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Atomic entities are signi�cant basic elements of the logical modeling of subject areas
of software systems. Since modern software systems require guarantees of the correctness
of their functioning, formal logical models become a necessary tool for ensuring software
dependability.

The article proposes a conceptual basis for modeling atomic entities, developed for
using it for formal veri�cation with The Coq Proof Assistant.

Atomic entities are the smallest, indivisible units of meaning in a logical model. They
are the building blocks of more complex concepts and relationships. For example, in calculi,
atomic entities are constants and variables. Modern software systems are complex and often
involve multiple concurrent processes. This can make it di�cult to ensure that the system
will always behave correctly, even in the presence of unexpected events or errors. Formal
logical models can help to address this challenge by providing a way to reason about the
system's behavior rigorously and systematically.

Key words: formal veri�cation, dependent types, The Coq Proof Assistant, atomic entities,
formal proof.

1. Introduction

The use of Information and Communication Technology has become ubiquitous, and
this has led to an increase, in the requirements for software dependability. Modern
applications are often complex and distributed. This can make it di�cult to analyze
their behaviour using traditional methods. Traditional dynamic analysis methods, such
as debugging and testing, can be untrustworthy when applied to modern applications.
The reason is the necessary tools can signi�cantly a�ect the system behaviour under
study. For example, a debugger can introduce delays or other artefacts that can change
the way the application runs. This can raise di�culties in identifying and �xing bugs.

The mentioned situation can be solved by the use of formal veri�cation methods and
the corresponding software tools. Formal veri�cation is an approach based on mathemat-
ically proving the correctness of a system. The approach is for verifying the correctness
of hardware and software systems, protocols, and other mathematical aspects of sys-
tem design. Formal veri�cation is based on mathematical techniques for specifying and
analyzing systems. Formal methods suggest creating some formal system model and
analyzing it further to prove its properties speci�ed as system requirements.

© BerezovskyiO., ZozuliaA., 2023



BerezovskyiO., ZozuliaA.

ISSN 2078�5097. Âiñí. Ëüâiâ. óí-òó. Ñåð. ïðèêë. ìàòåì. òà iíô. 2023. Âèï. 31 119

One fruitful technique for formal veri�cation is dependent type theory, on which a
series of software veri�cation tools such as The Coq Proof Assistant [1], Isabelle [2],
Agda [3], and others are based.

In the introduction of his book [4], A. Chlipala explained reasons to use The Coq
Proof Assistant for the certi�ed programming technique. Due to this argumentation, we
decided to use The Coq Proof Assistant for our paper. Our decision is motivated by the
use experience of The Coq Proof Assistant in a lot of projects for

1. verifying software: Coq is used to verify the correctness of software systems,
such as compilers, operating systems, and security protocols. For example, the
CompCert compiler (http://compcert.org/) and the CertiKOS operating system
(http://�int.cs.yale.edu/certikos/) have been veri�ed using Coq;

2. mathematical proofs: Coq is used to develop formal proofs of mathematical the-
orems. For example, the link http://github.com/coq-community/fourcolor refers
to the repository containing Coq-scripts for prooving the Four Color Theorem and
the link http://github.com/�yspeck/�yspeck refers to the repository containing
Coq-scripts solving the Kepler Conjecture;

3. teaching and research: Coq is used to teach and research formal mathematics and
computer science. Many universities around the world o�er courses on Coq, and
there is a large and active research community working on Coq and related topics.

The problem of this paper is modelling atomic entities of logical models used for spec-
ifying and analysing software. The problem is motivated by the research project that
the Theoretical and Applied Computer Science Department of V.N.Karazin Kharkiv Na-
tional University carries out jointly with research team KAIROS of INRIA (France). This
project aims to provide formal semantics and veri�cation methods for Clock Constraint
Speci�cation Language (CCSL) [5�7] used under design embedded and cyber-physical
systems.

