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A zero-sum game defined on a finite subset of the unit square is considered. The game
is a progressive discrete silent duel, in which the kernel is skew-symmetric. As the duel
starts, time moments of possible shooting become denser by a geometric progression. Apart
from the duel beginning and end moments, every following moment is the partial sum of
the respective geometric series. Due to the skew-symmetry, both the duelists have the
same optimal strategies and the game optimal value is 0. It is proved that the solution
of a progressive discrete silent duel, with identical accuracy functions of the duelists, is a
pure strategy saddle point. For nontrivial games, where the duelist possesses more than
just one moment of possible shooting between the duel beginning and end moments, the
saddle point is single. Moreover, the solution renders the game into an invariant decision.
For the linear accuracy, whose value is not less than its time moment, the optimal strategy
is the middle of the duel time span. For the quadratic accuracy the optimal strategy is the
middle of the second half of the duel time span. If the linear accuracy value is less than its
time moment, the middle of the duel time span is never optimal.

Key words: game theory, silent duel, accuracy function, matrix game, pure strategy saddle
point, quadratic accuracy.

1. INTRODUCTION

In game theory, duels are used to model timing interactions. In particular, they can
model competitive auctions between two bidders [3, 4], struggling for market control,
product placement, retailing, advertising, and many other economic and social competi-
tions between two sides [6, 7]. Duels are represented as games whose players personify
participants of such competitions. The solutions to such games allow players holding at
the most reasonable strategies and develop rationalized processes of sharing resources for
which the players compete [15, 1, 2].

Games of timing include several distinct types of duels [4, 8, 13]. Silent duels consti-
tute a wide class of these games [8, 15, 1]. In a typical silent duel, which alternatively
may be called noiseless, each of two players has exactly one bullet, and it is unknown to
them whether a bullet was fired or not until the end of the duel time span [11, 3]. The
player is also featured with an accuracy function that must be a nondecreasing function
of time [2, 4].

Usually the players are allowed to shoot at any moment during the duel time span.
The solutions in this case, even if the accuracy functions are linear, are non-continuous
probability distributions as mixed strategies with uncountably infinite supports whose
measure is less than the duel time span length [5, 15]. Therefore, practical realization or
implementation of such solutions cannot be complete due to naturally existing limits for
any sequence of actions [12].
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As a subclass of silent duels, discrete silent duels can be considered [9, 11]. In a
discrete silent duel, both the players can shoot only at specified time moments whose
number is finite. The moments of the duel beginning and end are included in this number
[10]. If a discrete silent duel is symmetric, the respective game becomes a matrix game
in which the optimal strategies of the players are identical [2, 3, 15].

The discrete silent duel becomes progressive if the importance of the pure strategy
of the duelist with approaching to the conflict confrontation period completion grows in
geometrical progression. In this case, the density of pure strategies of the duelist grows
in geometrical progression as the duelist approaches to the duel end [9, 10, 14]. The solu-
tions of progressive discrete silent duels with skew-symmetric payoff matrices were partly
studied for identical linear accuracy functions of the players [11]. In particular, it was
shown that the progressive discrete silent duel has a saddle point in pure strategies, and
this saddle point is single when the player possesses a set of four or more pure strategies.
Moreover, the saddle point is the same, whichever the number of pure strategies is (if
the player has no fewer than four strategies).

The case with nonlinear accuracy functions was tackled also [10], but there is no
thorough investigation. Meanwhile, the most common nonlinearity is quadratic. There-
fore, the goal is to study solutions of the progressive discrete silent duel with quadratic
accuracy functions.

The paper proceeds as follows. The preliminaries of the progressive discrete silent
duel are given in Section 2. Section 3 summarizes the solution results for the case of linear
accuracy functions. The case of quadratic accuracy functions is considered in Section 4.
The study is discussed and concluded in Section 5.

2. PRELIMINARIES

Counsider a zero-sum game

(X, Y, K (z, y)) (1)
whose kernel is defined on unit square
X xY =10; 1] x [0; 1] (2)
and
K (z, y) =2 —y+aysign(y — ). (3)

Game (1) by (2) and (3) is a silent duel with linear accuracy functions of the players. As
kernel (3) is skew-symmetric, i.e.

