
Borachok I.

ISSN 2078�5097. Âiñí. Ëüâiâ. óí-òó. Ñåð. ïðèêë. ìàòåì. òà iíô. 2022. Âèï. 30 27

UDC 519.6

AN APPLICATION OF THE METHOD

OF FUNDAMENTAL SOLUTIONS FOR

THE ELASTODYNAMIC PROBLEM

I.Borachok

Ivan Franko National University of Lviv,

Universytetska str., 1, Lviv, 79000, Ukraine,

e-mail: ihor.borachok@lnu.edu.ua

A method of fundamental solutions (MFS) is employed for the numerical solution of
the initial boundary value problem for the elastodynamic equation in annular planar do-
mains. Using the Laguerre transformation in the time, the non-stationary problem is semi
discretized to a sequence of stationary Dirichlet problems with an inhomogeneous equa-
tion, for which the sequence of fundamental solutions is known. The solutions of stationary
problems are found by the MFS, when the unknown functions are approximated by a linear
combination of narrowing of the elements from the fundamental sequence, and the source
points are placed uniformly on arti�cial boundaries, located at �xed distances from the
boundaries of the domain. The unknown coe�cients in the MFS-approximations are found
using the collocation method, taking into account the Dirichlet conditions on the bound-
aries of the domain. As a result, we obtain a sequence of recurrent SLAEs with the same
matrix and recurrent right-side parts, that depend on the solutions from previous itera-
tions. In general, for the numerical solution of a problem with an inhomogeneous equation
by the method of fundamental solutions, it is necessary to �nd a partial solution of the
inhomogeneous equation, for example, by the method of radial basis functions, however,
according to our approach, this is not necessary. A step-by-step algorithm for the numerical
solution of the given problem is described and the algorithm for the distribution of colloca-
tion points and source points is shown. The results of numerical experiments for di�erent
domain con�gurations are presented, which con�rm the applicability and e�ectiveness of
the proposed approach.

Key words: Dirichlet problem, elastodynamic equation, method of fundamental solutions,
Laguerre transformation.

1. Introduction

The method of fundamental solutions was introduced by Kupradze and Aleksidze [19]
for solving some homogeneous partial di�erential equations. The main idea of the method
is to represent the solution of the problem by a linear combination of the narrowing of the
fundamental solutions, followed by the search for unknown coe�cients by the collocation
method. The primary advantage over other methods is, that there is no need to discretize
the domain of the problem, which makes it meshless, even more the method is simple
to implement. For the case of inhomogeneous equations the method was extended by
additionally applying the radial basis functions (RBF) technique �rst for the stationary
problems, see [12] and later for the non-stationary problems [3, 13].

Recently, in [4,5] was introduced the approach that dispenses with the use of the RBF
method and we are going to derive it for the time dependent boundary value problem for
the hyperbolic elasticity equation. There are a few studies for the elastodynamic problems
that are based on the MFS-RBF, see [14, 15, 17] or on the boundary integral equations
method [8, 10]. This is due to the important application of the problem, for example, in
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structural engineering, in seismology [20] or the problem appears as a subproblem when
solving some ill-posed problems [6].

Let's formulate the problem to be studied. We consider a planer bounded domain D,
bounded by two simple closed curves Γ1 (inner) and Γ2 (outer), which are of class C2.
We denote by ν the outward unit normal to the boundaries Γ1 and Γ2.

We consider the Dirichlet problem for the hyperbolic elastic equation, which consists
in �nding an unknown vector function u⃗ : D × (0,∞) → R2 such that:

∂2u⃗

∂t2
= ∆∗u⃗ in D × (0,∞),

u⃗ = f⃗ℓ on Γℓ × (0,∞), ℓ = 1, 2,

∂u⃗

∂t
(·, 0) = u⃗(·, 0) = 0 in D,

(1)

where ∆∗ is a Lam�e operator, de�ned by

∆∗ = c2s∆+ (c2d − c2s) grad div

with

cs =

√
µ

ρ
, cd =

√
λ+ 2µ

ρ
.

Here, ρ is the density, λ, µ are the Lam�e constants, and f⃗ℓ : Γℓ × (0,∞) → R2, ℓ = 1, 2
are given su�ciently smooth vector functions. The formulated problem (1) is well-posed,
for uniqueness and existence we refer to [18]. For the simplicity we consider the Dirichlet
boundary conditions, but other types of conditions can be handled similarly.

