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A zero-sum game de�ned on a �nite subset of the unit square is considered. The game

is a progressive discrete silent duel, in which the kernel is skew-symmetric. As the duel

starts, time moments of possible shooting become denser by a geometric progression. Apart

from the duel beginning and end moments, every following moment is the partial sum of

the respective geometric series. Due to the skew-symmetry, both the duelists have the

same optimal strategies and the game optimal value is 0. It is proved that the solution

of a progressive discrete silent duel, with identical accuracy functions of the duelists, is a

pure strategy saddle point. For nontrivial games, where the duelist possesses more than

just one moment of possible shooting between the duel beginning and end moments, the

saddle point is single. Moreover, the solution renders the game into an invariant decision.

For the linear accuracy, whose value is not less than its time moment, the optimal strategy

is the middle of the duel time span. For the quadratic accuracy the optimal strategy is the

middle of the second half of the duel time span. If the linear accuracy value is less than its

time moment, the middle of the duel time span is never optimal.

Key words: game theory, silent duel, accuracy function, matrix game, pure strategy saddle

point, quadratic accuracy.

1. Introduction

In game theory, duels are used to model timing interactions. In particular, they can
model competitive auctions between two bidders [3, 4], struggling for market control,
product placement, retailing, advertising, and many other economic and social competi-
tions between two sides [6, 7]. Duels are represented as games whose players personify
participants of such competitions. The solutions to such games allow players holding at
the most reasonable strategies and develop rationalized processes of sharing resources for
which the players compete [15, 1, 2].

Games of timing include several distinct types of duels [4, 8, 13]. Silent duels consti-
tute a wide class of these games [8, 15, 1]. In a typical silent duel, which alternatively
may be called noiseless, each of two players has exactly one bullet, and it is unknown to
them whether a bullet was �red or not until the end of the duel time span [11, 3]. The
player is also featured with an accuracy function that must be a nondecreasing function
of time [2, 4].

Usually the players are allowed to shoot at any moment during the duel time span.
The solutions in this case, even if the accuracy functions are linear, are non-continuous
probability distributions as mixed strategies with uncountably in�nite supports whose
measure is less than the duel time span length [5, 15]. Therefore, practical realization or
implementation of such solutions cannot be complete due to naturally existing limits for
any sequence of actions [12].
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As a subclass of silent duels, discrete silent duels can be considered [9, 11]. In a
discrete silent duel, both the players can shoot only at speci�ed time moments whose
number is �nite. The moments of the duel beginning and end are included in this number
[10]. If a discrete silent duel is symmetric, the respective game becomes a matrix game
in which the optimal strategies of the players are identical [2, 3, 15].

The discrete silent duel becomes progressive if the importance of the pure strategy
of the duelist with approaching to the con�ict confrontation period completion grows in
geometrical progression. In this case, the density of pure strategies of the duelist grows
in geometrical progression as the duelist approaches to the duel end [9, 10, 14]. The solu-
tions of progressive discrete silent duels with skew-symmetric payo� matrices were partly
studied for identical linear accuracy functions of the players [11]. In particular, it was
shown that the progressive discrete silent duel has a saddle point in pure strategies, and
this saddle point is single when the player possesses a set of four or more pure strategies.
Moreover, the saddle point is the same, whichever the number of pure strategies is (if
the player has no fewer than four strategies).

The case with nonlinear accuracy functions was tackled also [10], but there is no
thorough investigation. Meanwhile, the most common nonlinearity is quadratic. There-
fore, the goal is to study solutions of the progressive discrete silent duel with quadratic
accuracy functions.

The paper proceeds as follows. The preliminaries of the progressive discrete silent
duel are given in Section 2. Section 3 summarizes the solution results for the case of linear
accuracy functions. The case of quadratic accuracy functions is considered in Section 4.
The study is discussed and concluded in Section 5.