K (z, y)=-K(y, v)
due to
K(y, ) =y—x+tyzsign(z —y) = K (z, y),

both the players have the same optimal strategies and the game optimal value is 0 [15,
7, 8].

The duel starts at moment x = y = 0 and ends at moment x = y = 1. The duel
becomes discrete if

X = {xz}i\il =Y = {yj};‘V=1 =T= {tq}év=1 C [0; 1]

Vg=1, N—1Dby tg<tgy1 Yg=1, N—1 and t;, =0, ty =1 (4)
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for N € N\{1}. In this case, no specific locations of moments {tq}f]\rz1 of possible
shooting are given. However, in practical applications, as the duelist approaches to
moment ¢ = 1, at which the duel ends, the space between consecutive moments ¢, and

tq+1, ¢ =1, N — 1, may shorten. In particular, if

—1
27l for =2, N—1 (5)
1

~
Q
Il
L)

l

then the duel is progressive [10], where, apart from the duel beginning and end moments,
every following moment is the partial sum of the respective geometric series. This duel
is a matrix game whose payoff matrix

Ky = [kijlyun by kij = K (25, y;) =z — yj + zy;sign (y; — ;). (6)
Therefore, matrix game

N N
({o}y wihl s Ky) (7)
by (4)—(6) is the progressive discrete silent duel with linear accuracy functions, where
the accuracy is exactly equal to the time moment at which the bullet is fired.
A silent duel with quadratic accuracy functions has kernel
K (z, y) = 2° — y* + 2%y’ sign (y — z) (®)
defined on (2), where the accuracy is the square of the time moment at which the bullet
is fired. Kernel (8) is also skew-symmetric as
K(y, v) =y* —a® +y*2°sign (v —y) = —K (2, y).

So, just like with kernel (3), in game (1) by (2) and (8) both the players have the same
optimal strategies and the game optimal value is 0. Then the progressive discrete silent
duel with quadratic accuracy functions is matrix game (7) by (4), (5), and

Ky = [kijlyon by kij = K (24, yj) = 7 — yJQ + a:fyj2 sign (y; — x;) . (9)

Herein, the quadratic accuracy implies that the duelist is a worse shooter than the du-
elist with the linear accuracy. However, as the duelist approaches to the duel end, the
difference between the linear and quadratic accuracies decreases.

3. LINEAR ACCURACY FUNCTIONS

First of all, it is useful to reminisce about the discrete duel with linear accuracy
functions by (4) - (6) whose peculiarities can be found in [9, 11].
Theorem 1. In a progressive discrete silent duel (7) by (4) - (6), situation

11
=J-, = 1
{z2, y2} {27 2} (10)
is optimal and it is single for every N € N\ {1, 2, 3}.

Proof. In the case of N = 2 the shooting is allowed only at moments t; = 0, to = 1.
The respective payoff matrix is

0 -1
Ko = [kijlyo = l 1 0 ] (11)
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and situation
{w2, y2} = {1, 1} (12)

is the single saddle point in this trivial case. In the case of N = 3 the shooting is also
allowed, apart from the very beginning and end moments t; = 0, t3 = 1, at moment

to = 3 The respective payoff matrix is

N —

Ks = [kijlgyg =

Nl = O

This matrix game has four saddle points: situation (10), situation

{z3, y3} = {1, 1} (13)

{2, ys} = {;7 1}7

{xs, y2} = {L ;}

It follows from (3) that K (0, 0) =0 and K (0, 1) = =1, s0 k13 = 0 and k1y = —1
for any N € N\ {1}. So, the game optimal value vop, = 0 cannot be reached in the first
row of matrix (6). Besides, K (1, 0) = 1, so it cannot be reached in the first column of
matrix (6). Therefore, neither the first row nor the first column contains a saddle point.

and non-symmetric situations

1
For N € N\ {1, 2, 3} consider the second row of matrix (6). Here, zo = 3 and

1 1
K =K|-= = -
(an yl) <27 O> 2) (14)
11
K (z2, y2) = K <27 2) =0 (15)
Forzo = - <y<1
1 1 1 1—y
K($2,Q)ZK(2ay):2—y+2y:2>0 (16)
and
1 1 1

Thus, the second row of matrix (6) contains positive entries except for the second column
and N-th column whose entries are 0. As Ky = —K3,, i.e.

kij=—kj; Vi=1, N and Vj=1, N, (18)
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then the second column of matrix (6) contains negative entries except for the second row
and N-th row whose entries are 0. Hence, entry koa = K (z2, y2) = 0 is minimal in the
second row and is maximal in the second column. So, it is saddle point (10).

