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A method of fundamental solutions (MFS) is employed for the numerical solution of
the initial boundary value problem for the elastodynamic equation in annular planar do-
mains. Using the Laguerre transformation in the time, the non-stationary problem is semi
discretized to a sequence of stationary Dirichlet problems with an inhomogeneous equa-
tion, for which the sequence of fundamental solutions is known. The solutions of stationary
problems are found by the MFS, when the unknown functions are approximated by a linear
combination of narrowing of the elements from the fundamental sequence, and the source
points are placed uniformly on artificial boundaries, located at fixed distances from the
boundaries of the domain. The unknown coefficients in the MFS-approximations are found
using the collocation method, taking into account the Dirichlet conditions on the bound-
aries of the domain. As a result, we obtain a sequence of recurrent SLAEs with the same
matrix and recurrent right-side parts, that depend on the solutions from previous itera-
tions. In general, for the numerical solution of a problem with an inhomogeneous equation
by the method of fundamental solutions, it is necessary to find a partial solution of the
inhomogeneous equation, for example, by the method of radial basis functions, however,
according to our approach, this is not necessary. A step-by-step algorithm for the numerical
solution of the given problem is described and the algorithm for the distribution of colloca-
tion points and source points is shown. The results of numerical experiments for different
domain configurations are presented, which confirm the applicability and effectiveness of
the proposed approach.

Key words: Dirichlet problem, elastodynamic equation, method of fundamental solutions,
Laguerre transformation.

1. INTRODUCTION

The method of fundamental solutions was introduced by Kupradze and Aleksidze [19]
for solving some homogeneous partial differential equations. The main idea of the method
is to represent the solution of the problem by a linear combination of the narrowing of the
fundamental solutions, followed by the search for unknown coefficients by the collocation
method. The primary advantage over other methods is, that there is no need to discretize
the domain of the problem, which makes it meshless, even more the method is simple
to implement. For the case of inhomogeneous equations the method was extended by
additionally applying the radial basis functions (RBF) technique first for the stationary
problems, see [12] and later for the non-stationary problems [3,13].

Recently, in [4,5] was introduced the approach that dispenses with the use of the RBF
method and we are going to derive it for the time dependent boundary value problem for
the hyperbolic elasticity equation. There are a few studies for the elastodynamic problems
that are based on the MFS-RBF, see [14,15,17] or on the boundary integral equations
method [8,10]. This is due to the important application of the problem, for example, in
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structural engineering, in seismology [20] or the problem appears as a subproblem when
solving some ill-posed problems [6].

Let’s formulate the problem to be studied. We consider a planer bounded domain D,
bounded by two simple closed curves I'; (inner) and T'y (outer), which are of class C2.
We denote by v the outward unit normal to the boundaries I'y and I's.

We consider the Dirichlet problem for the hyperbolic elastic equation, which consists
in finding an unknown vector function @ : D x (0,00) — R? such that:

0% .o .

W:Au in D x (0,00),

i=f on Ty x (0,00), £ =1,2, (1)
ou

a(-,O) =4(-,00=0 in D,

where A* is a Lamé operator, defined by

A* = AN+ (3 — ?) grad div

m A2
Cs = ) Cd = .
V p p

Here, p is the density, A, i are the Lamé constants, and ﬁg :Ty x (0,00) = R2, £ =1,2
are given sufficiently smooth vector functions. The formulated problem (1) is well-posed,
for uniqueness and existence we refer to [18]. For the simplicity we consider the Dirichlet
boundary conditions, but other types of conditions can be handled similarly.

Following [4] the solution of the problem (1) is represented as a partial sum of the
Fourier-Laguerre series, where the unknown coefficients are obtained from the recurrent
sequence of the stationary problems for the hyperbolic equation. At the end, the recurrent
system is solved using the MFS.

For the outline of the work, in the section 2, using the Laguerre transformation, we
reduce the problem (1) to the sequence of the stationary problems. The application of
the MFS to the obtained recurrent sequence is shown in the section 3. Section 4 presents
results of some numerical experiments.

with

2. TIME DISCRETIZATION

Following [6, 10] the Laguerre transformation is used to semi-discretize the prob-
lem (1).