2. Preliminaries

Consider a zero-sum game
⟨X, Y, K (x, y)⟩ (1)

whose kernel is de�ned on unit square

X × Y = [0; 1]× [0; 1] (2)

and
K (x, y) = x− y + xy sign (y − x) . (3)

Game (1) by (2) and (3) is a silent duel with linear accuracy functions of the players. As
kernel (3) is skew-symmetric, i. e.

K (x, y) = −K (y, x)

due to
K (y, x) = y − x+ yx sign (x− y) = −K (x, y) ,

both the players have the same optimal strategies and the game optimal value is 0 [15,
7, 8].

The duel starts at moment x = y = 0 and ends at moment x = y = 1. The duel
becomes discrete if

X = {xi}Ni=1 = Y = {yj}Nj=1 = T = {tq}Nq=1 ⊂ [0; 1]

∀ q = 1, N − 1 by tq < tq+1 ∀ q = 1, N − 1 and t1 = 0, tN = 1 (4)
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for N ∈ N\ {1}. In this case, no speci�c locations of moments {tq}Nq=1 of possible
shooting are given. However, in practical applications, as the duelist approaches to
moment tN = 1, at which the duel ends, the space between consecutive moments tq and
tq+1, q = 1, N − 1, may shorten. In particular, if

tq =

q−1∑
l=1

2−l for q = 2, N − 1 (5)

then the duel is progressive [10], where, apart from the duel beginning and end moments,
every following moment is the partial sum of the respective geometric series. This duel
is a matrix game whose payo� matrix

KN = [kij ]N×N by kij = K (xi, yj) = xi − yj + xiyj sign (yj − xi) . (6)

Therefore, matrix game ⟨
{xi}Ni=1 , {yj}

N
j=1 , KN

⟩
(7)

by (4) � (6) is the progressive discrete silent duel with linear accuracy functions, where
the accuracy is exactly equal to the time moment at which the bullet is �red.

A silent duel with quadratic accuracy functions has kernel

K (x, y) = x2 − y2 + x2y2 sign (y − x) (8)

de�ned on (2), where the accuracy is the square of the time moment at which the bullet
is �red. Kernel (8) is also skew-symmetric as

K (y, x) = y2 − x2 + y2x2 sign (x− y) = −K (x, y) .

So, just like with kernel (3), in game (1) by (2) and (8) both the players have the same
optimal strategies and the game optimal value is 0. Then the progressive discrete silent
duel with quadratic accuracy functions is matrix game (7) by (4), (5), and

KN = [kij ]N×N by kij = K (xi, yj) = x2
i − y2j + x2

i y
2
j sign (yj − xi) . (9)

Herein, the quadratic accuracy implies that the duelist is a worse shooter than the du-
elist with the linear accuracy. However, as the duelist approaches to the duel end, the
di�erence between the linear and quadratic accuracies decreases.

3. Linear accuracy functions

First of all, it is useful to reminisce about the discrete duel with linear accuracy
functions by (4) � (6) whose peculiarities can be found in [9, 11].
Theorem 1. In a progressive discrete silent duel (7) by (4) � (6), situation

{x2, y2} =

{
1

2
,
1

2

}
(10)

is optimal and it is single for every N ∈ N\ {1, 2, 3}.
Proof. In the case of N = 2 the shooting is allowed only at moments t1 = 0, t2 = 1.

The respective payo� matrix is

K2 = [kij ]2×2 =

[
0 −1

1 0

]
(11)
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and situation
{x2, y2} = {1, 1} (12)

is the single saddle point in this trivial case. In the case of N = 3 the shooting is also
allowed, apart from the very beginning and end moments t1 = 0, t3 = 1, at moment

t2 =
1

2
. The respective payo� matrix is

K3 = [kij ]3×3 =


0 −1

2
−1

1

2
0 0

1 0 0

 .

