Drebotiy R., Stelmashchuk V., Shynkarenko H.
28 ISSN 2078-5097. Bicu. JIbsis. yu-ty. Cep. npuksa. marem. ta ind. 2023. Bun. 31

UDC 519.6 doi: 10.30970/vamn.2023.31.00000

FINITE ELEMENT ANALYSIS OF GREEN-LINDSAY
THERMOPIEZOELECTRICITY TIME-DEPENDENT
PROBLEM

R. Drebotiy, V. Stelmashchuk, H. Shynkarenko

ITvan Franko National University of Lviv,
1, Universytetska str., 79000, Lviv, Ukraine
e-mail: roman.drebotiy@Ilnu.edu.ua, vitalii.stelmashchuk@lnu.edu.ua,
heorhiy.shynkarenko @lnu. edu.ua

On the basis of Green-Lindsay thermopiezoelectricity model with so-called “relaxation
time”-parameters, which influence on the way of interaction between mechanical, electrical
and thermal fields in pyroelectric materials, we formulate initial boundary value problem
and the corresponding variational problem in terms of vector of elastic displacements, elec-
trical potential, and temperature increment. We derive the respective energy balance law
and perform energy estimates of the solutions of the variational problem. Using the latter
the well-posedness of the variational problem is proved. Based on finite element method
and Newmark scheme the numerical scheme is developed for approximate solution of this
problem. The unconditional stability of the constructed time integration scheme is proved.
Finally we show the results of the numerical experiment which demonstrates the influence
of the values of “time relaxation” parameters of Green-Lindsay model on the obtained so-
lution.
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1. INTRODUCTION

Nowadays various mathematical models of behaviour of pyrolectric and piezoelectric
materials are in place. The classic one is the linear thermopiezoelectricity model proposed
by Mindlin [10] and then comprehensively studied by Nowacki [11]. However, that theory
has a significant drawback because it assumes infinite speed of heat propagation wave
in the material. To overcome it, Green and Lindsay [7] proposed a modified theory for
thermoelasticity problem where heat conduction equation is considered to be hyperbolic
by introduction of two so-called ‘“relaxation time’-parameters. Chandrasekharaiah [6]
extended that approach to the linear thermopiezoelectricity model.

Apart from Green-Lindsay theory of generalized thermoelasticity, there exists a set
of other theories, namely Lord-Shulman, Chandrasekharaiah-Tzou, Green-Naghdi, etc.
The effect of the “relaxation time” parameter of Lord-Shulman theory in piezoelectric
materials has been studied in works of Ashida&Tauchert [2], [3]. Bassiouny& Youssef [4]
have studied a two-temperature generalized thermopiezoelasticity of finite rod using
Laplace transform method. Kuang [9] considered the application of variational prin-
ciples for generalized dynamical theory of thermopiezoelectricity. More recent works of
Zenkour et al. [17], Sharifi [12] are dedicated to problems of Green-Lindsay thermoe-
lasticity. Shivay&Mukhopadhyay [13] show the application of finite element method for
Green-Lindsay thermoelasticity problem.

© Drebotiy R., Stelmashchuk V., Shynkarenko H., 2023



Drebotiy R., Stelmashchuk V., Shynkarenko H.
ISSN 2078-5097. Bicu. JIbBiB. yu-ry. Cep. npuka. marem. ta iud. 2023. Bun. 31 29

In Stelmashchuk&Shynkarenko paper [15] Lord-Shulman theory of thermopiezoelec-
tricity for dynamical problems was investigated. The Green-Lindsay model of thermoe-
lasticity have been extensively studied in work of Chyr&Shynkarenko [1]. Then in arti-
cle of Stelmashchuk&Shynkarenko [14] forced vibrations of pyroelectric materials under
Green-Lindsay theory were studied. In the current article we extend the investigation
of Green-Lindsay thermopiezoelectricity problem done in [14] by considering an initial
boundary value problem for Green-Lindsay model. Similar techniques as in the work [15]
are applied in this paper.

In section 2 the initial boundary value problem of Green-Lindsay thermopiezoelectric-
ity is formulated. Section 3 is dedicated to construction of the corresponding variational
problem. In section 4 we prove the well-posedness of the constructed variational prob-
lem. Section 5 describes how Galerkin semi-discretization allows us to build a Cauchy
problem for solving this variational problem. Section 6 is dedicated to time integration
scheme. Section 7 contains a proof of stability of the time integration scheme. Section 8
shows the results of the numerical experiments. Finally, in section 9 the conclusions are
made.

2. PROBLEM STATEMENT

We will set up the initial boundary value problem of Green-Lindsay thermopiezoelec-
tricity just like it was done in the article [14].