Definition 1. The Laguerre transformation with respect to the time-variable of the
function @ has the following representation:

o0

i(x,t) = kY iip(x) Ly(kt), (2)

p=0

p k

—t

where Ly(t) = E (i) ( k') is the Laguerre polynomial of order p, k > 0 is a given
k=0 ’

scaling constant and the Fourier-Laguerre coefficients i, are defined as:

Up(x) = /0 e " Ly(kt)i(z,t)dt, p=0,1,2,.... (3)
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Using properties of the Laguerre polynomials [1] the unknown coefficients @, can be
obtained from the recurrent sequence of the stationary Dirichlet problems, see [9,10].
The result is summarized in the following theorem.

Theorem 1. Function i, defined by (2), is a solution of the non-stationary Dirichlet
problem (1) if the Fourier-Laguerre coefficients t,, p = 0,1,2,... are a solution of the
sequence of stationary Dirichlet problems:

Aup—/i up Zﬁp mum iIlD,
iy = fr,p on 'y, for £ =1,2,

where the Fourier-Laguerre coefficients f_g;’p, ¢ =1,2 are computed by

foplx e "Ly (kt) fo(x, t)dt, p=0,1,2,...,

with the coefficients 8, = k*(p+ 1), p=0,1,2,....
We refer to [16], for methods of numerical computing of the Fourier-Laguerre

coefﬁcientsfgm.
The approximation with respect to the time variable of the exact solution  is obtained
as a partial sum of the representation (2) for chosen integer N > 0

N
(xz,t) ~ mZﬁp(x)Lp(mt), (z,t) € D x (0,00). (5)

Therefore, in the next section, we focus on solving of (4) by the method of fundamental
solutions.

Note that, instead of the Laguerre transformation in time, we can use some of the
finite differences methods, for example, method of Rothe [7] or method of Houbolt [5].

3. APPLICATION OF THE MFS TO THE STATIONARY PROBLEMS (4)

3.1. F'UNDAMENTAL SEQUENCE

For the sequence of the stationary problems (4) it is possible to find a sequence of
fundamental solutions F,. More precisely:

Definition 2. The sequence of 2 x 2 matrices {Ep} _o is a fundamental sequence for
the equations in (4) when

p—1
A*Ep(ac,y) - HQEp(xﬁy) - Z Bpmem = 6(1’ - y)Ia
m=0

where 0 the Dirac delta function and I the 2 x 2 identity matrix.

It is possible to find the expression of the elements E,, see [7,8]. Let’s recall the
result.

Theorem 2. The functions E, with

Ep(z,y) = up(fe =y + 2p(jr —y))(x —y), = #y, (6)
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forp=0,1,2,..., N, constitute a fundamental sequence of the elliptic equations (4) in
sense of definition 2.
In the representation (6), I is the identity matrix,

JZJZT
J(x) = LR z € R%\{0},

and the scalar functions ®; , and ®; , have the following expressions

K K (_1)671 K
Pep(r) 527"2 Z X’W’{ ptk < 7"> = Ppii <Cda7“>} + Tq’p %,r

(-1 K
+7¢>p (c,r>, for/=1,2,

S S

X-2p = p(0 — 1), X1 = 4%, X0p = 203p* +3p + 1), x1p = 4P+ 1)% x2p =
(p+ 1)(p+2), cs and cq are the constants from (1), and

Dy (y,7) = Ko(yr)vp(v, 1) + Ki(yr)wy(v,7),

where the functions Ky and K; are the modified Bessel functions (properties of the
Ky, K, can be found in [1]). The polynomials v, and w, for p = 0,1,..., N, are given
by:

’7‘) = Z (1p72m(’)/)7"2m and wp YT Z aP,Qm"rl 2m+17 wo(% 7’) = 07

with [g] being the largest integer not greater than ¢. The coefficients a, for p =
0,1,..., N, are obtained from the recurrence relations:

apo(y) = 1;

v
app(7) = _Eapfl,pfl('V);

ap,k<w>—271k{4 B ) o > 0 D 1(7)}

m=k—1
k=p—1,...,1.

In the last relation the coefficients a, ;. are calculated from the last a,,—1 to the first
ap.1, for the fixed p.

