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We consider the application of the genetic programming for solving a non-linear ill-
posed problem, namely for the reconstruction of the inner boundary of the annular planar
domain from the known measurement data of the harmonic function. The unknown bound-
ary is represented in a tree form, for which the �tness function is de�ned, as a selection
criteria for transition to the next generation. The �tness function is computed by solving
a mixed boundary value problem. In turn, the boundary-value problem is solved nu-
merically by the method of boundary integral equations using single-layer potentials and
the Nystr�om method for full discretization. To generate new individuals we use various
tree-speci�c genetic operators such as mutation, crossover and tree generation algorithms.
Di�erent algorithm con�gurations and values of the genetic parameters are included. The
proposed approach is numerically validated and the results of numerical experiments for
exact and noisy input data are given.

Key words: genetic programming, boundary reconstruction problem, Laplace equation,
boundary integral equations method.

1. Introduction

The genetic algorithm was primary introduced by Holland [12] as a search method
for the complex problems when there is no suitable numerical method. It is a stochastic
optimization algorithm, based on biological evolution principals. The algorithm man-
ages a population of chromosomes (each chromosome represents a possible solution to
the problem) and by applying the genetic operators to the chromosomes and using an
appropriate selection technique, the next population is built. In general, in the genetic
algorithm, each chromosome is represented by a bit string. If some data structure is used
for chromosome representation, the method is called an evolutionary algorithm. When
this data structure is a tree, the method is called genetic programming (meaning that
the chromosome can change or program its own structure). For more details in this �eld,
we refer to fundamental works [11,18].

The real-coded genetic algorithm [18] has been successfully applied to the inverse
ill-posed problems. The selection of the regularization parameter [20] or the initial ap-
proximation [7,8] are the main areas of the genetic algorithm application. Alternatively,
the algorithm can be used as a standalone iterative procedure in addition to some regu-
larization technique, see for example [17,19].

However, the application of genetic programming to the ill-posed problems is less
studied. Let us consider the application of this technique for the reconstruction of the
inner boundary of the annular planar domain. The problem widely used in impedance to-
mography, non-destructive testing and electrostatics [8,14]. Due to its importance, there
are already several works based, for example, on boundary integral equations method
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and iterative regularization, see, [9, 10, 13, 14], which makes it possible to obtain a su�-
ciently good reconstruction of the boundary. Usually, during iterative procedures, there
is a need to solve additional boundary value problems, for example, calculation of the
Fr�echet derivative, but in the approach of genetic algorithms it is not necessary. Also,
the real-coded genetic algorithm is used as a procedure to construct an initial guess of
the boundary, see [7,8], followed by application of classical methods. In this work we use
the genetic programming as a standalone iterative regularization procedure. In order to
get a more accurate solution at the end, the classic algorithm can be applied, when the
solution according to our method selected as the initial guess.

We focus only on the two-dimensional double connected domains and consider the
Laplace equation as a governing equation, but the proposed method can be extended to
the other domains, higher dimensions or equations, as it has been successfully done for
the classical numerical methods [3, 4, 6].

Let us formulate the studied problem more precisely. We consider the doubly con-
nected domain D, bounded with the two simple (without self intersections) closed curves
Γ1 and Γ2, that belongs to C

2 class. Moreover, the curve Γ1 lies in the interior of Γ2.
An example of the domain con�guration is given in the �g. 1.

Fig. 1. Example of the domain D

Firstly, let's consider the direct problem. Let u ∈ C2(D)∩C(D̄) be a solution of the
Laplace equation

∆u = 0 in D, (1)

and function u satis�es the corresponding boundary Dirichlet and Neumann conditions

u = 0 on Γ1 and
∂u

∂ν
= g on Γ2, (2)

where g ∈ C1(Γ2) known function. Here by the ν we denote the outward unit normal
to Γℓ, ℓ = 1, 2. Existence and uniqueness of the solution of the mixed boundary value
problem is well established, see, for example, [13]. Note that we can formulate the
problem in term of weak solution, when function g belongs to Sobolev trace space, for
more details see [16].

Let's consider the inverse problem that consists on reconstruction of the shape of the
interior curve Γ1 from the measurement (2) with g ̸= 0 and the additional Dirichlet data
on the boundary Γ2

u = f on Γ2, (3)
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where f ∈ C(Γ2) known function and f ̸= 0. Well known that there exists only one
representation of Γ1, for more details we refer to [3, 13]. The solution of the formulated
problem (1)-(3) doesn't depend continuously on the input data, thus we have the case of
non-linear ill-posed problem.