Consider a bounded connected domain Q of points z = (z1,..,74) € R? with
Lipschitz-continuous boundary 02 = TI' that defines the pyroelectric specimen. Let
n = (n1,...,nq) be the unit outer normal vector, n; = cos(n,z;). We also consider a
time interval [0,7],0 < T < 4o00. Just like in classic thermopiezoelectricity problem,
our goal is to find a vector of elastic displacements u = {u;(z,t)}L;, electric potential
p = p(x,t) and temperature increment 0 = 0(x,t) which satisfy the following system
of partial differential equations in © x (0,7 (here and everywhere below the ordinary
summation by repetitive indices is expected):

pui —0ijj = pfi, (1)
D;v,,k + Jk,k - 0, (2)
p(ToS" — w) 4 ¢ii = 0. (3)

In fundamental equations (1)—(3) by prime symbol ' we denote a partial differentiation
by a time variable. The aforementioned expressions (1)-(3) are equation of motion, dif-
ferentiated Maxwell’s equation and heat conduction equation respectively. The notation
0;; is used for a stress tensor which is defined by the following constitutive equation:

Oij = Cijkm[gkm — apm (0 + 10")] — ekij B + aijkm‘?;cm' (4)
Constitutive equation for electric displacement Dy:
Dy = epijeij + XemEm + m(0 +116). (5)

And the entropy density S is defined by:

Py
To

pS = CijkmQrmEij + T Er 4+ (0 + to8)'). (6)

Here in the constitutive equations (4)—(6) the parameters t; > to > 0 are of time
dimension and were firstly introduced by Green and Lindsay in [7] for the classic heat
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conduction problem to resolve the problem of infinite speed of heat propagation wave.
These parameters are also often referred in the literature as so-called “relaxation times”
or “relaxation time’-parameters. The values of these parameters are always taken very
small (less than 10710s). If we put ¢; = to = 0 we come to the constitutive equations of
the classic thermopiezoelectricity model.

Vector ¢ = {g;}¢_, is a heat flux in different directions and it is assumed to satisfy
the classic Fourier’s law:

g = —Xij0 ;.

Vector J = {J}¢_, defines the electrical current density. We also assume that the
electric current that runs through the pyroelectric specimen satisfies standard Ohm’s
law:

Strain tensor € = {exm}{,,—; and electrical field vector E = {E,}{_, satisfy the
equations:

Ekm = Ekm () = 5 (Uk,m + Um. k),
Ek = Ek(p) = *p,k-

Here and elsewhere in the problem statement a comma in the subscript means a partial
derivative by a spatial variable, i.e. g = 0g/0xy.

Notation p is a mass density of pyroelectric material, ¢, is its specific heat and Ty
is a fixed uniform reference temperature of the specimen. Vector f = {f;}%, defines
mechanical volume forces and w represents volume heat forces. Tensors {aijkm} and
{cijkm} describe the viscosity and elasticity properties of a pyroelectric material and
satisfy common conditions of symmetry and ellipticity. Notation {e;;} is a piezoelectricity
coefficients tensor with symmetric properties:

€kij = €kji-

Coefficients zim, Xkm, Aij, Cem determine the symmetrical and elliptical electric con-
ductivity, dielectric susceptibility, heat conductivity and thermal expansion coefficients
correspondingly. Notation 7 defines a vector of pyroelectricity coefficients that satisfies
the inequality [11], [14]:

XkmYkYm + 2mkye + pevs? 2 0 VE yy € R. (7)
The boundary conditions for mechanical field are [14]:

u; =0 on T, x[0,T], T'y CT,mes(Ty,) >0,
0Ny =0; on ', x [O,T],FU = F\Fu

The boundary conditions for electrical field are [14]:

p=0 on T,x][0,T], I', C T ,mes(Tp) >0,
[D;—i—Jk]nk:O on FdX[O,T], I';crT, l“pﬂl“d:@

J D}, + JiJngdy=1 on T.x[0,T], Te=T\(TqUT,),
Fe

Er(p) —ngEm(p)nm =0 on T, x[0,T].
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The boundary conditions for heat field are [14]:

{ =0 on Tyx[0,T], [y CT,mes(Ty) >0, -

gni=¢ on I'yx[0,T),T,:=T\T,.

To finalize the formulation of the initial boundary value problem of Green-Lindsay
thermopiezoelectricity all the aforementioned equations are complemented by the initial
conditions:

Uli—o = uo, U'|t=0 = vo,plt=0 =po, Olt=o =6 in Q.

3. VARIATIONAL PROBLEM STATEMENT

Let us introduce the spaces of admissible elastic displacements, electric potentials and
temperature increments

V={veH' Q] v=0 on I',},
Qz{peHl(Q)|p:0 on I'y, p=const on Fe},
Z={¢ec[H(Q)]£=0 on I'p}.

Here H™ () is a standard Sobolev space.