Such atomic entities are present in the majority of logical models. For example, such
entities are known as variables in Hoare logic [8], as constants and variables in di�erent
lambda calculi [9] and so on.

In the paper, the principal elements of the library for operating with such entities
using The Coq Proof Assistant are presented. All mentioned in the paper's formal
de�nitions and proofs have been checked with Coq Platform v8.16 or later.

2. Core Model

Let us begin our presentation with a discussion of natural requirements for models of
atomic entities called below atoms. These requirements are the following:

1. there exists an algorithm for distinguishing atoms from other entities;

2. there exists an algorithm for checking the equality of atoms;

3. at each speci�c moment of the use of a model, a �nite set of atoms is available only;

4. at each speci�c moment of the use of a model, a new atom can be introduced, which
becomes available after the introduction.

It is evident that the type of natural numbers is the ideal candidate for satisfying
these requirements. But this type has many properties related to Peano arithmetic that
are redundant for our purposes. Therefore, we introduce the new type atom by wrapping
the natural-valued identi�er.
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(* An atom is an entity uniquely defined by a corresponding

natural number. *)

Inductive atom : Set := a : nat -> atom.

For each atom, we have the manner to determine its identi�er as follows

(* This function returns that natural number defining an atom. *)

Definition aid : atom -> nat := fun n => let 'a idn := n in idn.

Easy to see that the function aid is bijective. This follows directly from the next lemmas.

Lemma aid_inj : forall n m : atom, aid n = aid m -> n = m.

(* Equality of atoms implies equality of natural numbers defining

the atoms. *)

Proof (* has been verified by Coq *).

intros. destruct n as [idn], m as [idm]. simpl in H. now rewrite H.

Qed.

Lemma aid_surj : forall n : atom, exists idn, n = a idn.

(* Any atom is determined by a natural number. *)

Proof (* has been verified by Coq *).

intro. destruct n as [idn]. now exists idn.

Qed.

Also, these lemmas demonstrate that items 1) and 2) of the declared requirements
are ful�lled due to these requirements are valid for natural numbers.

3. Finite Sets of Atoms

In this section, we focus on items 3) and 4) of the requirements mentioned in the
previous section. Hence, we need to propose a manner for representing �nite sets of
atoms and a function for de�ning and manipulating such sets.

3.1. How to Represent a Finite Set of Atoms?

A �nite set can be constructively de�ned by enlisting its elements. Therefore, a
natural tool for representing such a set is a list. Unfortunately, the direct use of lists leads
to anomalies: elements of a list can be duplicated, and two lists that are distinguished
by the order of their elements only represent the same set. Thus, we propose to use lists
of atoms sorted by increasing identi�ers of their members for representing �nite atom
sets to eliminate these anomalies.

We de�ne the predicate increasing as follows

Inductive increasing : list atom -> Prop :=

(* a list of atoms is increasing if either *)

| inc0 : increasing [] (* the list is empty or *)

| inc1 : forall n, increasing [n] (* it contains only one member or *)

| incS : forall n m ns, (* it is built by pushing an atom *)

aid n < aid m -> (* whose identifier is less than *)

increasing (m :: ns) -> (* the head identifier of an *)

increasing (n :: m :: ns). (* increasing list into this list *)
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This de�nition establishes that empty and one-element lists of atoms are increasing.
A more complicated case is de�ned by the third clause of the inductive de�nition: we
obtain an increasing list by adding to the head of an increasing one under the condition
that the identi�er of this head is less than the identi�er of the adding atom.

An expected property of this predicate is its decidability and the certi�ed procedure
for distinguishing increasing and non-increasing lists is the following.

Definition increasing_dec :

forall lst : list atom, {increasing lst} + {~ increasing lst}.

Proof (* has been verified by Coq *).

intro.

(* Now, let us consider two cases: the list is empty and not empty. *)

destruct lst as [| n lst'].

- (* the first case is trivial *)

left. constructor.

- (* in the second case, we apply induction on the list lst' *)

revert n. induction lst' as [| m lst'' IHlst'']; intro.