3.2. APPLICATION OF THE MFS

Having a fundamental sequence (6), we can apply the MFS to discretize the stationary
problems (4). According to the classical strategy for the scalar problems (see [4,19]), the
unknown Fourier-Laguerre functions i, are approximated by a linear combination of the
fundamental sequence

P n
Up(x) = Uy () = Z ZEP m (T, Yk)mi, x € D, (7
m=0 k=1
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where n > 0 — selected parameter, matrices E, given by (6), yx ¢ D, k = 1,2,...,n —
selected source points and dmr € R%, m = 0,1,...,p, k = 1,2,...,n are the unknown
coefficients.

There is no single strategy for choosing source points y,. For the doubly-connected
domains, according to [2], the source points should be placed in the unbounded exterior
region of D and in the bounded region enclosed by I';. In each of these two regions we
generate one artificial boundary and place n/2 evenly distributed source points yi on
it. Thus, we assume that n is an even integer. The algorithm of the points distribution
depends on I'; and I'y representation, thus it is presented in the numerical examples
section. For more information on the distribution of source points we refer to [11,14].

By straightforward calculations can be checked that approximations (7) satisfy the
equations in (4). The coefficients @, in (7) are determined by the collocation method,
from the Dirichlet boundary conditions from (4). As a result, we receive recurrent system
forp=0,1,...,N

n

p—1 n
> Eolwej yn)apk = frp(@e) = DD Epom(@e y) s (8)

k=1 m=0 k=1

forj=1,...,n/2, £ =1,2, where z4; € I'y are selected collocation points, the collocation
point distribution rule is given in next section.

Note that, the systems (8) consists of the same 2n x 2n matrix and recurrent right
side vectors of length 2n.

Having obtained the coefficients dp from the (8) we can construct the approximation
to the solution of the time-dependent Dirichlet problem (1). Taking into account (5)
and (7), we obtain the approximation

N D n
i, t) N () =6 > > Y Epom(@,ys)@meLy(kt), (2,t) € D x (0,00). (9)
p=0m=0 k=1

3.3. MAIN STEPS OF THE PROPOSED METHOD

Let’s summarize the steps of the proposed method of the numerical solution of the
Dirichlet problem for the hyperbolic elastodynamic equation (1).

— Choose the scaling constant £ > 0 and discretization parameters: N > 0 in (5), an
even n > 0 in (7).
— Choose the source points yi, k =1,...,n, and collocation points z¢;, { =1,2, j =
1,...,n/2.
— Calculate the Fourier-Laguerre coefficients ﬁp, (=1,2,p=0,1,...,N in (4).
— Calculate the matrix of the recursive systems (8), where elements Eo(z¢j, yx), £ =
1,2, k=1,...,n are provided in (6).
— Forp=0,1,...,N:
— Generate the right-hand side vector of the system (8), where the matri-
ces E,(x¢j,yr) are calculated by (6). For p > 0 the coeflicients @mx,
m=0,1,....,p—1,k =1,...,n, obtained from the previous iterations un-
leashing (8).
— Obtain the solution &, by solving the system (8) for the current p.
— Calculate the numerical approximation of the solution of the problem (1) by (9),
using the obtained coefficients dpy.
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Results of some numerical experiments together with the distribution of the source
and collocation points are given in the next section.

4. NUMERICAL EXAMPLES

Let’s consider the results of numerical approximation of the solution of the non-
stationary Dirichlet problem (1) for two problems. Assume that the boundaries I'y, £ =
1,2 have the following representation:

Ty = {x4(s) = (o1, 202), s € [0,27]}, £ =1, 2.

We consider such a boundary case only for the simplicity, and the application of the
MEFS is not limited to it. Artificial boundaries for the source points are generated as
2x9(s) and 0.5z1(s). Therefore, the source points y; are distributed on these artificial
boundaries according to the rule

2
e = (156 — 1)ze, (s1), & = ((k+1)mod 2) +1, s, = %k k=1,...,n. (10)

The collocation points zg; are evenly distributed on the both boundaries I'y, ¢ = 1,2 by

the rule 4
~ ~ Iy
o = 2e(55), 55 = =

j.oi=1,....n/2,0=1,2. (11)

o
2,
o
0 -]
o
2+
=] o
o N o
4 -2 0 2 4

Fig. 1. The domain D, test point 21, distribution of the source
and collocation points, used in the example 1

4.1. EXAMPLE 1

Let’s consider the configuration of the solution domain D. The outer boundary I's
has the following representation (see fig. 1)