We will also denote ® = V x Q x Z and its dual space ® =V’ x Q' x Z'. Besides, we
will use the Lebesgue spaces L2(0,T;®) and L?(0,T;®'). The space L%(0,T; ®), where
® = ® or ® = &', means that a function of two variables (z,t) to be the element of
that space has to be square integrable by variable ¢ via Lebesque integral over the time
interval [0, T] and regarding the integration by space variable x the function must satisfy
the restrictions of the corresponding space ®. Then the initial boundary value problem
of Green-Lindsay thermopiezoelectricity defined in the previous section can be rewritten
in the following variational formulation:

given o = (uo, po,0o) € ®, v € [L*(Q)]4, 010 € L*(Q)
and (I,7,p) € L*(0,T; ®');

find ¥ = {u(z,t), p(x,t),0(x,t)} € L?(0,T;®) such that
m(u”(t),v) + a(w'(t), v) + c(u(t), v) — e(p(t), v)—
=y(0(t) + 6 (t),v) =< I(t),v >,

9@’ (t),q) +e(g, v () + 2(p(t), q) + (0" (t) + 110" (¢),q) =<r(t),q >, (9)
8(9'(75)4-7509”(75),5)4- k(0(t),€) + (&, p'(t)+

+y(& W' (t) =< p(t),§ > Ve (0,17,

m(u'(0) — vo, 11) =0, c(u(0) —up,v) =0 Yov eV,
9((0) —po.q) =0 VgeQ,

s(6(0) — 600,&) =0, s(0'(0) —610,) =0 VEe€ Z.

In the aforementioned variational problem statement (9) the following bilinear and
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linear forms are used:
m(u,v) == [ puvide = [ pu - vdz,
) Q
a(u,v) := [ aijpmeij(w)erm(v)de,
o)
c(u,v) == [ cijrmeij(w)erm(v)de,

Q
<lv>= fpfividx—f— f Tivdry, (10)
Q F(f

(&) = [ &cijrmmei;(v)de,
Q

e(q,v) == [eri;jEx(q)eij(v)dz Vu,v €V,
Q

9(p,q) = S{ Xkm Bk (p) Em (q)dz,

z(p,q) = (fz 2om B (p) Em (q)dz,

<r,q>=1Iqr,,

m(&,q) = [ EmEr(q)dx Vp,q € Q, (11)
s(6,¢) = ?cuTgl%dx,

k(6,€) ZTO—lAijo,ig,jdx,

<y & >i= S{To—lwgdx +Ff Ty 'gédy V¢, 0 € Z.

q

4. ENERGY BALANCE EQUATION

To simplify things instead of (8) we will use the following uniform boundary conditions
for heat field:
6=0 on Tyx][0,T], Ty CT,mes(Ty) >0,

qin; = 0 on Fq X [O,T},Fq = F\Fg.

Thus the linear form < p, £ > used in variational problem statement (9) will be simplified
to:

<, & >i= /To_lwfda:.
Q

This assumption allows us to estimate the linear form < u, €& > using Cauchy-Schwartz
inequality using the norm of L?(2) space, that is:

| <& > <lpllex - Il 22 -

Here ||/|].« is a norm of linear form g in the space dual to L?(f2).

Also, in our further analysis we will assume a strict inequality ¢; > %o instead of
t1 > to as it was in problem statement.

Note that bilinear forms in (10)—(11) admit a clear physical interpretation and conti-
nuity and ellipticity properties of some of them allow us to introduce the following energy
norms:

vl = m(v,v), [[o][Z = c(v,v), []llz = a(v,v) YveV,
lall; = 9(g:9), lall? = 2(¢,9) Vg€ Q,

ICIIE = k(¢ Q) V¢ € Z,|[CI1Z = s(C,¢) V¢ € L*(Q).
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Let us assume (9) admits a solution ¢ = (u,p,0). Then after substitution ¢ =
(v,q,€) = (W', p,0 + t10") into equations of (9) and after addding them up we receive the
following integral identity:

34 U @OIIZ + @2 + [[p@]F + 27(0(t) + 110'(t), p(t)) + ta[|0(D)]IF]
+ [l @O1Z + lpO112 + O + 50 () + 08" (t), 0(t) + 110/ (1))] (12)
=< L/ (t) >+ <rpt) >+ < pb(t)+t.60(t) > Vte (0,7
Let us perform the following transformations with the term s(6'(t)+to0" (t), 0(t)+1t16'(t)):
$(0" + 100", 0+ 110') = 34110 + t0"||2 + (0" + o0, (t1 — to)0) =
= Mtl\9+to@’|l2 (tr = to)[10/]12 + 5 5 (t — to)tol0]]2 = (13)
= 54 [0+ 10012+ (t1 — to)toll’]|2] + (tx — to)l10]]3-
Then substitute (13) into (12) and receive:
s U @OI5 + @2+ [[p@]5 + tl[0O1F +110() + tod” (OI3+
+(tr — to)tol 0" ())[[3 + 2m(0(2) + 020" (2), p(1))] +

+ [l @O + IO + @17 + (t1 — to) l6"]12] =
=< Lu'(t) >+ <rp(t) >+ < udt)+t10'(¢t) > Vie (0,7

(14)

After integration of (14) over any time interval [0,¢] and utilizing the initial conditions
of the problem we obtain:

5 Ul @E, + a2+ [[p@)][2 + ta][0)]17 + [10(t) + tod (2)]]2+
+(tr — to)toll0' (1)|I2 + 27 (6(t) + 16/ (), p(t))] +

Of [/ (112 + [[p@)I2 + 11017 + (¢ — to)l10]12] dr =

3 [lvol12, + [luol |2 + [Ipol 2 + 1116012 + ||60 + tob10l|2+

+(t1 — to)tol|610l|Z + 27(6o + t1610, p0))] +

+ [[< L/ (7)) >+ <rp(T) >+ < p,0(r) +t10'(7) >]dr ¥Vt € [0,T).