+ (* proving the induction base is trivial *)

left. constructor.

+ (* for proving the induction step, we need to consider all cases

of outcomes under comparison of aid n and aid m *)

destruct (lt_eq_lt_dec (aid n) (aid m)) as [Hle | Hgt];

try destruct Hle as [Hlt | Heq].

* (* case aid n < aid m *)

{ elim (IHlst'' m); intro H.

- left. now constructor.

- right. intro H1. apply H. now inversion_clear H1. }

* (* case aid n = aid m *)

right. intro H. inversion_clear H. rewrite Heq in H0.

now apply Nat.lt_irrefl with (aid m).

* (* case aid n > aid m *)

right. intro H. inversion_clear H.

apply Nat.lt_irrefl with (aid m).

now apply Nat.lt_trans with (aid n).

Defined.

Note that the Coq script above demonstrates an object de�nition method through
proof of its existence. Such a method is a signi�cant The Coq Proof Assistant feature.
This feature is grounded by the Curry-Howard correspondence for Calculus of Inductive
Constructions, which is the mathematical base of The Coq Proof Assistant [10].

Now, we are ready to introduce the type AtomSet for representing �nite sets of atoms.

Definition AtomSet : Set := {lst : list atom | increasing lst}.

Coercion toList := fun ns : AtomSet => proj1_sig ns.

That is, the type AtomSet is inhabited by lists of atoms equipped with the certi�cate
(evidence, proof) of their increasing. The coercion toList ensures simplifying manipu-
lations with such lists.
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3.2. How to Build a Finite Set of Atoms?

Now we have a method of representing �nite sets of atoms, but constructing a speci�c
atom set is complicated: �rst, it is necessary to create an atom list; second, to sort it by
increasing the identi�ers of its members; third, to build the appropriate certi�cate; and
only after that create a term of type AtomSet.

In contrast, we propose the certi�ed function

inject : atom -> AtomSet -> AtomSet

for inserting an atom into a set of atoms.
We begin our construction by de�ning an auxiliary function

aux_inject : atom -> list atom -> list atom

that inserts an atom into an atom list before its �rst member whose identi�er is greater
than the identi�er of the inserting atom.

Fixpoint aux_inject (n : atom) (lst : list atom) : list atom :=

match lst with

| [] => [n]

| m :: lst' => match (lt_eq_lt_dec (aid n) (aid m)) with

| inleft Hle => match Hle with

| left _ => n :: m :: lst'

| right _ => m :: lst'

end

| inright _ => m :: (aux_inject n lst')

end

end.

Now, we are ready to de�ne the function inject.

Definition inject (n : atom) (ns : AtomSet) : AtomSet.

Proof (* has been verified by Coq *).

(* let us destruct ns : AtomSet into the atom list and

the certificate that it increases *)

destruct ns as (lst, H).

(* build atom list nlst using aux_inject *)

pose (aux_inject n lst) as nlst.

(* build atom set based on nlst *)

exists nlst. subst nlst.

(* prove that nlst increases *)

destruct lst as [| m lst'].

- constructor.

- simpl. destruct (lt_eq_lt_dec (aid n) (aid m)) as [Hle | Hgt];

try destruct Hle as [Hlt | Heq].

+ now constructor.

+ assumption.

+ revert n m H Hgt. induction lst' as [| k lst'' IHlst''].
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* constructor; [assumption | constructor].

* intros. {

simpl. destruct (lt_eq_lt_dec (aid n) (aid k)) as [Hle | Hgt'];

try destruct Hle as [Hlt | Heq].

- constructor; [ assumption | constructor ]; try assumption.

now inversion_clear H.

- assumption.

- inversion_clear H.

constructor; try assumption. now apply IHlst''. }

Defined.

Note that inject does not insert an atom into the atom set if this atom is already
in the atom set.

Now, let us present two lemmas that demonstrate the expected behaviour of the
function inject.