To prove that for N € N\ {1, 2, 3} saddle point (10) is single, consider the other rows
of matrix (6), without the first, second, and N-th rows. This is to show that the rows of
this matrix, starting from the third one and finishing at the (N — 1)-th one, contain only
negative entries under the main diagonal, except for the first column. Here, ¢ =3, N —1

1
andj:2,i—lthatis§<y<m<l,whence

K@ y=z-—y—zy=xz(1-y)—y.

Inasmuch as

1
- < -, 1
VST (19)
1 < 1
Yyx 27
then
1 1
z(l—y)<=-byze|=;1]). (20)
2 2
The sum of inequalities (19) and (20) is inequality
1
z(l-y)—y<0by g<y<a<l (21)

Inequality (21) implies that matrix (6) contains negative entries under its main diagonal
in every i-th row for i« = 3, NV — 1, except for the first column. So, these rows do not
contain saddle points. In the last row,

1
K(l,y)—l—y—y—1—2y<0byy€(2;1>. (22)

Inequality (22) implies that the last row of matrix (6) contains negative entries starting
from the third column and finishing at the (N — 1)-th column, and this row does not
contain saddle points. Inequality (22) also implies that the N-th column does not contain
saddle points that completes the proof of the singleness of saddle point (10). O

In fact, Theorem 1 renders any non-trivial (2 x 2 and 3 x 3 games are apparently
trivial) progressive discrete silent duel (7) by (4)—(6) into an invariant decision. This
decision is saddle point (10). And, as any matrix game pure strategy solution, it factually
annihilates the game. Nevertheless, this has been just the case when the accuracy is
exactly equal to the time moment at which the bullet is fired. In other versions of linear
accuracy functions, when the accuracy is linearly proportional to the time moment, the
solution depends on the proportionality factor. Let this factor be denoted by a, where,
obviously, a > 0. The case a = 1 is covered by Theorem 1, and it remains to consider the
casesa>land 0 <a < 1.

Theorem 2. In a progressive discrete silent duel (7) by (4), (5), and

KN = [kij]NxN by

kij = K (x;, y;) = axz; — ay;j + a2xiyj sign (y; — x;) for a > 1, (23)
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situation (10) is optimal and it is single for every N € N\ {1, 2}.
Proof. In the trivial case of N = 2 the respective payoff matrix is

Ky = [kijly,n = [ 0 o ] (24)

a

and situation (12) is the single saddle point. In the case of N = 3 the respective payoff
matrix is

0 _e —a
a 2 a

K3 = [kij]SXlB = 5 0 5 (a - 1) . (25)
a 7% (a—1) 0

When a > 1, the second row of matrix (25) is nonnegative and so situation (10) is
optimal. Each of the first and third rows contains negative entries, so saddle point (10)
is single for matrix (25).

As K(0,0) =0, K(0, 1) = —a, K(1, 0) = a, then k11 =0, kixy = —a, ky1 = a
for any N € N\ {1}. Due to (18), the game optimal value vop = 0 cannot be reached
in the first row of matrix (23), nor can it be reached in the first column of matrix
(23). Therefore, neither the first row nor the first column contains a saddle point. For
N € N\ {1, 2, 3} consider the second row of matrix (23). Here,

K (22, 1) = K (; 0) = g (26)

1
and (15). For a2 = 3 <y< 1

1 a a? a
K (22, y)K<27y>2ay+2y2(12y+ay) (27)
and ) )
a a a

Entry (27) is positive if
1-2y+ay >0,

whence ) ) )
a>Y= by y€<2; 1>. (29)
1
As,by§<y<l,
(17y)2>07
1-2y+19? >0,
2y —1<y?
2u—1
Y <y,
Yy
then 5
L <y<l<a
Yy
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and so condition (29) holds. Entry (28) is positive by a > 1. Thus, the second row
of matrix (23) by a > 1 contains positive entries except for the second column whose
entry is 0. Due to (18), entry ko2 = K (x2, y2) = 0 is minimal in the second row and is
maximal in the second column. So, it is saddle point (10), and there are no other saddle
points in the second row.