o o

The term 27 (6(t) + t16'(¢),p(t)) > 0 because of the inequality (7). Therefore we can
introduce the notations:

@112 = 1/ @17, + [u@2 + (PO + 2 10@E + [10(2) + tob” (£)]13+
+(t1 — to)toll0" ()[[Z + 2m(0(t) + 110/ (1), p(2)),
@17 = [l @O11Z + [l + [10@)IE + (0 = to)l|0" @I (17)

Then the obtained energy balance equation for Green-Lindsay thermopiezoelectricity (15)
can be represented as:

(16)

3l () ||2+f|||1/) I1Pdr = 31l¥(O)|*+
(18)

+ [[< L/ (7)) >+ <rp(r) >+ < p,0(r) +t10' (1) >]dr ¥Vt €[0,T).

o &
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Here the term ||1/(t)||?> defines a total energy of the pyroelectric specimen. The energy
¢

dissipation is determined by the term [ |||1(7)|||*dr.
0

Now we will use an inequality
2, 1.9
ab < ea +Eb Ya,be R, Ve >0

and Cauchy-Schwartz inequality to estimate the terms in the right part in the energy
balance law (18). Therefore, the following inequalities are held:

t t
1
[ <t > ar<g [0E -+ dr (19
0 0
1 t
/<r,p >dr <5 [ [IrlE + (I (20)
0 0
t t
[ < 0(r) + 020 (7) > dr < [ ([l 10 &+l llea 10/ dr <
0 1 t 0 t t2 (21)
< 5 ] [l + ot 2] ar + 5([ [+ = ol
Here and everywhere by symbol || - ||« we denote the norms in dual spaces V', @’ and Z’

respectively. Substituting (19)—(21) into energy balance law (18) we receive:

1

2

b(t) H2+f|\|¢ IPdr < 5l )1+

|%(
1 t 1 t
+§L0f[lll\|2+llu ]d7+50f[||r||2+llp (7)I[2] dr+
t t
+%0f[llull2+ll9 ]d7+%0f ||M|| + (t — to)[|0(7)|Z| dr
vt €10,T].

Taking into account the definition |||¢)(7)]|||?, after transformations we obtain:

sl®IP + 3 f[llu H2+|Ip()H2+H9(t)\l2+(t1—to)||9’(t)\|§}d7§

< O + 3 {102+ 12 + 1l + Dl ar vt < .71
Having divided the latter by % we receive:

[19(#) ||2+f|||1/f I[P <
> (22)

t
e R X!
0

< |l (O)[* + f{lllllf+lrli+lluli+
0
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The estimation (22) shows that solution continuously changes depending on the input
data of the variational problem. Let us denote

Ie@IllE = @)1 +£|¢(T)I|I2dT vt € [0,T].

Then the expression ||[1(¢)|||% defines so-called energy norm of the solution of the vari-
ational problem.
Proposition 1. The estimation (22) is valid if the input data of the variational
problem (9) satisfy the following conditions:
vo € [L*(Q)]%,uo € [H' ()],
Po € H! (Q), 0y € L2(Q),910 S LQ(Q), (23)
(L7, p) € L*(0, T @").

Moreover, a solution v = (u,p,0) of the problem (9), if one exists, is characterized by
the following regularity inclusions:

u' € L0, T; [L2(Q)]H) N L2(0,T; V), ue€ L>0,T;V)N L20,T;V),
p € L>®(0,T; L*(Q)) N L*(0,T5 Q), (24)
0’ € L>(0,T; L*(Q)) N L*(0,T; Z), 6 € L>=(0,T;Z)NL*(0,T; 2)

and stability inequality

t t2
@13 < )12+ [ {112+ el + ul? + ——Ilul|%| dr
0 t1 —to (25)

vt € [0,T).

Proof. The conditions (23) are defined in the variational problem statement (9) and
are necessary for the boundedness of the term %|4(0)||* of the energy balance equation
(18). The regularity inclusions (24) provide us the boundedness of all other terms in
the energy balance equation (18). Finally, the stability inequality (25) is proved via the
above mentioned procedures. O

Proposition 2. A solution 1) = (u,p,8) of the problem (9), if one exists, is unique.