The unknown boundary Γ1 is represented in a tree form (for simplicity we assume
that it belongs to 2π periodic starlike curves). For each tree-chromosome we de�ne the
�tness or cost function that is used as a selection criteria for transition to the next
population. For the computing of the �tness function we are going to numerically solve
the well-posed boundary value problems. To do this, we represent the solution in a form
of a single-layer potentials with unknown densities. Matching the given data, a system of
boundary integral equations is obtained, which, in turn solved by the Nystr�om method.
The method of boundary integral equations is widely used for solution of well-posed or
ill-posed boundary value problems, see [5, 13].

For the outline of the work, in the section 2 we introduce the genetic programming as
the main iterative algorithm to obtaining a solution of the reconstruction problem. In the
section 3 we use the boundary integral equations approach and discretization algorithm
to formulate the error function that is used as a �tness function of the chromosome. The
con�guration of the algorithm and results of the some numerical experiments are given
in the section 4.

2. Genetic programming for the minimization problem

Genetic programming is a class of the genetic algorithms when the chromosome is
represented in the tree form. In other words, it's a stochastic optimization technique that
models the process of the evolution and manages the population of the tree-chromosomes.
Following [11, 18], the algorithm starts with a randomly generated population of tree-
chromosomes. Next tree-speci�c genetic operators are applied to candidate solutions
to create a new chromosome. Moreover, for the each chromosome, �tness (sometimes
called cost) function is de�ned. Based on �tness function, for each population the �ttest
solution transits to the next population, and bad candidates die.

Let's apply the genetic programming to the problem (1)-(3). In order, let's reformu-
late the problem as a minimization problem. Assume, that the unknown boundary Γ1

belongs to the starlike curves. Thus, Γ1 has following representation

Γ1 = {x1(t) = (x11(t), x12(t)) = r(t)(cos t, sin t), t ∈ [0, 2π]} , (4)

where r : IR → (0,∞) is a 2π periodic unknown function, representing the radial distance
from the origin.

The problem (1)-(3) consists of the �nding of the unknown function r, that minimize:

J(r) = ∥u− f∥L2(Γ2) → min, (5)

where u is a solution of the well-posed mixed boundary value problem (1)-(2), for Γ1

given by (4). The function J is a �tness function of the tree-chromosome. In order, to
calculate the J we need to solve a separate problem. This could be done by the genetic
algorithm as well, but to obtain a more precise �tness, we apply the classical method of
the boundary integral equations to �nd the function u and compute J . The algorithm
for the numerical solution of the (1)-(2) is shown in the next section.

Let's describe the genetic programming in more detail. Let F be a set of prede�ned
functions, T � set of the prede�ned terminals with Ti ⊂ T be a set of the values and
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Tv ⊂ T � set of the variables. Let's note by the v a tree-chromosome which represents
a possible candidate r̃ for the function r in the tree form. The �tness function of the
v = v(r̃) is obtained from the (5), where for the direct problem (1)-(2) the function r̃ is
used.

There are several restriction to curves r̃, such as no self intersection, being inside
outer curve Γ2 and no sharp corners. To detect sharp corners we use curvature that
calculated as follow

κ =
|x′

11x
′′

12 − x
′

12x
′′

11|
(x

′
11

2
+ x

′
12

2
)

3
2

∥r̃∥.

There ∥r̃∥ is used for normalizing curvature coe�cient for di�erent curve scales.
To create new chromosomes we use genetic operators: mutation and crossover, see

[18].
Mutation operators

Subtree mutation chooses random node (except root) and replace it with randomly
generated sub-tree, an example is given in the �g. 2.

Size-fair sub-tree mutation same as previous one, except it generates sub-tree to be
replaced in such a way that tree does not exceed maximum (minimum) prede�ned
height.

Terminal mutation selects random leaf and replace it by the new terminal.

Shrink mutation replaces a randomly chosen sub-tree with a randomly created termi-
nal.

Node replace mutation selects one node randomly and replace it with the node of
the same type.

Fig. 2. An example of the mutation operator

Crossover operators

Crossover is a classic genetic operator that takes random sub-tree (can be just a leaf)
in each of the parent and swap them, see an example in the �g. 3.
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Size-fair crossover same as previous, except it restricts choosing nodes that can over-
�ow maximum tree height.