This matrix game has four saddle points: situation (10), situation

{x3, y3} = {1, 1} (13)

and non-symmetric situations

{x2, y3} =

{
1

2
, 1

}
,

{x3, y2} =

{
1,

1

2

}
.

It follows from (3) that K (0, 0) = 0 and K (0, 1) = −1, so k11 = 0 and k1N = −1
for any N ∈ N\ {1}. So, the game optimal value vopt = 0 cannot be reached in the �rst
row of matrix (6). Besides, K (1, 0) = 1, so it cannot be reached in the �rst column of
matrix (6). Therefore, neither the �rst row nor the �rst column contains a saddle point.

For N ∈ N\ {1, 2, 3} consider the second row of matrix (6). Here, x2 =
1

2
and

K (x2, y1) = K

(
1

2
, 0

)
=

1

2
, (14)

K (x2, y2) = K

(
1

2
,
1

2

)
= 0. (15)

For x2 =
1

2
< y < 1

K (x2, y) = K

(
1

2
, y

)
=

1

2
− y +

1

2
y =

1− y

2
> 0 (16)

and

K (x2, yN ) = K

(
1

2
, 1

)
=

1

2
− 1 +

1

2
= 0. (17)

Thus, the second row of matrix (6) contains positive entries except for the second column
and N -th column whose entries are 0. As KN = −KT

N , i. e.

kij = −kji ∀ i = 1, N and ∀ j = 1, N, (18)



RomanukeV.

ISSN 2078�5097. Âiñí. Ëüâiâ. óí-òó. Ñåð. ïðèêë. ìàòåì. òà iíô. 2023. Âèï. 31 79

then the second column of matrix (6) contains negative entries except for the second row
and N -th row whose entries are 0. Hence, entry k22 = K (x2, y2) = 0 is minimal in the
second row and is maximal in the second column. So, it is saddle point (10).

To prove that for N ∈ N\ {1, 2, 3} saddle point (10) is single, consider the other rows
of matrix (6), without the �rst, second, and N -th rows. This is to show that the rows of
this matrix, starting from the third one and �nishing at the (N − 1)-th one, contain only
negative entries under the main diagonal, except for the �rst column. Here, i = 3, N − 1

and j = 2, i− 1 that is
1

2
⩽ y < x < 1, whence

K (x, y) = x− y − xy = x (1− y)− y.

Inasmuch as

−y ⩽ −1

2
, (19)

1− y ⩽ 1

2
,

then

x (1− y) <
1

2
by x ∈

(
1

2
; 1

)
. (20)

The sum of inequalities (19) and (20) is inequality

x (1− y)− y < 0 by
1

2
⩽ y < x < 1. (21)

Inequality (21) implies that matrix (6) contains negative entries under its main diagonal
in every i-th row for i = 3, N − 1, except for the �rst column. So, these rows do not
contain saddle points. In the last row,

K (1, y) = 1− y − y = 1− 2y < 0 by y ∈
(
1

2
; 1

)
. (22)

Inequality (22) implies that the last row of matrix (6) contains negative entries starting
from the third column and �nishing at the (N − 1)-th column, and this row does not
contain saddle points. Inequality (22) also implies that the N -th column does not contain
saddle points that completes the proof of the singleness of saddle point (10). □

In fact, Theorem1 renders any non-trivial (2 × 2 and 3 × 3 games are apparently
trivial) progressive discrete silent duel (7) by (4) � (6) into an invariant decision. This
decision is saddle point (10). And, as any matrix game pure strategy solution, it factually
annihilates the game. Nevertheless, this has been just the case when the accuracy is
exactly equal to the time moment at which the bullet is �red. In other versions of linear
accuracy functions, when the accuracy is linearly proportional to the time moment, the
solution depends on the proportionality factor. Let this factor be denoted by a, where,
obviously, a > 0. The case a = 1 is covered by Theorem1, and it remains to consider the
cases a > 1 and 0 < a < 1.
Theorem 2. In a progressive discrete silent duel (7) by (4), (5), and