Proof. By contradiction. Suppose there exist two different solutions ¢4 () and 5(t) of
the problem (9). Then their difference ¥(t) = 1)1 (t) —1)2(t) # 0 satisfies the homogeneous
equations of the problem (9). Therefore, from the inequality (25) we have:

@Il <0 vt e[o,T],

which contradicts with our assumption that ¥ (¢) # 0. O

5. FINITE ELEMENT SEMI-DISCRETIZATION

Let us define in the space ® =V x @ X Z a sequence of finite-dimensional subspaces
O, =V, x Qn X Zp, such that dim ®;, — oo when h — 0 with the following density

properties:
Vo € & N[HFY Q)42 k> 1,

d¢pp, € @, and C = const > 0 such that (26)
16 = dnllm.a < CRFF=[6]lk11,0,0 <m < k.
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Here k is the greatest degree of the polynomial that approximates the unknown solution
(it will be precisely defined by the base functions of ®3). The norm || - ||;m.q is @ norm
in a standard Sobolev space H™(2). Also, here and everywhere below the symbol C
defines different positive constants, values of which do not depend on the solutions of our
problem. For each fixed h > 0 a solution vy, = (up, ppr,0r) of the problem

given ¢ = (ug, po, o) € Pp, vo € Vi,010 € Z, and (1,7, p) € L*(0,T;®},);
find o = {up(z,t), pr(z,t),04(z,t)} € L*(0,T; @) such that
m(uy(t),v) + a(uy,(t),v) + c(un(t),v) — e(pn(t), v)—
—y(On(t) + t105,(t),v) =< U(t),v >,
9P (1), @) + e(q, up, (1) + 2(Pa(t), q) + 7 (05, (t) + 1105 (1), @) =< r(t),q >,
s(0},(t) + o8}, (1), ) + k(O (1), &) + (&, ), (1) +
+y(& (1) =< u(t),€ > Ve (0,T],
m(uj, (0) — v, v) =0, c(up(0) —up,v) =0 Vv €V,
9(Pn(0) —po,q) =0 Vg € Qp,
$(0r(0) —00,&) =0, s(0;,(0) — 010,§) =0 VEE€ Z,

(27)

we will call a semi-discrete Galerkin approximation of the solution ¥ = (u,p, ) of the
variational problem (9). The constant h will be called a space discretization parameter
of the problem (9).

Let us fix some bases {v;}, {¢;}, {&:} in the approximation subspaces V;, @ and Zj,
respectively. Those bases we will select by means of finite element method. Then our
unknown solutions might be represented as follows:

dimVy,

up(z,t) = Z Ui(t)vi(z),
dlmQh

pu(z,t) = > Pi(t)gi(z), (28)
dimZ,

Op(z,t) = 5. 0;()&(x).

=1

Then by the Galerkin procedure we obtain a Cachy problem for determining the unknown
coefficients U(t) = {U;(t)}, P(t) = {P;(t)} and O(t) = {©;(¢)} of approximations up, pp,
and 0y,:

MU"(t) + AU (t) + CU(t) — ETP(t) — YT(O(t) + 110 (t)) = L(t),
EU (t)+ GP' (t) + IT (0" (t) + 110 (t)) + ZP(t) = R(t),
YU (t) + TP (t) + ST(O'(t) + t,0" (1)) + KO(t) = F(t), (29)
MU' (0) =V°, CU(0)=U",
GP(0) = P°, S(0(0) +t,0'(0)) = 6° + t,01°.

Here the coefficients of matrices M, A,C,E,Y,G,1I1, Z, S, K in the system above are cal-
culated by the corresponding bilinear forms (10)-(11) applied to the base functions of
the finite-dimensional subspaces V},, @ and Z, for example, M = {m;;} = m(v;,v;),
Y ={v}t =&, v;), L= {m;} = 7(&,q5), E = {es} = e(q;,v;) (in general, a matrix
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denoted by some capital letter is formed by a bilinear form denoted by the respective
lowercase letter). The vectors L(t), R(t), F(t) are formed using the expression below:

L(t) = {< 1), vi >}, R(t) ={<r(t),q: >}, F(t) ={<p)& >}

and vectors that represent the initial conditions of the problem are calculated via expres-
sions:

Vo= {m(v()vvi)}’ Ul = {C(UO’Ui>}> PO = {g(p07Qi)}»
00 = {5(60, &)}, ©'0 = {s(610,&)}.

Since matrices M, A, C, G, Z, S, K are positively defined for each h > 0, the
Cauchy problem (29) has a unique solution which in its turn defines a semi-discrete
Galerkin approximation ¢, = (un,pp,0r) in a form(28). Moreover, taking into account
Proposition 1 from the previous section we can formulate the following theorem.

Theorem 3 (about well-posedness of semi-discretized variational problem of Green-
Lindsay thermopiezoelectricity).

Let the input data of the variational problem (9) satisfy the conditions (23). Then
for each h > 0 there exists a unique solution ¥y, = (un,pn,0)) of the problem (27), such

that
2

t

t
H\wh(t)llléS\Iwh(0>ll2+g’ ||l\|3+||r||i+||ulli+t1jtol\ulli* dr
vt € (0,T).

Proof. The existence implies from the aforementioned procedure. The uniqueness is
proved by Proposition 2 of the previous section. [ The above mentioned results let us
to formulate the following theorem.

Theorem 4 (about well-posedness of variational problem of Green-Lindsay ther-
mopiezoelectricity). Let the input data of the variational problem (9) satisfy the condi-
tions (23). Then the variational problem (9) has a unique and stable solution ¢ = (u, p, 0)
that is characterized by regularity conditions (24) and stability conditions (25).