The �rst lemma demonstrate that an atom is a member of an atom set after injecting
it into this atom set.

Lemma post_inject : forall n ns, In n (inject n ns).

Proof (* has been verified by Coq *).

intros. revert n.

destruct ns as (lst, H).

induction lst as [| m lst' IHlst']; intro.

- now left.

- simpl.

destruct (lt_eq_lt_dec (aid n) (aid m)) as [Hle | Hgt];

try destruct Hle as [Hlt | Heq].

+ now left.

+ left. now apply aid_inj.

+ right.

assert (increasing lst'). {

inversion_clear H; [ constructor | assumption ]. }

now apply IHlst'.

Qed.

The second lemma demonstrates that an atom belonging to the atom set obtained by
injecting some atom into an atom set is either equal to the injected atom or belongs to
the original atom set.

Lemma post_inject_discr : forall n m ns,

In m (inject n ns) -> m = n \/ In m ns.

Proof (* has been verified by Coq *).

intros until ns. revert m n.

destruct ns as (lst, H).

induction lst as [| k lst' IHlst']; intros * H1.

- elim H1; intro H2; [ now left | contradiction ].

- simpl in H1 |-*.

assert (H2 : increasing lst'). {

inversion_clear H; [ constructor | assumption ]. }
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simpl in IHlst'. pose (IH := IHlst' H2).

destruct (lt_eq_lt_dec (aid n) (aid k)) as [Hle | Hgt];

try destruct Hle as [Hlt | Heq].

+ elim H1; intro H3.

* left. now symmetry.

* destruct H3 as [HL | HR]; right; [ now left | now right ].

+ destruct (lt_eq_lt_dec (aid k) (aid m)) as [Hle | Hgt];

try destruct Hle as [Hlt | Heq'];

try (right; inversion_clear H1; [ now left | now right ]).

+ inversion_clear H1.

* right. now left.

* elim (IH m n H0); intro; [ now left | right ]; now right.

Qed.

Thus, inject is a universal tool for constructing any �nite atom set by sequentially
inserting the required atoms. Using inject allows you to not worry about the order of
inserting members into the resulting atom set.
However, sometimes we need to form atom sets whose member identi�ers are sequential
�nite series of natural numbers. The function

segment : nat -> nat -> AtomSet

where the �rst argument is the identi�er of the �rst member of the series and the second
argument is the length of the series solves this problem.

To de�ne this function, we �rst introduce an auxiliary function

Fixpoint aux_segment (base len : nat) {struct len} : list atom :=

match len with

| 0 => []

| S len' => (a base) :: aux_segment (S base) len'

end.

Then we prove that this function forms a sorted atom list.

Lemma aux_segment_inc : forall base len, increasing (aux_segment

base len).

Proof (* has been verified by Coq *).

intros. revert base.

induction len as [| len' IHlen']; intro.

- constructor.

- simpl. destruct len' as [| len''].

+ constructor.

+ assert (increasing (aux_segment (S base) (S len''))). {

pose (IHlen' (S base)). assumption. }

assert (base < S base). { constructor. }

simpl. constructor.

* assumption.

* simpl in H. assumption.

Qed.
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And �nally, we de�ne the required function.

Definition segment (base len : nat) : AtomSet.

Proof (* has been verified by Coq *).

exists (aux_segment base len).

apply aux_segment_inc.

Defined.

This function satis�es the following two properties, which we state without proofs
since the corresponding proofs are su�ciently cumbersome.

Lemma in_segment : forall base len n,

In n (segment base len) -> base <= (aid n) /\ (aid n) < base + len.

Lemma segment_in : forall base len n,

base <= aid n -> aid n < base + len -> In n (segment base len).

These lemmas demonstrate the correctness of the de�nition of segment.