Following [4] the solution of the problem (1) is represented as a partial sum of the
Fourier-Laguerre series, where the unknown coe�cients are obtained from the recurrent
sequence of the stationary problems for the hyperbolic equation. At the end, the recurrent
system is solved using the MFS.

For the outline of the work, in the section 2, using the Laguerre transformation, we
reduce the problem (1) to the sequence of the stationary problems. The application of
the MFS to the obtained recurrent sequence is shown in the section 3. Section 4 presents
results of some numerical experiments.

2. Time discretization
Following [6, 10] the Laguerre transformation is used to semi-discretize the prob-

lem (1).
De�nition 1. The Laguerre transformation with respect to the time-variable of the

function u⃗ has the following representation:

u⃗(x, t) = κ

∞∑
p=0

u⃗p(x)Lp(κt), (2)

where Lp(t) =

p∑
k=0

(
p

k

)
(−t)k

k!
is the Laguerre polynomial of order p, κ > 0 is a given

scaling constant and the Fourier-Laguerre coe�cients u⃗p are de�ned as:

u⃗p(x) =

∫ ∞

0

e−κtLp(κt)u⃗(x, t) dt, p = 0, 1, 2, . . . . (3)
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Using properties of the Laguerre polynomials [1] the unknown coe�cients u⃗p can be
obtained from the recurrent sequence of the stationary Dirichlet problems, see [9, 10].
The result is summarized in the following theorem.

Theorem 1. Function u⃗, de�ned by (2), is a solution of the non-stationary Dirichlet
problem (1) if the Fourier-Laguerre coe�cients u⃗p, p = 0, 1, 2, . . . are a solution of the
sequence of stationary Dirichlet problems:

∆∗u⃗p − κ2u⃗p =

p−1∑
m=0

βp−mu⃗m in D,

u⃗p = f⃗ℓ,p on Γ2, for ℓ = 1, 2,

(4)

where the Fourier-Laguerre coe�cients f⃗ℓ,p, ℓ = 1, 2 are computed by

f⃗ℓ,p(x) =

∞∫
0

e−κtLp(κt)f⃗ℓ(x, t) dt, p = 0, 1, 2, . . . ,

with the coe�cients βp = κ2(p+ 1), p = 0, 1, 2, . . . .
We refer to [16], for methods of numerical computing of the Fourier-Laguerre

coe�cientsf⃗ℓ,p.
The approximation with respect to the time variable of the exact solution u⃗ is obtained

as a partial sum of the representation (2) for chosen integer N > 0

u⃗(x, t) ≈ κ

N∑
p=0

u⃗p(x)Lp(κt), (x, t) ∈ D × (0,∞). (5)

Therefore, in the next section, we focus on solving of (4) by the method of fundamental
solutions.

Note that, instead of the Laguerre transformation in time, we can use some of the
�nite di�erences methods, for example, method of Rothe [7] or method of Houbolt [5].

3. Application of the MFS to the stationary problems (4)

3.1. Fundamental sequence
For the sequence of the stationary problems (4) it is possible to �nd a sequence of

fundamental solutions Ep. More precisely:

De�nition 2. The sequence of 2×2 matrices {Ep}Np=0 is a fundamental sequence for

the equations in (4) when

∆∗Ep(x, y)− κ2Ep(x, y)−
p−1∑
m=0

βp−mEm = δ(x− y)I,

where δ the Dirac delta function and I the 2× 2 identity matrix.
It is possible to �nd the expression of the elements Ep, see [7, 8]. Let's recall the

result.
Theorem 2. The functions Ep with

Ep(x, y) = Φ1,p(|x− y|)I +Φ2,p(|x− y|)J(x− y), x ̸= y, (6)
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for p = 0, 1, 2, . . . , N , constitute a fundamental sequence of the elliptic equations (4) in
sense of de�nition 2.