Proof. Implies from the density properties of the finite-dimensional subspa-
ces (26). O

6. DISCRETIZATION IN TIME

To complete the discretization of the Cauchy problem (29) we will consider a uniform
partition of the time interval [0, T] by nodes t; = jAt,j = 0,1, ..., Ny, where Ny is some
fixed number and T'= NpAt. Then we will apply a standard Newmark scheme [5], [§]
for the hyperbolic equations of motion and heat conduction with parameters 7, 5 and
a generalized trapezoidal rule [8] with parameter oo =  for the parabolic differentiated
Maxwell’s equation.

The nodal approximations of elastic displacement U7*! and its velocity U+ accord-
ing to the Newmark scheme are defined by:

U = U3+ A+ A [(1 - 28017 + 2B0+]

o (30)
Ui+ = 09 4 AL[(1 =)0 + 70711

where U7 is an approximation of the mechanical acceleration at node t;.
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The nodal approximations of electric potential P/*! according to the generalized
trapezoidal rule are calculated as:

Pitl — pi 1 At [(1 )P+ ijﬂ} 7 (31)

where P7 is an approximation of the velocity of electric potential at node ¢;.
The nodal approximations of temperature change ©7*! and its velocity ©77! accord-
ing to the Newmark scheme are defined by:

O+l — 07 + AtO7 + AL [(1 —2B3)67 + 2ﬁéj+1}

. (32)
O = &1 + AL[(1-7)8 + 487+,

where ©7 is an approximation of the acceleration of temperature increment at node t;.
Combining those approximations (30)—(32) with the Cauchy problem (29) we come
to the following numerical scheme:
given At >0,t; >t >0, 1>~7>0, 2>p>0, (U7,U7,P?,07,09);
find (U7t!, Pi+1,@7*1) such that
M + AtyA + A2BC —AtyET  —(Atyty + A2B)YT

AtyE G+ AtvZ (t1 + Aty)IIT X
AtyY II (to + Aty)S + At?BK
{rit List — AUFH — OO 4+ ETPI+ 4 YT (@341 4 4,65+1]
x| Pt | = | Ry, — BUI+L - ZPitl _TITOIH :
(CIAR Fip1 — YUI*! — SO+ — K@i+

where we have used predictors
Uit = U+ AtU7 + A2 (1 — 28) 079,
Uit = i + At(1 — )07,
Pt — pi 4 AL(1 — 7) P,
Ot = 07 + AtOI + AE(1 - 28)67,
Gt = & + At(1 — 7)&
and then the following correctors to compute the final values at time step 7 + 1
Ui+l = UJ+1 + AtzﬁUJ-l-l
[7i+1 — [ri+l + AtyUIH,
pitl — pitl _,_Ampjﬂ’
Qitl = @It 4 A2pEI T,
@7+1 @H—l —|—At"y@7+1
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7. PROOF OF TIME INTEGRATION SCHEME STABILITY

For pure hyperbolic problems the Newmark scheme is known to be unconditionally
stable [5], [8] if ¥ > 1 and the selection of parameters v = % and 3 = 1 gives the highest
rate of convergence (equal to 2). For pure parabolic problems the generalized trapezoidal
rule is also unconditionally stable [8] if v > % Therefore we would like to prove that in
our case of the system of coupled PDEs (which is not pure hyperbolic or parabolic) the
numerical scheme defined by (30)—(33) is unconditionally stable for v = 1 and 8 = 1.

For this selection of parameters v and [ the accelerations of elastic displacement Uits
’ o > ; L
and acceleration of temperature change ©7%2 and velocity of electric potential P/*32
are assumed to be constant within the time interval [t;,t;41]. Therefore the relations
(30)-(32) for approximation of the values of unknowns at time step j + 1 reduce to the
following;:
Uit = Ui 4+ AUz,
Ot = 07 + A&t
Pitt — pi 4 AtPi+h,
Ui+t = U7 + AtUI+ 3,
Ot = §J + At&I*3,
Uit = Uits  LAtUT + LAR07+3,
Since we can do the discretization by space variables and by time variable in any order,
for further proof let us consider the variational problem of Green-Lindsay thermopiezo-

electricity (9) in the middle of the time interval [t;,t;41] and let us do the necessary
substitutions instead of admissible functions to obtain the energy relations:

m(itE, @) + a0t E) 4 e(uitE, W) —e(pite, Wit ) —

—(07FF 4 1,03 I TE) =< P T >,

gt P E) fe(pi T W) 42 (pT R pI ) 4 (072 £ 11672 pite) =

=< rj+%’pj+% >, (35)
SO 4 tfITE, 75 4 169 3) 4+ k(073,095 4 4,691 3)+

7 (09F3 44,0913 pITE) 4 (075 41,672 @ITE) =

=< WTE, 00t p 10 >

Here the notations y and ¢ denote the velocities and accelerations of the corresponding

variable y (just like they were described in the previous section for semi-discretized

solutions). Besides, the superscript j + % always means the value of the respective

tittit
2

function or linear form at the middle of the time interval ¢, 1= , for example,

i1 i1
wta = u(tj_,_%), itz = l(tj_,’_%).

