than
methods like Newton s method, which use derivative information for faster convergence.

Pseudocode

FUNCTION intervalBinarySearch(f, initialInterval, tolerance, maxIterations):
n = 0
currentInterval = initialInterval

WHILE n < maxIterations:
midPoint = getMidPoint(currentInterval)

fLower = f(currentInterval.lower)
fUpper = f(currentInterval.upper)
fMid = f(midPoint)

IFfLower * fUpper < 0:
IFabs(fMid) < tolerance OR getWidth(currentInterval) < tolerance:



OleksynM., Venhenskyi P., KokovskaY.

ISSN 2078�5097. Âiñí. Ëüâiâ. óí-òó. Ñåð. ïðèêë. ìàòåì. òà iíô. 2023. Âèï. 31 153

RETURN midPoint
ELSE:
IFfLower * fMid < 0:
currentInterval.upper = midPoint

ELSE:
currentInterval.lower = midPoint

ELSE:
RETURN "The function does not change sign on the interval. No root found."

n = n + 1
RETURN "Method did not converge"

END FUNCTION

FUNCTION MIDPOINT(interval):
RETURN (interval.lower + interval.upper) / 2

FUNCTION WIDTH(interval):
RETURN interval.upper - interval.lower

3.1.2. Newton method

Capitalizes on the function's derivatives to estimate its roots. Starting with an initial
guess, the function value and its derivative are used to update the estimate progressively.
The process is reiterated until the root's estimate is within the desired tolerance or a
predetermined number of iterations have been executed. The Newton iteration for a
function f(X) can be given as:

Xn+1 = (xn − f(xn)

f ′(Xn)
) ∩Xn, xn ∈ Xn

Where f
′
(Xn) is the derivative of f with respect to x evaluated at Xn. If the width of

Xn+1 is su�ciently close to zero or if Xn+1 is very close to Xn then the method has
converged and Xn+1 can be taken as the approximation to the boundary intersection.
The process is repeated with Xn+1 as the new starting point in case convergence criteria
are not met.

Pseudocode

FUNCTION IntervalNewtonMethod(f, df, initialInterval, tolerance, maxIterations):

n = 0
currentInterval = initialInterval

WHILE n < maxIterations:
midPoint = MIDPOINT(currentInterval)

dfInterval = df(currentInterval)
IF0 IN dfInterval:
RETURN "Derivative interval contains zero. Method may not converge."



OleksynM., Venhenskyi P., KokovskaY.

154 ISSN 2078�5097. Âiñí. Ëüâiâ. óí-òó. Ñåð. ïðèêë. ìàòåì. òà iíô. 2023. Âèï. 31

yInterval = midPoint - f(midPoint) / dfInterval
nextInterval = INTERSECT(currentInterval, yInterval)

IF EMPTY(nextInterval):
RETURN "Intervals do not overlap. No root found."

IF WIDTH(nextInterval) < tolerance:
RETURN nextInterval

currentInterval = nextInterval
n = n + 1

RETURN "Method did not converge"

END FUNCTION

FUNCTION INTERSECT(interval1, interval2):
newLower = MAX(interval1.lower, interval2.lower)
newUpper = MIN(interval1.upper, interval2.upper)

IF newLower <= newUpper:
RETURN Interval(newLower, newUpper)

ELSE:
RETURN emptyInterval()

FUNCTION EMPTY(interval):
RETURN interval.lower > interval.upper

3.1.3. Runge method type

The Runge method type is using similar approach for estimations of roots by using
function s derivatives. The main di�erence is to replace the most expensive derivative
computation part with derivative estimation. More detailed information can be found in
[2].

The Runge iteration for a function F (x) can be given as:

Xn+1 = (xn − f(xn)
1
4f

′(xn) +
3
4f

′(xn + 2
3 (Xn − xn))

) ∩Xn, xn ∈ Xn

Pseudocode

FUNCTION IntervalRungeMethod(f, df, interval, tolerance, maxIterations):
n = 0
currentInterval = interval

WHILE n < maxIterations:
lowerBound = f(currentInterval.lower)



OleksynM., Venhenskyi P., KokovskaY.