In the representation (6), I is the identity matrix,

J(x) =
xx⊤

|x|2
, x ∈ R2\{0},

and the scalar functions Φ1,p and Φ2,p have the following expressions

Φℓ,p(r) =
(−ℓ)ℓ−1

κ2r2

2∑
k=−2

χk,p

{
Φp+k

(
κ

cs
, r

)
− Φp+k

(
κ

cd
, r

)}
+

(−1)ℓ−1

c2d
Φp

(
κ

cd
, r

)
+

ℓ− 1

c2s
Φp

(
κ

cs
, r

)
, for ℓ = 1, 2,

χ−2,p = p(p − 1), χ−1,p = −4p2, χ0,p = 2(3p2 + 3p + 1), χ1,p = −4(p + 1)2, χ2,p =
(p+ 1)(p+ 2), cs and cd are the constants from (1), and

Φp(γ, r) = K0(γr)vp(γ, r) +K1(γr)wp(γ, r),

where the functions K0 and K1 are the modi�ed Bessel functions (properties of the
K0,K1 can be found in [1]). The polynomials vp and wp for p = 0, 1, . . . , N , are given
by:

vp(γ, r) =

[ p2 ]∑
m=0

ap,2m(γ)r2m and wp(γ, r) =

[ p−1
2 ]∑

m=0

ap,2m+1(γ)r
2m+1, w0(γ, r) = 0,

with [q] being the largest integer not greater than q. The coe�cients ap for p =
0, 1, . . . , N , are obtained from the recurrence relations:

ap,0(γ) = 1;

ap,p(γ) = −γ

p
ap−1,p−1(γ);

ap,k(γ) =
1

2γk

{
4

[
k + 1

2

]2
ap,k+1(γ)− γ2

p−1∑
m=k−1

(p−m+ 1)am,k−1(γ)

}
,

k = p− 1, . . . , 1.

In the last relation the coe�cients ap,k are calculated from the last ap,p−1 to the �rst
ap,1, for the �xed p.

3.2. Application of the MFS
Having a fundamental sequence (6), we can apply the MFS to discretize the stationary

problems (4). According to the classical strategy for the scalar problems (see [4,19]), the
unknown Fourier-Laguerre functions u⃗p are approximated by a linear combination of the
fundamental sequence

u⃗p(x) ≈ u⃗p,n(x) =

p∑
m=0

n∑
k=1

Ep−m(x, yk)α⃗mk, x ∈ D, (7)
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where n > 0 � selected parameter, matrices Ep given by (6), yk /∈ D, k = 1, 2, . . . , n �
selected source points and α⃗mk ∈ R2, m = 0, 1, . . . , p , k = 1, 2, . . . , n are the unknown
coe�cients.

There is no single strategy for choosing source points yk. For the doubly-connected
domains, according to [2], the source points should be placed in the unbounded exterior
region of D and in the bounded region enclosed by Γ1. In each of these two regions we
generate one arti�cial boundary and place n/2 evenly distributed source points yk on
it. Thus, we assume that n is an even integer. The algorithm of the points distribution
depends on Γ1 and Γ2 representation, thus it is presented in the numerical examples
section. For more information on the distribution of source points we refer to [11,14].

By straightforward calculations can be checked that approximations (7) satisfy the
equations in (4). The coe�cients α⃗mk in (7) are determined by the collocation method,
from the Dirichlet boundary conditions from (4). As a result, we receive recurrent system
for p = 0, 1, . . . , N

n∑
k=1

E0(xℓj , yk)α⃗pk = f⃗ℓ,p(xℓj)−
p−1∑
m=0

n∑
k=1

Ep−m(xℓj , yk)α⃗mk, (8)

for j = 1, . . . , n/2, ℓ = 1, 2, where xℓj ∈ Γℓ are selected collocation points, the collocation
point distribution rule is given in next section.

Note that, the systems (8) consists of the same 2n × 2n matrix and recurrent right
side vectors of length 2n.

Having obtained the coe�cients α⃗pk from the (8) we can construct the approximation
to the solution of the time-dependent Dirichlet problem (1). Taking into account (5)
and (7), we obtain the approximation

u⃗(x, t) ≈ u⃗N,n(x, t) = κ

N∑
p=0

p∑
m=0

n∑
k=1

Ep−m(x, yk)α⃗mkLp(κt), (x, t) ∈ D × (0,∞). (9)

3.3. Main steps of the proposed method
Let's summarize the steps of the proposed method of the numerical solution of the

Dirichlet problem for the hyperbolic elastodynamic equation (1).