It is worth to note that the relations (34) remain valid for non-discretized by space
variables v/, 71, pit1 itl 9i+! a5 well. Therefore, for every variable y and every
bilinear form b(-, -):

j+1_yj

s 01 a1 Jj+1 J . . . .
by t2, gt e) = b ) = Sab(y T 4y T — ) =

= oh by ) — by, y))] = & [y THIE = |1y ]13).

(36)
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In addition notice that

R(O7F5 4 00 ) (@0 4t ) =
9J+1_0_/ GitL_gi pitlipi 9it1lgi oitlpgi pitl_pd
( P P )+ ( + + 4 + ZD P ):
1

W—a; 2 2 At
= a7 (9J“+t 67+ pitt) — m(67 +tlef pﬂ“)ﬂ(@ﬂ“ + 1671 pl)—
( 1107, p7) + (0T 4 407 pI ) (67 + 1,67, pI ) —
—m (07 + 1167 pT) — (09 + 1167, p7)] =
= sz [2m(67F! 4 10771, pItY) — 2w (07 + 1167, p7)]

(37)

and
S(775 4 tofIHE, 0975 4,03 =
= (093 4 1of7 5, 0745 410071 F) + (ty — to)s(07FF + tofIHE, 097 3) =
= sxgs(07T + 0B, 07 4 t0fIH) — 5(67 + 007,67 + to09)]+
+akgto(ts — to)[s(67, 0771) — (67, 07)] + (11 — to) (772, 67F ).

(38)

Therefore, after summing up the equations from (35) and using the expressions (36)—(38),
we obtain:

‘ Ll

[m(@ Y, @+ — m(ad, @) + gy le(ui Wit - e(ul ul)]+

2At

+axglo® T ) — g7, 9] + oxpta[R(07F1,67FY) — K(67,07)]+

iy [S(OTTL 4 107 9IHL 4 100TTL) — 5(67 + 1067, 07 + 1067+

+aagto(ts —to)[s(67F", 071) — s(67,67)]+

bk Rm(0 4 1 G ) — 2 (09 + 1069, )]+ (39)
+a(@dtE, 4t E) 4 2 (pitE, pite )+
+h(BITE, 073 4 (ty —to)s(67F3, 4943 =

=< P30 tE > 4 < pItE pItE > o< s gitE 44673 >

Using the notations (16)—(17), the identity (39) can be rewritten as follows:
L2 — (|9 ]12] + |||t 3|2 =
szl = (1] + w72 ] (40)

=< UFE @0TE > 4 <pdFE pItE > 4 < It 00T 4467t >
Using the estimates for the linear functionals like in expressions (19)-(21) we obtain:

<PFEItE > 4 < It pitE > b < It 00 0013 ><

< it e e+ e + e
Applying the latest inequality to (40) we receive:
S 112 = (1912 + 12 <
< [ IR R e Bl )
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Let’s introduce a notation:

1 1 1 1 t2 1
||KJ+2\|f:Hlﬁzllf+||7’j+2||3+||uj+2llf+ﬁ|\uﬁ2l|3*~

Then the inequality (41) transforms into:
[P T2 = [197[7] + ||l 3]][2 < At||K7+]]2. (42)

Now let’s add up the inequalities (42) for j = 0,1,...,m, Ym =0,1,..., Np — 1:

m s 1 s 1
2 4 A ST I1P < (0017 + Ar S |[KITE|2, (43)

Jj=0 Jj=0

The inequality (43) shows that the solution 9™ *! obtained by the time integration scheme
for each node t,,+1,m =0,1,..., Ny — 1 is bounded, so the utilized scheme is stable.
8. NUMERICAL EXPERIMENTS

We consider a piezoelectric bar of length L = 10~8 m made of PZT-4 ceramics. The
behavior of the bar is examined during a very short time interval 7= 11.2-107'2 5. The
boundary conditions for temperature increment 6 are the ones that describe a ramp-type
heating of one edge of the bar while another one is kept at the initial temperature:

where ¢, = 107'% s and 6. = 293 K. The boundary conditions for both mechanical and
electric fields are of Neumann type:

oc=5=0N/m?on T, x[0,T),T, = {z =0} U{zx =L},
D+J)=0AonTyx[0,T],Tg={z=0tU{z=L}.

The initial conditions are taken to be zeros:

u(z,0) =0,
u'(z,0) =0,
YV € [0, L].
p(l', 0) =0,
6(x,0) =0

Thus, our numerical experiment reproduces the one described in the article [16] (where
actually Lord-Shulman model of thermopiezoelectricity is considered, but we can compare
results when the “relaxation time” parameters are small enough). So, we will take physical
coefficients of PZT-4 ceramics just like in [16]:
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p = 7500 kg/m?,

¢y =420 J/kg - K,
A=21W/m-K,

c=115 x 10° N/m?,
e=15.1C/m?,
m=-212x10"* C/K - m?
X =5.62x10"% C*/N-m?,

Also we will take
a=313x10"° K},
z2=5x10"2 Q1. m 1,

a=0m? 571,

Ty = 293 K.