Iy = {z2(s) = 2(cos s,sin s), s € [0, 27|}
and the inner boundary I'; is chosen to be

I'y = {z1(s) = (cos s + 0.4 cos 2s,sin s), s € [0, 27|} .
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02 02

—a— N=25, n=32
—+— N=25, n=64
015 1| o Exact

0.1

—a— N=5, n=32

——N=15, n=32
N=25, n=32

—— Exact

0.15

N
I=A

3 o05;

Fig. 2. Values of the first component of the exact and approximated
solutions at (z1,t), t € (0,5] for the example 1

Table 1

The errors of the approximated solution at (z1,t), ¢t € (0,5] for the example 1

N [ [Wn32(21, )]y — [lea(21, )] [l2 n [ [W25,n (21, )]} — [tex (21, )] ll2
5 1.6F —1 16 94F — 1
15 6.4F — 2 32 85F —3
25 85F —3 64 5.6F —3

Source points are generated by the rule (10) and collocation points by (11). The
distribution of the source and collocation points for n = 32 is presented in the fig. 1.

The Lamé constants are selected as A = 2, 4 = 1 and the density p = 1. The scaling
constant x is chosen equal to 1. As the exact solution, we use the first component of a
truncated series of the narrowing of fundamental solutions at the source point z = (0,6)"

26
ez (2, 1) = ,%Z [Ep(z, 2)], Lp(kt), (x,t) € D x (0,00).
p=0

Thus, the Fourier-Laguerre coefficients f;,p are defined exactly and are:
ﬁ,p(x) = [Ep(z,2)];, €Ty =12p=0,1,...,N.

Let’s consider the test point z; = (—1.5,0)T. In the fig. 2 presented values of the
first component of the exact ., and approximated @y ,, solutions at (z1,t), ¢t € (0,5] for
different values of parameters N and n. The absolute errors |Gy n(%1,") — Uex(21, )2
of the approximated solution are given in table 1. Similar results are obtained for other
test points in the domain D or for the second component of the solution.

4.2. EXAMPLE 2

Due to the fact that it is difficult to find an analytical representation of the exact
solution of the problem (1), in the second example we consider the same exact solution
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Fig. 3. The domain D, test point 21, distribution of the source and collocation
points, used in the example 2

025 0.25
——N=25,n=16
||——N=25, n=32

N=25, n=64
—— Exact

—&— N=5, n=32

0.2 | ——N=15,n=32
N=25, n=32

—+— Exact

0.2

0.15

0.1 |

uz,. 9],
uz,. 0],
2

0.05

Fig. 4. Values of the first component of the exact and approximated
solutions at (z1,t), t € (0,5] for the example 2

as in the example 1, but for a different domain configuration. The boundary curves of
the domain D have following representation (see fig. 3)

Iy = {z2(s) = (cos s,sins — 0.5sin” s + 0.5), s € [0, 2]}

and
I'y = {z1(s) = (0.6 cos s,0.5sin s), s € [0, 27]}.

Let’s consider the test point z; = (0,0.7) T. In the fig. 4 presented values of the first
component of the exact @, and approximated @y, solutions at (z1,t), ¢ € (0,5] for
different values of parameters N and n. The absolute errors ||Un (%1, ) — Uex(21,-)||2 of
the approximated solution are given in table 2.

In general, time of the program execution is about 45 seconds for N = 25 and
n = 32, the program was executed on a conventional workstation with a 2.60 GHz
Intel(R) Core(TM) i7 CPU. Results of both numerical examples confirms the applicabil-
ity of the MFS for the numerical solution of the non-stationary Dirichlet problem for the
elastodynamic equation.
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Table 2

The errors of the approximated solution at (z1,t), t € (0,5] for the example 2

N | [Un 32(21, )]} — [tex(21,7)]; [I2 n || [ti25,n (21, )]} — [Wex (21, )]} ll2
5 18 -1 16 21F — 2
15 82F — 2 32 7T4F — 3
25 74FE — 3 64 72FE —3