ISSN 2078�5097. Âiñí. Ëüâiâ. óí-òó. Ñåð. ïðèêë. ìàòåì. òà iíô. 2023. Âèï. 31 155

upperBound = f(currentInterval.upper)

midpoint = MIDPOINT(currentInterval)
IF (lowerBound <= 0 AND upperBound >= 0)

OR (lowerBound >= 0 AND upperBound <= 0):
yInterval = midpoint - (1/4 * df(midpoint) + 3/4 * df(midpoint +

+ 2/3 * (currentInterval - midpoint ))) −1 * f(midpoint)
nextInterval = INTERSECT(currentInterval, yInterval)

IF width(nextInterval) < tolerance:
RETURN nextInterval

currentInterval = nextInterval
ELSE:

RETURN "Root not found in interval"

n = n + 1

RETURN "Method did not converge"
END FUNCTION

3.1.4. Comparison

In the pursuit of e�cient boundary intersection algorithms for curve approximation,
three notable contenders arise. Starting with the Binary Search, its chief advantage
lies in its logarithmic time complexity, (O(logn)), combined with its inherent reliability,
granted the function is continuous. However, this assurance might come at the cost of
requiring more iterations for optimal accuracy.

Advantages:
1. Predictability: The number of iterations required to achieve a speci�c tolerance is

relatively predictable. Each iteration halves the search interval.

2. Reliability: Always converges if the function changes sign on the given interval.
Disadvantages:
1. Convergence Speed: Convergence can be slower than methods like Newton's, espe-

cially if the initial interval is wide and the tolerance is very small.

2. Assumption: Assumes that the function changes sign on the interval. It cannot
�nd roots where the function doesn't change sign.

Computational timing is O(log(n))
Newton's Method, on the other hand, boasts potential quadratic convergence when

positioned close to the root, often translating to swifter accuracy gains than its binary
counterpart. Yet, its e�cacy is intimately tied to the aptness of the initial guess. Addi-
tionally, Newton's approach demands the computation of the function's derivative, which
might not always be accessible or straightforward.

Advantages:
1. Fast Convergence: For functions that satisfy certain conditions, the method typi-

cally converges super-linearly. It can be much faster than the binary search method
for certain problems.

2. Direct Use of Derivative: The method utilizes the function's derivative, which can
provide additional information about the function's behavior.

Disadvantages:



OleksynM., Venhenskyi P., KokovskaY.

156 ISSN 2078�5097. Âiñí. Ëüâiâ. óí-òó. Ñåð. ïðèêë. ìàòåì. òà iíô. 2023. Âèï. 31

1. No Global Convergence Guarantee: Depending on the initial guess and the func-
tion's nature, it might diverge or converge to an unwanted root.

2. Requires Derivative: Needs the function's derivative, which isn't always easily avail-
able or computable.

3. Sensitive to Initial Guess: The choice of the initial guess can heavily in�uence the
algorithm's success.

Computational timing is O(1) � O(log(n)): The method can converge in constant
time for speci�c problems, but it might also take logarithmic time, similar to binary
search, or even more, depending on the function and initial guess.

The Runge Method type is a tool more commonly associated with di�erential equa-
tions. Because of one of its applicants in the denominator does not involve derivative
calculation and basically may be replaced with the normal function calculation instead
of interval extention, it converges faster than Newton method. Basic calculations for
speci�c equation shows around 4000 iterations for Newton method and around 3600 iter-
ations for Runge method type. This fact also leads to faster execution of the calculation
application.

Advantages:

1. Higher Order Convergence: Designed to be a higher order method which, for certain
functions, means fewer iterations than simpler methods.

2. Takes Advantage of Function Characteristics: It uses more than just the function
value and its derivative, which can make it more accurate for certain problems.

3. Avoids the most costly computation of derivative by using lower order derivatives

Disadvantages:

1. Complexity: In some cases might be more costly than the other two methods

O(1) � O(n): Convergence can be faster than both Newton and binary search for
certain problems due to its higher order nature. However, each iteration is more compu-
tationally intensive. It can take constant time for some problems but may also require
linear time or more, depending on the function and the algorithm's speci�cs.

3.1.5. Unambiguity

At this step we already have a set of intervals each is globally parametrizable and
contains the list of points where the curve intersects with its borders. Next step is to
connect these intersection points with lines to form visual approximation. Before this
last step we need to take into account the case when the curve is crossing the interval
multiple times thus producing multiple intersection points but not all of them should be
connected inside this speci�c interval.