To prove that for N € N\ {1, 2, 3} saddle point (10) is single, consider the other
rows of matrix (23), without the first, second, and N-th rows. Here, i = 3, N — 1 and

j:2,i—lthatis§<y<x<1,whence

K (z, y) = ax —ay — a’xy = afz (1 — ay) — y].

Inasmuch as (19) holds,

a
l—ay<1——.
ay 5
But a > 1, so
—a < —1,
a 1
2 2’
Lol
2 2
that is )
1l—ay < —.
ay <
Then
1 1
x(l—ay)<§ by x€(2; 1). (30)

The sum of inequalities (19) and (30) is inequality

1
z(l—ay)—y <0 by §<y<x<1. (31)

Inequality (31) implies that matrix (23) contains negative entries under its main diagonal
in every i-th row for i« = 3, N — 1, except for the first column. So, these rows do not
contain saddle points. In the last row,

K, y)=a—ay—ad’y=all —y(1+a).

Owing to (19),

1
—y(l4+a)<— ;ra,
1 1—
l—y(l+a)<1-— —;—a: 2a<0bya>1,
whence .
K(1,y)=a[l—-y(1+a)]<0 by y€<2; 1). (32)

Inequality (32) implies that the last row of matrix (23) contains negative entries starting
from the third column and finishing at the (N — 1)-th column, and this row does not
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contain saddle points. Inequality (32) also implies that the N-th column does not contain
saddle points that completes the proof of the singleness of saddle point (10). O

By the way, entry ky2 < 0 of matrix (23), unlike entry ky2 = 0 of matrix (6). So,
generally speaking, the last row of matrix (23) contains negative entries starting from
the second column and finishing at the (N — 1)-th column. This is why Theorem 2 is not
a generalization of Theorem 1. In addition, it does not relate to the case when 0 < a < 1.
It is easy to get convinced that situation (10) is not optimal for 0 < a < 1.

Theorem 3. Situation (10) is never optimal in a progressive discrete silent duel (7)
by (4), (5), and

Ky = [kijly.n by
ki; = K (z;, yj) = ax; — ay; + a®z;y; sign (y; —x;) for 0 <a < 1. (33)

Proof. In the trivial case of N = 2 the respective payoff matrix is (24) and situation
(12) is the single saddle point. For N € N\ {1, 2} consider the second row of matrix
(33). There are entries (26) and (28). Entry (26) is positive, and entry (28) is negative
due to 0 < a < 1. Therefore, the second row does not contain a saddle point. (|

In the 3 x 3 trivial case of progressive discrete silent duel (7) by (4), (5), (33), the
payoff matrix is still (25). The first row of matrix (25) contains negative entries and
thus it does not contain a saddle point. Nor does the second row by, e.g., referring to
Theorem 3. The third row contains positive entries except for k33 = 0. Consequently,
situation (13) is the single saddle point in this trivial case.

4. QUADRATIC ACCURACY FUNCTIONS

It is interesting whether the case of quadratic accuracy functions bears an invariant
decision similar to that in the subcase of linear accuracy functions by Theorem 2 along
with Theorem 1. This question is answered by the following assertion.

Theorem 4. In a progressive discrete silent duel (7) by (4), (5), (9), situation

{xs, yst = {i’ i} (34)

is optimal and it is single for every N € N\ {1, 2, 3}.

Proof. In the case of N = 2 the respective payoff matrix is (11) and situation (12) is
the single saddle point in this trivial case. In the case of N = 3 the respective payoff
matrix is

1

0 1 -1

1 1

K3 = [kij]gxg = 1 0 —5
1
1 —

5 0

and situation (13) is the single saddle point.