Common point crossover �nds the common points of two trees (the example is shown
in the �g. 4) and apply crossover for randomly selected pair of nodes.

Uniform crossover similar to the previous method, �nds the common nodes, but swaps
each one with coin toss probability. If a node to be swapped belongs to the common
region and is a function, then the root sub-tree is also inherited.

Fig. 3. An example of the crossover operator

Fig. 4. An example of the uniform and one point crossover point choosing

To generate the initial population we need to have a random tree generation algorithm.
Let's consider tree generation algorithms, for more details about it, we refer to [15].

Full-Grow is a classic algorithm that combines Grow and Full.
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Full-Grow with minimum height limit is like the Full-Grow algorithm, only that at
least one terminal node is on prede�ned minimum height level.

PTC-1 alternately choose new child nodes from either the nonterminals or terminals by
user de�ned qn and qt probabilities from non-terminal F and terminal T set.

PTC-2 is a modi�cation of the PTC-1 that additionally provides user to de�ne tree size
distribution ω1, ω2, ..., ωs.

On the whole, the initial population of popsize random chromosomes is generated. For
each of the chromosome �tness is computed by the (5). Using crossover and mutation
operators with selected probabilities (pcross, pmut) new chromosomes are created, that
make the new population. The process continues until the stopping rules are met. For
the stopping rules we use maximum not decreasing �tness iterations count tmax > 0 and
chosen accuracy δmax > 0.

At the end we select the best chromosome and use it as the numerical approximation
to the unknown function r. The main algorithm structure is given in the �g. 5.

Fig. 5. The main steps of the genetic programming

In the next section, we focus on computing chromosome �tness. Thus, we have the
representation of the r̃ for which the boundary Γ̃1 corresponds. For simplicity we still
use notation r and Γ1.

3. Boundary integral equations method for computing of

the fitness function

Let's consider the numerical solution of the well-posed mixed boundary value prob-
lem (1)-(2).

Following [1,2,5,13] the solution to the mixed problem is represented as a sum of two
single layer potentials

u(x) =
2∑

ℓ=1

∫
Γℓ

φℓ(y)Φ(x, y)ds(y), x ∈ D, (6)

where Φ(x, y) =
1

2π
ln

1

|x− y|
, x ̸= y being a fundamental solution of the two-dimensional

Laplace equation and φℓ ∈ C(Γℓ), ℓ = 1, 2 unknown densities. Let's consider single-layer
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operator and its normal derivative

(Sk,ℓφ) (x) =

∫
Γℓ

φ(y)Φ(x, y)ds(y), x ∈ Γk (7)

and

(Tk,ℓφ) (x) =

∫
Γℓ

φ(y)
∂Φ(x, y)

∂ν(x)
ds(y), x ∈ Γk. (8)

Using properties of the single-layer potentials, we reduce the mixed boundary value
problem (1)-(2) to the system of well-posed boundary integral equationsS1,1φ1 + S1,2φ2 = 0 on Γ1,

T2,1φ1 +
1

2
φ2 + T2,2φ2 = g on Γ2.

(9)

We assume that the known boundary Γ2 has following parametrization

Γ2 = {x2(t) = (x21(t), x22(t)), t ∈ [0, 2π]}, (10)

where x2ℓ, ℓ = 1, 2 are given functions. Using (4) and (10) we can transform the sys-
tem (9) to the following parameterised systemS̃1,1ψ1 + S̃1,2ψ2 = 0 on [0, 2π],

T̃2,1ψ1 +
1

2
ψ2 + T̃2,2ψ2 = g̃ on [0, 2π],

(11)

where the parameterised integral operators are given as(
S̃k,ℓφ

)
(t) =

1

2π

∫ 2π

0

φ(xℓ(τ))H(xk(t), xℓ(τ))|x
′

ℓ(τ)|dτ, t ∈ [0, 2π] (12)

and (
T̃k,ℓφ

)
(t) =

1

2π

∫ 2π

0

φ(xℓ(τ))Q(xk(t), xℓ(τ))|x
′

ℓ(τ)|dτ, t ∈ [0, 2π], (13)

with kernels de�ned as

H(x, y) = 2πΦ(x, y) and Q(x, y) =
∂H(x, y)

∂ν(x)
= − (x− y, ν(x))

|x− y|2
,

here (·, ·) denotes the inner product. We also introduced new functions ψ1(t) = φ1(x1(t)),
ψ2(t) = φ2(x2(t)), g̃(t) = g(x2(t)), for t ∈ [0, 2π].