KN = [kij ]N×N by

kij = K (xi, yj) = axi − ayj + a2xiyj sign (yj − xi) for a > 1, (23)
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situation (10) is optimal and it is single for every N ∈ N\ {1, 2}.
Proof. In the trivial case of N = 2 the respective payo� matrix is

K2 = [kij ]2×2 =

[
0 −a
a 0

]
(24)

and situation (12) is the single saddle point. In the case of N = 3 the respective payo�
matrix is

K3 = [kij ]3×3 =


0 −a

2
−a

a

2
0

a

2
(a− 1)

a −a

2
(a− 1) 0

 . (25)

When a > 1, the second row of matrix (25) is nonnegative and so situation (10) is
optimal. Each of the �rst and third rows contains negative entries, so saddle point (10)
is single for matrix (25).

As K (0, 0) = 0, K (0, 1) = −a, K (1, 0) = a, then k11 = 0, k1N = −a, kN1 = a
for any N ∈ N\ {1}. Due to (18), the game optimal value vopt = 0 cannot be reached
in the �rst row of matrix (23), nor can it be reached in the �rst column of matrix
(23). Therefore, neither the �rst row nor the �rst column contains a saddle point. For
N ∈ N\ {1, 2, 3} consider the second row of matrix (23). Here,

K (x2, y1) = K

(
1

2
, 0

)
=

a

2
(26)

and (15). For x2 =
1

2
< y < 1

K (x2, y) = K

(
1

2
, y

)
=

a

2
− ay +

a2

2
y =

a

2
(1− 2y + ay) (27)

and

K (x2, yN ) = K

(
1

2
, 1

)
=

a

2
− a+

a2

2
=

a

2
(a− 1) . (28)

Entry (27) is positive if
1− 2y + ay > 0,

whence

a >
2y − 1

y
by y ∈

(
1

2
; 1

)
. (29)

As, by
1

2
< y < 1,

(1− y)
2
> 0,

1− 2y + y2 > 0,

2y − 1 < y2,

2y − 1

y
< y,

then
2y − 1

y
< y < 1 < a
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and so condition (29) holds. Entry (28) is positive by a > 1. Thus, the second row
of matrix (23) by a > 1 contains positive entries except for the second column whose
entry is 0. Due to (18), entry k22 = K (x2, y2) = 0 is minimal in the second row and is
maximal in the second column. So, it is saddle point (10), and there are no other saddle
points in the second row.

To prove that for N ∈ N\ {1, 2, 3} saddle point (10) is single, consider the other
rows of matrix (23), without the �rst, second, and N -th rows. Here, i = 3, N − 1 and

j = 2, i− 1 that is
1

2
⩽ y < x < 1, whence

K (x, y) = ax− ay − a2xy = a [x (1− ay)− y] .

Inasmuch as (19) holds,

1− ay ⩽ 1− a

2
.

But a > 1, so
−a < −1,

−a

2
< −1

2
,

1− a

2
<

1

2
,

that is

1− ay <
1

2
.

Then

x (1− ay) <
1

2
by x ∈

(
1

2
; 1

)
. (30)

The sum of inequalities (19) and (30) is inequality

x (1− ay)− y < 0 by
1

2
⩽ y < x < 1. (31)

Inequality (31) implies that matrix (23) contains negative entries under its main diagonal
in every i-th row for i = 3, N − 1, except for the �rst column. So, these rows do not
contain saddle points. In the last row,

K (1, y) = a− ay − a2y = a [1− y (1 + a)] .