Interval with 4 intersections on borders is displayed on Figure 1. There are 5 possible
cases how the curve could behave inside the interval:

1. Crossing a to b inside, touching c outside.

2. Crossing b to c inside, touching a outside.

3. Crossing a to b to c.

4. Crossing a to c inside, touching b outside

5. Touching a, b and c outside



OleksynM., Venhenskyi P., KokovskaY.

ISSN 2078�5097. Âiñí. Ëüâiâ. óí-òó. Ñåð. ïðèêë. ìàòåì. òà iíô. 2023. Âèï. 31 157

Fig. 1. Intersection example

We need to apply additional check to make sure how to connect these points inside
an interval. To do this, we will �rst need to sort intersection points based on global
parametrizability parameter. After this is done, we shall check if the curve connects
two adjacent points by checking if the curve crosses the line that lies between them.
Let us assume that an interval is parametrizable in x parameter and a, b, c and d on
Figure 2 represent x coordinate. We now want to check if the curve connects points with
coordinates b and c. For that purpose let us create line y = d ,

Fig. 2. Intersection veri�cation

d is midpoint between b and c. We will apply the same method as we did for boundary
intersection. In case the curve crosses the line, two points should be connected. We will
repeat the same process for each pair of adjacent intersection points.

4. Algorithm

This section will describe how all previously explained parts are used as a part of an
algorithm. Then we will provide a pseudocode. The algorithm is designed to approximate
implicit curves within a given domain. Beginning with an initial interval and a speci-
�ed inclusion function F the domain is iteratively subdivided. For each of the resulted
intervals, the function's intersection points with the boundaries are determined. These
intersections are then systematically sorted and connected to form an approximation of
the curve, capturing its intrinsic characteristics within the speci�ed domain.



OleksynM., Venhenskyi P., KokovskaY.

158 ISSN 2078�5097. Âiñí. Ëüâiâ. óí-òó. Ñåð. ïðèêë. ìàòåì. òà iíô. 2023. Âèï. 31

4.1. Interval subdivision

The primary objective during this phase is to subdivide the given domain into inter-
vals. The criterion for this subdivision is based on the global parameterization principle.
The implicit curve contained in a proximate interval Y is called globally parameterizable
in a parameter i if there is at most one point in Y on the curve for any value of the i-th
parameter [1]. After this step a set of intervals are generated each is guaranteed to be
parameterizable in one of the coordinates.

4.2. Boundary intersections

After identifying the intervals, the next step is to determine where the function in-
tersects the boundaries of these intervals. This is crucial as it will guide the eventual
approximation of the curve. Three methods were explored to perform this task: Binary
search, Newton method and the Runge algorithm. After this step we will receive a set
of boundary intersection points of each globally parametrizable interval.

4.3. Discarding ambiguous results

Once intersections on the interval boundaries are identi�ed, the next step is to ensure
they are disjoint. In case single interval contains multiple intersections on the opposite
boundaries, we need to make sure that proximate intervals of intersections do not overlap.
Otherwise the interval should be subdivided for further intersections recalculation.

When all intersections don t overlap, the next step is to sort these intersections.
The sorting is based on the globally parameterizable argument. After sorting, algorithm
checks if curve intersects the line that lies in between each two adjacent intersection
points (e.g. if curve actually connects them). If so, we simply join two intersection point
with the line, otherwise we proceed to the next pair of intersection points (if any).The
connections are formed such that the curve's inherent properties and characteristics are
retained to the maximum possible extent.

4.4. Algorithm steps

1. Initialize initial interval range, implicit function and calculate its partial derivatives.

2. If current interval globally parametrizable, got to step, otherwise split interval and
start step 2 again for each of the subintervals.

3. For each interval boundary calculate intersections.

4. Sort intersections

5. In case interval contains more that 1 intersection points, check if the curve connects
those points and discard points that are not connected to any other point.

6. Connect the rest adjacent intersection points with lines.

5. Conclusion

E�cient implicit curves approximation remains a crucial task. In this paper we dis-
cussed di�erent approaches of boundary intersections lookup all based on [1] traditional
algorithm. The key part was to replace well known Newton method with more e�cient
Runge method type [2] in order to avoid costly derivative calculation.



OleksynM., Venhenskyi P., KokovskaY.