As K(O, 0) =0, K(O, 1) = —1, K(l, 0) =1, then k11 =0, kyy = —1, ky1 =1 for
any N € N\ {1}. Due to (18), the game optimal value vyp; = 0 cannot be reached in the
first row of matrix (9), nor can it be reached in the first column of matrix (9). Therefore,
neither the first row nor the first column contains a saddle point. Analogously to that,

inasmuch as ) .
f— K — —_ —
k21 ( 2 ) 0) 4
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1 1
kon=K|=,1)=—=
2N (23 ) 9’

then the second row and second column do not contain a saddle point. For N €
3
N\ {1, 2, 3} consider the third row of matrix (9). Here, z3 = 1 and

and

3 9
K :K — —
(’Ig, yl) (4, 0) 16’ (35)
3 1 11
(23, y2) (4, 2) o (36)
3
For 3 = 1 <y<l
3 9 9 9 7
K = K| - _ — 2 2 - - _ 2
(3, ) (4> y) G Ve T 1Y 0 (37)
due to
9

7 )
6 167 >0 Vyel0;1].
Thus, the third row of matrix (9) contains positive entries except for the third column
whose entry is 0. Due to (18) the third column of matrix (9) contains negative entries
except for the third row whose entry is 0. Hence, entry k33 = K (3, y3) = 0 is minimal
in the third row and is maximal in the third column. So, it is saddle point (34).

To prove that for N € N\ {1, 2, 3} saddle point (34) is single, consider the other
rows of matrix (9), without the first, second, third, and N-th rows. This is to show that
the rows of this matrix, starting from the fourth one and finishing at the (N — 1)-th one,
contain only negative entries under the main diagonal, except for the first and second

columns. Here, 2 =4, N —1and j = 3, ¢ — 1 that is 1 <y < x <1, whence
K (z, y) =a® —y* —a?y? = 2% (1 - ) — 4.

Inasmuch as

9
2 —
Yy =z 16’
9
— 2 [E—
AT (38)
7
1-— 2<7
Yy 16’
then
x2(1—y2)<lby x € §'1 . (39)
16 4’

The sum of inequalities (38) and (39) is inequality

322(1—y2)—g/2<l—g:—1 by

< 1.
6" 16 3 y<xz< (40)
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Inequality (40) implies that matrix (9) contains negative entries under its main diagonal
in every i-th row for ¢« = 4, N — 1, except for the first and second columns. So, these
rows do not contain saddle points. In the last row,

K1 y)=1-y—y*=1-2y

Owing to (38),

72:‘/2 g 723

1
1-2" < -,

i.e.
3
K(1,y)=1-24><0 by y€[4; 1). (41)

Inequality (41) implies that the last row of matrix (9) contains negative entries starting
from the third column and finishing at the (N — 1)-th column, and this row does not
contain saddle points. Inequality (41) also implies that the N-th column does not contain
saddle points that completes the proof of the singleness of saddle point (34). O

Although the approach to proving Theorem 4 resembles that one to proving Theo-
rems 1 and 2, the invariant decisions (that annihilate the respective games) differ. The
patterns of the respective payoff matrices slightly differ as well. For instance, the payoff
matrix of the linear accuracy duel by a = 1 is such that the second row, containing the
saddle point by N € N\ {1, 2}, contains another zero entry in the last column of this
row. This follows from (14), (16) and (17). In other words, the saddle point row, apart
from the saddle point, is not completely positive. To some contrary, the payoff matrix
of the quadratic accuracy duel is such that the saddle point row (which is third) by
N € N\ {1, 2, 3}, apart from the saddle point, is completely positive due to (35)—(37).

5. DISCUSSION AND CONCLUSION

The quadratic accuracy implying the worse-shooting duelist seems a more practicable
version as there are almost no linearly developing real-time processes. At least, such
processes (or objects) are quite rare. In addition, specifying locations of moments (4) of
possible shooting as (5) is natural as well. As the duelist approaches to the duel end,
not only the difference between the linear and quadratic accuracies decreases, but the
tension builds up. This justifies the pattern by which moments of possible shooting are
made progressively denser.

The proved assertions contribute a discrete silent duel specificity to the games of tim-
ing. The specificity consists in that the solution of a progressive discrete silent duel, with
identical accuracy functions of the players, is a pure strategy saddle point. For nontriv-
ial games, where the duelist possesses more than just one moment of possible shooting
between the duel beginning and end moments, the saddle point is single. Moreover, the
saddle point is the same: for the linear accuracy, whose value is not less than its time
moment, the optimal strategy is the middle of the duel time span (Theorems1 and 2);
for the quadratic accuracy the optimal strategy is the middle of the second half of the
duel time span (Theorem4). If the linear accuracy value is less than its time moment,
the middle of the duel time span is never optimal (Theorem 3).