Owing to (19),

−y (1 + a) < −1 + a

2
,

1− y (1 + a) < 1− 1 + a

2
=

1− a

2
< 0 by a > 1,

whence

K (1, y) = a [1− y (1 + a)] < 0 by y ∈
(
1

2
; 1

)
. (32)

Inequality (32) implies that the last row of matrix (23) contains negative entries starting
from the third column and �nishing at the (N − 1)-th column, and this row does not
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contain saddle points. Inequality (32) also implies that the N -th column does not contain
saddle points that completes the proof of the singleness of saddle point (10). □

By the way, entry kN2 < 0 of matrix (23), unlike entry kN2 = 0 of matrix (6). So,
generally speaking, the last row of matrix (23) contains negative entries starting from
the second column and �nishing at the (N − 1)-th column. This is why Theorem2 is not
a generalization of Theorem1. In addition, it does not relate to the case when 0 < a < 1.
It is easy to get convinced that situation (10) is not optimal for 0 < a < 1.
Theorem 3. Situation (10) is never optimal in a progressive discrete silent duel (7)

by (4), (5), and

KN = [kij ]N×N by

kij = K (xi, yj) = axi − ayj + a2xiyj sign (yj − xi) for 0 < a < 1. (33)

Proof. In the trivial case of N = 2 the respective payo� matrix is (24) and situation
(12) is the single saddle point. For N ∈ N\ {1, 2} consider the second row of matrix
(33). There are entries (26) and (28). Entry (26) is positive, and entry (28) is negative
due to 0 < a < 1. Therefore, the second row does not contain a saddle point. □

In the 3 × 3 trivial case of progressive discrete silent duel (7) by (4), (5), (33), the
payo� matrix is still (25). The �rst row of matrix (25) contains negative entries and
thus it does not contain a saddle point. Nor does the second row by, e. g., referring to
Theorem3. The third row contains positive entries except for k33 = 0. Consequently,
situation (13) is the single saddle point in this trivial case.

4. Quadratic accuracy functions

It is interesting whether the case of quadratic accuracy functions bears an invariant
decision similar to that in the subcase of linear accuracy functions by Theorem2 along
with Theorem1. This question is answered by the following assertion.
Theorem 4. In a progressive discrete silent duel (7) by (4), (5), (9), situation

{x3, y3} =

{
3

4
,
3

4

}
(34)

is optimal and it is single for every N ∈ N\ {1, 2, 3}.
Proof. In the case of N = 2 the respective payo� matrix is (11) and situation (12) is

the single saddle point in this trivial case. In the case of N = 3 the respective payo�
matrix is

K3 = [kij ]3×3 =


0 −1

4
−1

1

4
0 −1

2

1
1

2
0


and situation (13) is the single saddle point.

As K (0, 0) = 0, K (0, 1) = −1, K (1, 0) = 1, then k11 = 0, k1N = −1, kN1 = 1 for
any N ∈ N\ {1}. Due to (18), the game optimal value vopt = 0 cannot be reached in the
�rst row of matrix (9), nor can it be reached in the �rst column of matrix (9). Therefore,
neither the �rst row nor the �rst column contains a saddle point. Analogously to that,
inasmuch as

k21 = K

(
1

2
, 0

)
=

1

4
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and

k2N = K

(
1

2
, 1

)
= −1

2
,

then the second row and second column do not contain a saddle point. For N ∈
N\ {1, 2, 3} consider the third row of matrix (9). Here, x3 =

3

4
and

K (x3, y1) = K

(
3

4
, 0

)
=

9

16
, (35)

K (x3, y2) = K

(
3

4
,
1

2

)
=

11

64
. (36)

For x3 =
3

4
< y ⩽ 1

K (x3, y) = K

(
3

4
, y

)
=

9

16
− y2 +

9

16
y2 =

9

16
− 7

16
y2 > 0 (37)

due to
9

16
− 7

16
y2 > 0 ∀ y ∈ [0; 1] .

Thus, the third row of matrix (9) contains positive entries except for the third column
whose entry is 0. Due to (18) the third column of matrix (9) contains negative entries
except for the third row whose entry is 0. Hence, entry k33 = K (x3, y3) = 0 is minimal
in the third row and is maximal in the third column. So, it is saddle point (34).