The integral operators S̃l,l and T̃l,l, for ℓ = 1, 2 are weekly singular. Straightforward
calculations lead to following:(

S̃l,lφ
)
(t) =

1

2π

∫ 2π

0

φ(xl(τ))

[
Kl(t, τ)−

1

2
ln

(
4

e
sin2

(
t− τ

2

))]
|x

′

l(τ)|dτ, (14)

with

Kl(t, τ) =


1

2
ln

4 sin2
(
t− τ

2

)
e|xl(t)− xl(τ)|2

, t ̸= τ,

1

2
ln

1

e|x′
l(t)|2

, t = τ.
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and (
T̃l,lφ

)
(t) =

1

2π

∫ 2π

0

φ(xl(τ))Ml(t, τ)|x
′

l(τ)|dτ, (15)

with

Ml(t, τ) =


− (xl(t)− xl(τ), ν(xl(t)))

|xl(t)− xl(τ)|2
, t ̸= τ,

1

2

(x
′′

l (t), ν(xl(t)))

|x′l(t)|2
, t = τ.

By the Riesz theory [13] we receive that the system of integral equations (11) for given
g̃ ∈ Cm+1,α[0, 2π] has a unique solution ψℓ ∈ Cm,α[0, 2π], ℓ = 1, 2, where for m ∈ N∪{0}
and 0 < α < 1, by the Cm,α[0, 2π] we denote the H�older space.

Let's describe how to fully discretise the parameterised system (11). Following
quadrature rules are used for integrals with continuous integrand

1

2π

∫ 2π

0

f(τ)dτ ≈ 1

2n

2n−1∑
j=0

f(tj) (16)

and for integrals with weak singular integrand

1

2π

∫ 2π

0

ln

(
4

e
sin2

(
t− τ

2

))
f(τ)dτ ≈

2n−1∑
j=0

Rj(t)f(tj), (17)

where

Rj(t) = − 1

2n

{
1 + 2

n−1∑
m=1

1

m
cos(m(t− tj)) +

cos(n(t− tj))

n

}
, t ∈ [0, 2π].

For the discretization of the (11) we use the Nystr�om method, see [13]. By applying

quadrature rules (16), (17) and collocating in points ti =
π

n
i, i = 0, . . . , 2n − 1 from

the (11) we obtain following linear system

2n−1∑
j=0

ψ1,jA
1,1
i,j +

2n−1∑
j=0

ψ2,jA
1,2
i,j = 0, i = 0, . . . , 2n− 1,

2n−1∑
j=0

ψ1,jA
2,1
i,j +

2n−1∑
j=0

ψ2,jA
2,2
i,j = g̃(ti), i = 0, . . . , 2n− 1,

(18)

where ψℓ,j ≈ ψℓ(tj), ℓ = 1, 2, j = 0, . . . , 2n− 1 and coe�cients given as

A1,1
i,j =

[
1

2n
K1(ti, tj)−

1

2
Rj(ti)

]
|x

′

1(tj)|, A1,2
i,j =

1

2n
H(x1(ti), x2(tj))|x

′

2(tj)|,

A2,1
i,j =

1

2n
Q(x2(ti), x1(tj))|x

′

1(tj)|, A2,2
i,j =

1

2n
M2(ti, tj)|x

′

2(tj)|+
1

2
δij .

Solving the (18) we can build the numerical approximation to the function u. Finally,
using quadrature (16) we can compute the �tness (5)
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J2(r) ≈
2n−1∑
i=0

2n−1∑
j=0

ψ1jC
1
j (ti) +

2n−1∑
j=0

ψ2jC
2
j (ti)− f(x2(ti))

2

, (19)

where ψℓ,j , ℓ = 1, 2 is a solution of the (18) and

C1
j (t) =

1

2n
H(x2(t), x1(tj))|x

′

1(tj)|, C2
j (t) =

[
1

2n
K2(t, tj)−

1

2
Rj(t)

]
|x

′

2(tj)|.

The error estimate of this method can be covered via the theory of collective compact
operators [13].

4. Algorithm configuration and numerical examples

In this section, we describe the con�guration of the genetic programming algorithm
and present the results of two numerical experiments for exact and noisy data.