Progressive discrete silent duels can be further studied for other nonlinearities in the
accuracy function. For instance, it can be the cubic accuracy and, as a case of the
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better-shooting duelist, the square-root accuracy. Besides, some peculiar solutions for
the low-accurate duelist (that is the case of Theorem 3) are still a matter of interest.
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CIAJIOBA TOYKA ¥V UNCTUX CTPATEIIAX
IIPOIPECYIOYOI AUCKPETHOI BE3IIIYMHOI AYEJII 3
KBAJIPATUYHUMUI ®YHKIIISIMI BJIYVUHOCTI 'PABIIIB

B. Pomanrok

Binnuybruti mopaosesvro-eKoHOMINHUT THCMUmMym
Llepotcasrozo mopz06eavHO-eKOHOMIWHO20 YHIBEPCUMEMY,
eya. Cobopna 87, Binnuuya, 21050, Ykpaina
e-mail: romanukevadimv@gmail.com

PosrnaayTo rpy 3 HYJIBOBOIO CYMOIO, fKa BH3HA4Y€HAa HA CKiHYEHHIi# noigqMHOXWHI
OAMHUYHOIO KBajpara. llg rpa € mporpecyio<oi0 IUCKPETHOI 0€3IIyMHOIO Iyesio, B
AKif aapo KococuMeTprudHe. fK TiIbKH Iyesb PO3NOYNHAETHCH, MOMEHTH 4acCy MOXKJIHUBUX
MOCTPIfiB CTAIOTH IIMBHIMNAMHA 33 TEOMETPUIHOI Iporpeciero. He BpaxoByOUYHM MOMEHTIB
MOYATKY 1 3aKiHYeHHs AyeJii, KOXKHAN HACTYIHUI MOMEHT € YACTHHHOIO CyMOIO BifmoBigHO-
0 T€OMETPHUIHOTO pALy. BHACIIZOK KOCOCUMETPUYIHOCTI OOHABA JyesIsSHTH MAOTh Ti caMi
OnTUMAaJIbHI cTpaTerii, a onTuMaJjbHe 3HaYeHHs1 rpu gopiBaioe 0. JloBejeHO, 1m0 po3B’si30K
nporpecyrdoi AUCKpeTHOI 6e31myMHOT ayesti 3a OMHAKOBUX (DYHKIiil BIYYHOCTI IyessiHTIB
€ CiyIOBOIO TOUKOIO y wmcTUX cTparerisx. /las merpusianbHmx irop, me ayessHT BOJOAi€
OisIbIN HIiXK JIMINE OJHUM MOMEHTOM MOXKJIMBOIO IOCTPLIY MiXK IHOYATKOM Ta 3aKiHYEHHIM
ayesi, CiII0Ba TOYKA € €quHOK0. Ba 6inbIne, po3B’sa30K 3BOAUTHL TaKy I'Py A0 iHBapiaHTHO-
ro pimenss. Y BUNaAKy JIiHIHHOI BIyIHOCTI, Un€ 3HAYEHHSI € HE MEHIINM 33 Bigmosix-
HHAH MOMEHT 4acy, ONTHMAJIbHOI CTPATEri€l0 € CepeArHa IHTepBAy 4acy TPUBAHHS Jyeli.
JIJ1st KBQJPATUYHOT BJLy 9HOCTI OIITUMAJILHOIO CTPATErIEI0 € CePeIHA, JPYTrOl IOJIOBUHU Yacy
TpUBAHHA Jayesi. ZIKIO0 3HA4YeHHd JIHIMHOI BJIYYHOCTI € MEHIIUM 3a BigIOBiAHUN MOMEHT
qacy, TO CepeMHa, iHTepBaJjly 4acy TPUBAHHS Jlyejli HIKOJIM HE € ONTHUMAaJbHO.

K 1040861 cA06a: TeOpisi irop, 6e3uiyMHa, gyesib, GyHKIist BIYYHOCTI, MaTPUYHA I'Pa, Ci10Ba
TOYKA y YUCTUX CTPATErisX, KBAPATUTHA BJIYIHICTH.