To prove that for N ∈ N\ {1, 2, 3} saddle point (34) is single, consider the other
rows of matrix (9), without the �rst, second, third, and N -th rows. This is to show that
the rows of this matrix, starting from the fourth one and �nishing at the (N − 1)-th one,
contain only negative entries under the main diagonal, except for the �rst and second

columns. Here, i = 4, N − 1 and j = 3, i− 1 that is
3

4
⩽ y < x < 1, whence

K (x, y) = x2 − y2 − x2y2 = x2
(
1− y2

)
− y2.

Inasmuch as

y2 ⩾ 9

16
,

−y2 ⩽ − 9

16
, (38)

1− y2 ⩽ 7

16
,

then

x2
(
1− y2

)
<

7

16
by x ∈

(
3

4
; 1

)
. (39)

The sum of inequalities (38) and (39) is inequality

x2
(
1− y2

)
− y2 <

7

16
− 9

16
= −1

8
by

3

4
⩽ y < x < 1. (40)
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Inequality (40) implies that matrix (9) contains negative entries under its main diagonal
in every i-th row for i = 4, N − 1, except for the �rst and second columns. So, these
rows do not contain saddle points. In the last row,

K (1, y) = 1− y2 − y2 = 1− 2y2.

Owing to (38),

−2y2 ⩽ −9

8
,

1− 2y2 ⩽ −1

8
,

i. e.

K (1, y) = 1− 2y2 < 0 by y ∈
[
3

4
; 1

)
. (41)

Inequality (41) implies that the last row of matrix (9) contains negative entries starting
from the third column and �nishing at the (N − 1)-th column, and this row does not
contain saddle points. Inequality (41) also implies that the N -th column does not contain
saddle points that completes the proof of the singleness of saddle point (34). □

Although the approach to proving Theorem4 resembles that one to proving Theo-
rems 1 and 2, the invariant decisions (that annihilate the respective games) di�er. The
patterns of the respective payo� matrices slightly di�er as well. For instance, the payo�
matrix of the linear accuracy duel by a = 1 is such that the second row, containing the
saddle point by N ∈ N\ {1, 2}, contains another zero entry in the last column of this
row. This follows from (14), (16) and (17). In other words, the saddle point row, apart
from the saddle point, is not completely positive. To some contrary, the payo� matrix
of the quadratic accuracy duel is such that the saddle point row (which is third) by
N ∈ N\ {1, 2, 3}, apart from the saddle point, is completely positive due to (35) � (37).

5. Discussion and conclusion

The quadratic accuracy implying the worse-shooting duelist seems a more practicable
version as there are almost no linearly developing real-time processes. At least, such
processes (or objects) are quite rare. In addition, specifying locations of moments (4) of
possible shooting as (5) is natural as well. As the duelist approaches to the duel end,
not only the di�erence between the linear and quadratic accuracies decreases, but the
tension builds up. This justi�es the pattern by which moments of possible shooting are
made progressively denser.

The proved assertions contribute a discrete silent duel speci�city to the games of tim-
ing. The speci�city consists in that the solution of a progressive discrete silent duel, with
identical accuracy functions of the players, is a pure strategy saddle point. For nontriv-
ial games, where the duelist possesses more than just one moment of possible shooting
between the duel beginning and end moments, the saddle point is single. Moreover, the
saddle point is the same: for the linear accuracy, whose value is not less than its time
moment, the optimal strategy is the middle of the duel time span (Theorems 1 and 2);
for the quadratic accuracy the optimal strategy is the middle of the second half of the
duel time span (Theorem4). If the linear accuracy value is less than its time moment,
the middle of the duel time span is never optimal (Theorem3).