¥ 120

= 1001

(=]

=

£ 80

(0]

5

S 60

£

(0]

S 40

3

g 12 4,=0.5-10"12

...... =1 =0.5-
g8 20 =0 127 ’ 13
£ . — = 4 =102,4=05-10"
Foo] — 4=10"2,#=05-10"
0.0 0.2 0.4 0.6 0.8 1.0
Timet, s le—11

Fig. 1. Temperature increment 6 at z = 0.3L depending on to and ¢;

However, the exact values of “relaxation time” parameters tg,t; are unknown for
majority of materials (including PZT-4 ceramics). But practical experiments show that
these values can vary between 10710 s for gases and 107! s for metals. Also, recalling
the condition that t; >ty > 0, in our experiment we will fix ¢t; = 107!2 s and show the
influence of ¢y parameter of the Green-Lindsay model by sequentially setting its value to
0.5-107125,0.5-1073 s and 0.5 - 10~ s,

For discretization in space we divide the interval [0, L] into N = 256 finite elements
with piecewise quadratic approximations. For time discretization we uniformly divide the
time interval [0, 7] into Ny = 1200 subintervals. Besides, we will take the parameters
of the time integration scheme v = % and 8 = % (the ones that provide unconditional
stability of the numerical scheme).

Fig.1 shows the temperature increment 6 varying in time at point x = 0.3L of the
piezoelectric bar when one can obviously see the impact of ¢y parameter on the received
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solution. Moreover, if tg = 0.5 - 107 s the solution is very close to the one of classical
thermopiezoelectricity problem and the one with a very small (7 = 10714 5) “relaxation
time” parameter of Lord-Shulman thermopiezoelectricity model, see [15] and [16].

9. CONCLUSIONS

The dynamical behaviour of the pyroelectric specimen have been studied under gener-
alized Green-Lindsay thermopiezoelectricity model. The initial boundary value problem
was formulated, transformed into the variational problem. After formulating the en-
ergy balance law the regularity conditions of the input data have been defined (quite
acceptable for practical applications), which allow us to prove the well-posedness of the
variational problem.

We have used similar technique as in the article [15] to construct a numerical scheme
for solving the variational problem of Green-Lindsay thermopiezoelectricity. It has been
proved that the constructed time integration scheme is unconditionally stable if its pa-
rameters are taken v = 1 and 8 = 1.

Finally, we perform the numerical experiment inspired by other researchers’ work [16]
and the obtained results show us the impact of the “relaxation time” parameters on the
solution of the problem.
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Ha ocmoBi momesi Tepmorn’ezoenexkrpuku I'pina-Jlingcess 3 tak 3BanmMu mapamerpa-
MH peJIaKCallil, fKi BIJIMBAIOTH HA XAPAKTEp B3AEMOAIl MEXaHiIHOI'O, eJEeKTPHUIHOIO Ta
TEIJIOBOTO TOJIIB ¥ HMipoeJeKTPUKaAX, C(POPMYIBOBAHO TOYATKOBO-KPAKOBY Ta BiANOBIIHY Tit
Bapiamiiiny 3amady i€l Mozesi B TepMiHaX BEKTOpA MPY>KHUX MePEMillleHb, €JIEKTPUIHOTO
MOTeHIiaTy, NPUPOCTY TeMIepaTypu. BuBeIeHO BiANOBiHe DIBHIHHS €HEPreTUYHOIO
basiaHCy Ta 3pO0JIEHO eHepreTUyHi OLIHKU PO3B’s3KiB Bapiamiiinol 3aga4ui. Ha niit nigcrasi
JI0BeJIeHO KOPEeKTHICTh Bapiamniiiuoi 3amadi. Ha 6a3i MeTony CKiHYEHHUX €JIEMEHTIB Ta
cxemu Hplomapka po3pobJIEHO YHCEIbHY CXeMy /[isi HaOJIMXKEHOrO pO3B’si3yBaHHs i€l
3aga4i. JloBeneHo 6e3yMoBHY CTiiiKicTh moOya0BaHOI cXxeMu iHTerpyBaHHs B 9aci. HaBeneno
Pe3yJIbTaTH YUCIOBOIO EKCIIEPUMEHTY, SIKHHl [1€MOHCTPY€ BILIMB 3HAYEHb [1apaMeTpiB pe-
nakcarii mogeni I'pina-Jlingcest Ha oTpUMaHUN PO3B’SI30K.

Knat04061 caosa: mipoesekTpudHuii edekT, TepMorn’e30eeKTpruKa, Moaens I pina-Jlingces,
MOYATKOBO-KpaiioBa 3ajatva, BapiamiiiHa 3a7a4da, KOPEeKTHICTh BapialliiHol 3a7adi, HAIMiB-
muckperu3aliss [ajnbopkiHa, MeToj CKiHYEHHUX ejleMeHTiB, cxema Hbromapka, cTifikicTb
YHCJIOBOI CXeMHU iHTerpyBaHHH B daci.