Table 1

Con�guration of genetic programming parameters

Genetic operator Probability
Mutation operators

Size-fair 80%
Shrink 80%
Terminal 60%
Node replace 60%

Crossover operators
Size-fair 50%
Uniform 80%
Common point 90%

Functions Probability
Unary operators

abs 40%
sin 100%
cos 100%
ln 30%
sqrt 100%
exp 30%

Binary operators
+ 100%
− 100%
∗ 100%
/ 25%
power 30%

Terminal
[−100; 100] 100%

t 100%

(a) genetic operators probabilities (b) tree nodes type probabilities

4.1. Algorithm configuration

The following parameters of the genetic programming are used:

� number of chromosomes in the tournament selection method is 3;
� in the r-model selection, r is 40% of popsize (see [18]);
� minimum tree height is 1;
� maximum tree height is 20;
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� expected tree size in PTC-1 is 15;
� Full-Grow algorithm iterates in tree height ranges [1; 5], [5; 10], [10; 20]. The idea of
bracing tree height is to make it easier to analyze the results (and probably adjust
parameters) for smaller trees and not to generate the same small (probably worse)
trees at large height;

� curvature threshold κ̃ is 500 (the parameter was chosen based on several numerical
tests for n = 64);

� maximum accuracy δmax = 10−3;
� nondecreasing-�tness number of iterations tmax = 100;
� other parameters are presented in table 1 (a).

Table 2

Errors in case of di�erent algorithm con�gurations for exact
and noisy data for the example 1

ε popsize pmut pcross iteration ∥δ̃∥
Implementation 1 0% 1000 25% 75% 599 3.20e− 3

2% 577 9.74e− 2

5% 922 1.99e− 1

Implementation 2 0% 200 75% 30% 3058 1.64e− 2

2% 936 7.21e− 2

5% 1415 2.86e− 1

Implementation 3 0% 1000 25% 75% 1123 3.90e− 3

2% 1653 9.05e− 2

5% 324 2.94e− 1

For the �tness function computing in (19) n = 64 is used. In the method, we com-
bine di�erent algorithms of the generation of the tree-chromosome and di�erent genetic
operators. Let's consider several implementations.

Implementation 1. This implementation uses Full-Grow with minimum heigh limit
algorithm as a tree generator, all crossover operators and mutations such as Size-
fair and terminal. The goal of this implementation is to work with the �xed tree
height range to prevent using big trees, which usually have high curvature, for a
small number of collocation points.

Implementation 2. A classic implementation that uses PTC-1 as a tree generator and
all genetics operators with exception of Size-fair. The probability of choosing each
terminal/non-terminal is de�ned in the table 1 (b).

Implementation 3. The same con�guration as in the previous one, assumes the use of
PTC-2. The tree size distribution is chosen as normal cumulative density function
with mean ν = 14.5 and variance σ = 5.

Having described the con�guration of the algorithm, let's consider two examples.
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1.a 1.b 1.c

2.a 2.b 2.c

3.a 3.b 3.c
ε = 0% ε = 2% ε = 5%

Fig. 6. Numerical approximations of the inner boundary Γ1 for three implementations
for the example 1

4.2. Numerical examples

Let us describe the input data for numerical examples. The noised data gε are
generated from the exact data g by the following rule

gε = g + ε(2η − 1)∥g∥L2
,

where ε is a noise level and η is a random value in a range (0, 1). For both examples we
use the same outer boundary Γ2, de�ned by

Γ2 = {x2(t) = 2(cos(t), sin(t)), t ∈ [0, 2π]}.

The function f is numerically generated by the solving the mixed boundary value prob-
lem (1)-(2) with g(x) = 2, x ∈ Γ2 and exact boundary Γ1.

For the �rst example, as the exact representation we choose the following function r

r(t) =

√
cos2 t+

sin2 t

4
, t ∈ [0, 2π].

The results and errors of the reconstruction of the inner boundary Γ1 for di�erent
implementations in case of exact and noised data are provided in the table 2 and in the
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�g. 6 ((1.a) − (1.c) for the implementation 1, (2.a) − (2.c) for the implementation 2,
(3.a)− (3.c) for the implementation 3).

1.a 1.b 1.c

2.a 2.b 2.c

3.a 3.b 3.c
ε = 0% ε = 2% ε = 5%

Fig. 7. Numerical approximations of the inner boundary Γ1 for three implementations
for the example 2

And for the second example, as the exact representation we choose the following
function r

r(t) = cos(sin(cos t− sin t)), t ∈ [0, 2π].