Progressive discrete silent duels can be further studied for other nonlinearities in the
accuracy function. For instance, it can be the cubic accuracy and, as a case of the
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better-shooting duelist, the square-root accuracy. Besides, some peculiar solutions for
the low-accurate duelist (that is the case of Theorem3) are still a matter of interest.
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Ðîçãëÿíóòî ãðó ç íóëüîâîþ ñóìîþ, ÿêà âèçíà÷åíà íà ñêií÷åííié ïiäìíîæèíi

îäèíè÷íîãî êâàäðàòà. Öÿ ãðà ¹ ïðîãðåñóþ÷îþ äèñêðåòíîþ áåçøóìíîþ äóåëëþ, â

ÿêié ÿäðî êîñîñèìåòðè÷íå. ßê òiëüêè äóåëü ðîçïî÷èíà¹òüñÿ, ìîìåíòè ÷àñó ìîæëèâèõ

ïîñòðiëiâ ñòàþòü ùiëüíiøèìè çà ãåîìåòðè÷íîþ ïðîãðåñi¹þ. Íå âðàõîâóþ÷è ìîìåíòiâ

ïî÷àòêó i çàêií÷åííÿ äóåëi, êîæíèé íàñòóïíèé ìîìåíò ¹ ÷àñòèííîþ ñóìîþ âiäïîâiäíî-

ãî ãåîìåòðè÷íîãî ðÿäó. Âíàñëiäîê êîñîñèìåòðè÷íîñòi îáèäâà äóåëÿíòè ìàþòü òi ñàìi

îïòèìàëüíi ñòðàòåãi¨, à îïòèìàëüíå çíà÷åííÿ ãðè äîðiâíþ¹ 0. Äîâåäåíî, ùî ðîçâ'ÿçîê

ïðîãðåñóþ÷î¨ äèñêðåòíî¨ áåçøóìíî¨ äóåëi çà îäíàêîâèõ ôóíêöié âëó÷íîñòi äóåëÿíòiâ

¹ ñiäëîâîþ òî÷êîþ ó ÷èñòèõ ñòðàòåãiÿõ. Äëÿ íåòðèâiàëüíèõ iãîð, äå äóåëÿíò âîëîäi¹

áiëüø íiæ ëèøå îäíèì ìîìåíòîì ìîæëèâîãî ïîñòðiëó ìiæ ïî÷àòêîì òà çàêií÷åííÿì

äóåëi, ñiäëîâà òî÷êà ¹ ¹äèíîþ. Áà áiëüøå, ðîçâ'ÿçîê çâîäèòü òàêó ãðó äî iíâàðiàíòíî-

ãî ðiøåííÿ. Ó âèïàäêó ëiíiéíî¨ âëó÷íîñòi, ÷è¹ çíà÷åííÿ ¹ íå ìåíøèì çà âiäïîâiä-

íèé ìîìåíò ÷àñó, îïòèìàëüíîþ ñòðàòåãi¹þ ¹ ñåðåäèíà iíòåðâàëó ÷àñó òðèâàííÿ äóåëi.

Äëÿ êâàäðàòè÷íî¨ âëó÷íîñòi îïòèìàëüíîþ ñòðàòåãi¹þ ¹ ñåðåäèíà äðóãî¨ ïîëîâèíè ÷àñó

òðèâàííÿ äóåëi. ßêùî çíà÷åííÿ ëiíiéíî¨ âëó÷íîñòi ¹ ìåíøèì çà âiäïîâiäíèé ìîìåíò

÷àñó, òî ñåðåäèíà iíòåðâàëó ÷àñó òðèâàííÿ äóåëi íiêîëè íå ¹ îïòèìàëüíîþ.

Êëþ÷îâi ñëîâà: òåîðiÿ iãîð, áåçøóìíà äóåëü, ôóíêöiÿ âëó÷íîñòi, ìàòðè÷íà ãðà, ñiäëîâà

òî÷êà ó ÷èñòèõ ñòðàòåãiÿõ, êâàäðàòè÷íà âëó÷íiñòü.