4. Conclusion

Thus, in the paper, the model of atomic entities for formal theories has been presented.
The model has been developed using The Coq Proof Assistant. The obtained results can
be organised as Coq-Library for further use in developing formal models for verifying
software systems.
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Àòîìàðíi ñóòíîñòi ¹ âàæëèâèìè áàçîâèìè åëåìåíòàìè ëîãi÷íîãî ìîäåëþâàííÿ
ïðåäìåòíèõ îáëàñòåé ïðîãðàìíèõ ñèñòåì. Îñêiëüêè ñó÷àñíi ïðîãðàìíi ñèñòåìè ïîòðå-
áóþòü ãàðàíòié êîðåêòíîñòi ¨õ ôóíêöiîíóâàííÿ, òî ôîðìàëüíi ëîãi÷íi ìîäåëi ñòàþòü
íåîáõiäíèì iíñòðóìåíòîì äëÿ çàáåçïå÷åííÿ íàäiéíîñòi ïðîãðàìíîãî çàáåçïå÷åííÿ.

Êîíöåïòóàëüíó îñíîâó äëÿ ìîäåëþâàííÿ àòîìàðíèõ îá'¹êòiâ, ÿêó ðîçðîáèëè äëÿ
âèêîðèñòàííÿ ôîðìàëüíî¨ ïåðåâiðêè çà äîïîìîãîþ The Coq Proof Assistant.

Àòîìàðíi ñóòíîñòi ¹ íàéìåíøèìè íåïîäiëüíèìè îäèíèöÿìè çíà÷åííÿ â ëîãi÷íié
ìîäåëi. Âîíè ¹ áóäiâåëüíèìè áëîêàìè ñêëàäíiøèõ êîíöåïöié i âiäíîñèí. Íàïðèêëàä,
â îá÷èñëåííÿõ àòîìàðíi ñóòíîñòi ¹ êîíñòàíòàìè òà çìiííèìè. Ñó÷àñíi ïðîãðàìíi
ñèñòåìè ñêëàäíi i ÷àñòî îõîïëþþòü êiëüêà îäíî÷àñíèõ ïðîöåñiâ. ×åðåç öå ìîæå áóòè
âàæêî ãàðàíòóâàòè, ùî ñèñòåìà çàâæäè ïðàöþâàòèìå ïðàâèëüíî, íàâiòü çà íàÿâíîñòi
íåî÷iêóâàíèõ ïîäié àáî ïîìèëîê. Ôîðìàëüíi ëîãi÷íi ìîäåëi ìîæóòü äîïîìîãòè ó
âèðiøåííi öi¹¨ ïðîáëåìè, íàäàþ÷è ñïîñiá ÷iòêîãî òà ñèñòåìàòè÷íîãî ìiðêóâàííÿ ïðî
ïîâåäiíêó ñèñòåìè.

Òàêèé ïiäõiä âèêîðèñòîâóþòü, íàïðèêëàä, äëÿ ôîðìàëüíî¨ âåðèôiêàöi¨ ìîâè ñïå-
öèôiêàöi¨ ãîäèííèêîâèõ îáìåæåíü (CCSL), ÿêà ïðèçíà÷åíà äëÿ îïèñó îáìåæåíü ïî-
âåäiíêè âáóäîâàíèõ i êiáåðôiçè÷íèõ ñèñòåì. Àòîìàðíèìè ñóòíîñòÿìè öi¹¨ ìîâè ¹
äæåðåëà ãîìîìåííèõ ïîäié ó ñèñòåìi, ÿêi ìîæíà ðîçãëÿäàòè ÿê ïîäiéíi òèïè i ÿêi
íàçèâàþòü ãîäèííèêàìè. Çàïðîïîíîâàíà ìîäåëü âèíèêà¹ ÿê ñïðîáà ïîáóäîâè ôîðìà-
ëüíîãî áàçèñó ñåìàíòè÷íîãî ôðåéìâîðêà äëÿ ôîðìàëüíî¨ âåðèôiêàöi¨ ñïåöèôiêàöié
ãîäèííèêîâèõ îáìåæåíü.
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