The results and errors of the reconstruction of the inner boundary Γ1 for di�erent imple-
mentations in case of exact and noised data are provided in the table 3 and in the �g. 7
((1.a)−(1.c) for the implementation 1, (2.a)−(2.c) for the implementation 2, (3.a)−(3.c)
for the implementation 3).

In additional we note that the �tness calculation, which usually takes most of program
execution time, can be easily accelerated with parallelization. In that approach the
CUDA technology is used, see [21]. The comparison of the average execution time per
iteration with and without parallelization is shown in table 4.

As it can be seen from the result of numerical examples, the genetic programming
can be used as an algorithm for solving ill posed problem of reconstruction of the inner
boundary Γ1. For exact input data and noised data (up to 5%) the inner boundary is
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Table 3

Errors in case of di�erent algorithm con�gurations for exact
and noisy data for the example 2

ε popsize pmut pcross iteration ∥δ̃∥
Implementation 1 0% 800 25% 75% 353 1.43e− 2

2% 80 1.75e− 1

5% 223 3.45e− 1

Implementation 2 0% 300 75% 30% 972 4.09e− 2

2% 957 3.24e− 1

5% 60 3.47e− 1

Implementation 3 0% 700 30% 80% 450 6.50e− 3

2% 145 2.28e− 1

5% 210 2.83e− 1

Table 4

Comparison of execution time per iteration before and after parallelization in seconds

n population size = 50 population size = 200
before after rate before after rate

8 0.73 0.03 21 2.53 0.15 17
16 4.83 0.03 142 17.34 0.21 81
32 36.31 0.04 760 120.13 0.23 512
64 274.65 0.09 2937 600.58 0.41 1459

reconstructed, for a higher noise level the results are becoming corrupted. Provided errors
con�rm the application of proposed method. A combination of the genetic programming
with the classical regularization algorithm can be further explored to obtain a better
accuracy.

5. Conclusions

The genetic programming method has been applied for reconstruction of the inner
boundary of the annular planar domain from the known data of the measurement of the
harmonic function. Candidate solutions (chromosomes) are represented in a tree form
for which genetic operators are described. For each chromosome, the �tness function is
obtained by solving the well-posed mixed boundary value problem. The boundary value
problem is numerically solved by the method of boundary integral equations. Various
algorithm con�gurations and values of the genetic algorithm parameters are also included.
At the end, results of numerical experiments for both exact and noisy data are presented,
which con�rms the applicability of the proposed approach.
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Ðîçãëÿíóòî çàñòîñóâàííÿ ãåíåòè÷íîãî ïðîãðàìóâàííÿ äëÿ ÷èñåëüíîãî ðîçâ'ÿçóâàí-
íÿ íåëiíiéíî¨ íåêîðåêòíî¨ çàäà÷i ðåêîíñòðóêöi¨ âíóòðiøíüî¨ ãðàíèöi äâîâèìiðíî¨ äâî-
çâ'ÿçíî¨ îáëàñòi çà âiäîìèìè äàíèìè âèìiðþâàíü ãàðìîíi÷íî¨ ôóíêöi¨. Ïîòåíöiéíèé
ðîçâ'ÿçîê (iíäèâiä) ïîäà¹òüñÿ ó âèãëÿäi äåðåâà, äëÿ ÿêîãî ôóíêöiÿ ïðèñòîñîâàíîñòi
îá÷èñëþ¹òüñÿ øëÿõîì ðîçâ'ÿçóâàííÿ ìiøàíî¨ êðàéîâî¨ çàäà÷i çà ìåòîäîì ãðàíè÷íèõ
iíòåãðàëüíèõ ðiâíÿíü. Íàâåäåíî ðiçíi êîíôiãóðàöi¨ àëãîðèòìó òà ïðîäåìîíñòðîâàíî
ðåçóëüòàòè ÷èñåëüíèõ åêñïåðèìåíòiâ äëÿ òî÷íèõ i çáóðåíèõ âõiäíèõ äàíèõ.

Êëþ÷îâi ñëîâà: ãåíåòè÷íå ïðîãðàìóâàííÿ, çàäà÷à ðåêîíñòðóêöi¨ ãðàíèöi, ðiâíÿííÿ
Ëàïëàñà, ìåòîä ãðàíè÷íèõ iíòåãðàëüíèõ ðiâíÿíü.