ISSN 2078�5097. Âiñí. Ëüâiâ. óí-òó. Ñåð. ïðèêë. ìàòåì. òà iíô. 2023. Âèï. 31 159

References

1. Snyder J.M. Interval analysis for computer graphics / J.M. Snyder //Computer Graphics. �
1992. � Vol. 26, (2). � P. 121�130. doi: 10.1145/142920.134024

2. SenioP.S. Solving systems of special form nonlinear equations by means of some modi-
�cations of Runge type interval iterative method /P.S. Senio, P.S.Vengersky // Interval
Computations. � 1992. � Vol. 4, (6). � P. 59�65.

3. Lin L. Adaptive isotopic approximation of nonsingular curves / L. Lin, Ch.Yap. � 2009. �
P. 351�360.

4. BurrM, Complete subdivision algorithms /M,Burr, Sung Woo Choi, B.Galehouse,
Ch.K.Yap. � 2008. � P. 87-94.

5. Sampling and Meshing a Surface with Guaranteed Topology and Geometry / Siu-Wing
Cheng, Tamal K.Dey, Edgar A.Ramos, Tathagata Ray. � 2007.

Article: received 29.09.2023
revised 25.10.2023

printing adoption 08.11.2023

ÏIÄÕIÄ ÄÎ ÏÎÁÓÄÎÂÈ ÍÅßÂÍÎ ÇÀÄÀÍÈÕ 2D ÊÐÈÂÈÕ,
ÂÈÊÎÐÈÑÒÎÂÓÞ×È IÍÒÅÐÂÀËÜÍÈÉ ÀÍÀËIÇ

I ÌÅÒÎÄÈ ÒÈÏÓ ÐÓÍÃÅ

M.Îëåêñèí, Ï.Âåíãåðñüêèé, ß.Êîêîâñüêà

Ëüâiâñüêèé íàöiîíàëüíèé óíiâåðñèòåò iìåíi Iâàíà Ôðàíêà,

âóë. Óíiâåðñèòåòñüêà 1, Ëüâiâ, 79000

e-mail: mykhailo.oleksyn@lnu.edu.ua, petro.venherskyy@lnu.edu.ua,

yaryna.kokovska@lnu.edu.ua

Íàáëèæåííÿ íåÿâíî çàäàíèõ êðèâèõ ¹ îñíîâíèì çàâäàííÿì ó ìàòåìàòèöi òà êîì-
ï'þòåðíié ãðàôiöi. Áóëî ââåäåíî ÷èñëåííi ìåòîäè äëÿ âèðiøåííÿ öi¹¨ ïðîáëåìè,
ïî÷èíàþ÷è âiä àëãåáðè÷íèõ òåõíiê äî ÷èñåëüíèõ ìåòîäiâ. Ñåðåä íèõ iíòåðâàëüíèé
àíàëiç çäîáóâ çíà÷íó óâàãó. Éîãî ñèëà ïîëÿãà¹ ó âëàñòèâié çäàòíîñòi çàáåçïå÷óâà-
òè ãàðàíòîâàíi ìåæi, ãàðàíòóþ÷è íàäiéíó îöiíêó ïîëîæåííÿ êðèâî¨, ôóíêöiþ, ÿêó íå
çàâæäè íàäàþòü áàãàòî iíøèõ ìåòîäiâ. Ìè ïðîïîíó¹ìî ïîëiïøåííÿ àëãîðèòìó íàá-
ëèæåííÿ êðèâèõ, áåðó÷è çà îñíîâó àëãîðèòì Ñíàéäåðà. Íàøà ìåòà � îïòèìiçóâàòè
åôåêòèâíiñòü, ðîáëÿ÷è àêöåíò íà ïîëiïøåííi âèçíà÷åííÿ ïåðåòèíó ìåæi iíòåðâàëó.
Ìè ïðàãíåìî ïðèñêîðèòè íàáëèæåííÿ íåÿâíî çàäàíèõ êðèâèõ, âèêîðèñòîâóþ÷è ìåòîä
òèïó Ðóíãå çàìiñòü áiëüø òðàäèöiéíîãî ïiäõîäó çà äîïîìîãîþ ìåòîäó Íüþòîíà.

Êëþ÷îâi ñëîâà: iíòåðâàëüíèé àíàëiç, íåÿâíi êðèâi, êîìï'þòåðíà ãðàôiêà, àïðîêñèìà-
öiÿ êðèâèõ.