5. CONCLUSIONS

The method of fundamental solutions is proposed for numerical solution of the well-
posed Dirichlet problem for the hyperbolic elastodynamic equation. Using the Laguerre
transformation in time, the problem is reduced to the sequence of the stationary Dirichlet
problems for which the fundamental sequence is known. This makes it possible to develop
the MFS for the sequence of stationary problems without using the RBF method. The
source points for the MFS are distributed on the generated artificial boundaries and by
the collocation method, the recurrent linear systems are obtained for the calculation of
the unknown coefficients. Results of some numerical experiments are presented, which
confirm the applicability of the proposed method.
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SACTOCYBAHHS METOAY ®YHAAMEHTAJIBHUX
PO3B’A3KIB J1JId 3AJAYI EJIACTOIMHAMIKN

1. Bopauok

JIvsiscvrull Hayionarvrul ynisepcumem iment Ieana Ppanka,
eys. Ymuieepcumecwvka, 1, Jlveis, 79000,
e-mail: ihor.borachok@Inu.edu.ua

PosrisanyTo 3acTocyBanus MeTony dyHIaMeHTAIbHUX po3B’a3KiB (M®P) mia qucens-
HOrO PO3B’si3yBaHHS [I0YaTKOBO-KPaoBOT 3a/1a4i e1aCcTOAUHAMIKY B IIJIOCKUX JIBO3B’SI3HUX
obmacTax. 3a gomoMoroio meperBopeHHs Jlareppa mo wacoBiit 3MiHHIN, HecTalioHApHA
3a/1a49a YaCTKOBO JUCKPETU3I0BAHA 10 MTOCIIJOBHOCTI CTalioHapHuX 3a1a4 /lipixjie 3 Heo Ho-
pigHMM piBHSIHHSIM, JJIsi SIKOI BiZIOMa MOCJIiTOBHICTH (DyHIaMEHTAJBHUX PO3B’si3KiB. Po3-
B’SI3KM CTAIliOHAPHUX 33434 3HaxoauMo 3a M®P, konu HeBigoMi GYHKITIT aTpOKCUMYIOTHCS
iHiI#HHOI0 KOMOGIHANIEI0 3BY’KEHb €JIeMEHTIB 3 (PyHJAMEHTAJBbHOI IOCJiTOBHOCTI, & TOYKH
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JPKepesia po3MinryeMo piBHOMIDHO HA MITYyYHHX TPAHUILX, PO3TAMOBAHUX HA dikcosa-
HUX BigcTamHax Bix rpanuns ob6nacti. Hesimomi koedinientn y MO®PP-anpokcumarisx
3HAXOIUMO, BHKOPHUCTOBYIOYH MeTO KOJIOKAIil 3 BpaxyBanuaM yMmoB Jlipixse uva rpanumsax
obsacti. B pesysbrari, ogepxkyemo mocaimoBuicTh pekypentHux CJIAP 3 ommakoBoiO
MaTPHUIEIO Ta PEKYPEHTHUMH IPABUMH JACTHHAMH, 3aJ€2KHUMU Bij po3B’sa3KiB i3 momepes-
HIX iTepamiii. 3a3Budvail, 11 IUCEJBHOTO PO3B’SA3yBaHHH 3a/a4i 3 HEOJHODITHUM DiBHSIH-
HAM 33 MeToa0M (YHIAMEHTAJbHUX PO3B’S3KiB, MOTPIOHO 3HANTH YACTKOBUH DPO3B’SI30K
HEO/[HOPITHOTO PiBHSIHHS, HANPUKJIAJ,, 38 METOJ0M pajiajbHuX 0a3ucHuX PYHKIIiH, MpoTe,
3a HAIIKUM IiX0J0M, I[LOTO He MOTPibHO. OMUCAHO MOKPOKOBUM AJTOPUTM 17 TUCEJTHHOTO
PO3B’si3yBaHHsI [TOCTABJIEHOT 33/a49i Ta MOKA3aHO AJITOPUTM PO3IOAIIY TOYOK KOJIOKAIl Ta
TOYOK JzKepesia. HaBeqeHO pe3ynpTaTu YUCENbHUX €KCIEPUMEHTIB [/l pi3HUX KOHMDIrypa-

it obiacrei, siki nigTBEPAKYIOTH 3aCTOCOBHICTD Ta €(DEKTUBHICTH JAHOTO IIiXOAy.

Knatowo6i caosa: 3amada Jlipixie, piBHsSIHHs ejlacTOguHaMiku, MeToj (YHIAMEHTAJbHUX

po3B’si3kiB, meperBopenHs Jlareppa.