� Choose the scaling constant κ > 0 and discretization parameters: N > 0 in (5), an
even n > 0 in (7).

� Choose the source points yk, k = 1, . . . , n, and collocation points xℓj , ℓ = 1, 2, j =
1, . . . , n/2.

� Calculate the Fourier-Laguerre coe�cients f⃗ℓ,p, ℓ = 1, 2, p = 0, 1, . . . , N in (4).
� Calculate the matrix of the recursive systems (8), where elements E0(xℓj , yk), ℓ =
1, 2, k = 1, . . . , n are provided in (6).

� For p = 0, 1, . . . , N :
� Generate the right-hand side vector of the system (8), where the matri-
ces Ep(xℓj , yk) are calculated by (6). For p > 0 the coe�cients α⃗mk,
m = 0, 1, . . . , p − 1, k = 1, . . . , n, obtained from the previous iterations un-
leashing (8).

� Obtain the solution α⃗pk, by solving the system (8) for the current p.
� Calculate the numerical approximation of the solution of the problem (1) by (9),
using the obtained coe�cients α⃗pk.
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Results of some numerical experiments together with the distribution of the source
and collocation points are given in the next section.

4. Numerical examples
Let's consider the results of numerical approximation of the solution of the non-

stationary Dirichlet problem (1) for two problems. Assume that the boundaries Γℓ, ℓ =
1, 2 have the following representation:

Γℓ = {xℓ(s) = (xℓ1, xℓ2), s ∈ [0, 2π]} , ℓ = 1, 2.

We consider such a boundary case only for the simplicity, and the application of the
MFS is not limited to it. Arti�cial boundaries for the source points are generated as
2x2(s) and 0.5x1(s). Therefore, the source points yk are distributed on these arti�cial
boundaries according to the rule

yk = (1.5ξk − 1)xξk(sk), ξk = ((k + 1) mod 2) + 1, sk =
2π

n
k, k = 1, . . . , n. (10)

The collocation points xℓk are evenly distributed on the both boundaries Γℓ, ℓ = 1, 2 by
the rule

xℓj = xℓ(s̃j), s̃j =
4π

n+ 1
j, j = 1, . . . , n/2, ℓ = 1, 2. (11)

Fig. 1. The domain D, test point z1, distribution of the source
and collocation points, used in the example 1

4.1. Example 1
Let's consider the con�guration of the solution domain D. The outer boundary Γ2

has the following representation (see �g. 1)

Γ2 = {x2(s) = 2(cos s, sin s), s ∈ [0, 2π]}

and the inner boundary Γ1 is chosen to be

Γ1 = {x1(s) = (cos s+ 0.4 cos 2s, sin s), s ∈ [0, 2π]} .
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Fig. 2. Values of the �rst component of the exact and approximated
solutions at (z1, t), t ∈ (0, 5] for the example 1

Table 1

The errors of the approximated solution at (z1, t), t ∈ (0, 5] for the example 1

N ∥ [u⃗N,32(z1, ·)]1 − [u⃗ex(z1, ·)]1 ∥2 n ∥ [u⃗25,n(z1, ·)]1 − [u⃗ex(z1, ·)]1 ∥2
5 1.6E − 1 16 9.4E − 1
15 6.4E − 2 32 8.5E − 3
25 8.5E − 3 64 5.6E − 3

Source points are generated by the rule (10) and collocation points by (11). The
distribution of the source and collocation points for n = 32 is presented in the �g. 1.

The Lam�e constants are selected as λ = 2, µ = 1 and the density ρ = 1. The scaling
constant κ is chosen equal to 1. As the exact solution, we use the �rst component of a
truncated series of the narrowing of fundamental solutions at the source point z = (0, 6)⊤

u⃗ex(x, t) = κ

26∑
p=0

[Ep(x, z)]1 Lp(κt), (x, t) ∈ D × (0,∞).

Thus, the Fourier-Laguerre coe�cients f⃗ℓ,p are de�ned exactly and are:

f⃗ℓ,p(x) = [Ep(x, z)]1 , x ∈ Γℓ, ℓ = 1, 2, p = 0, 1, . . . , N.

Let's consider the test point z1 = (−1.5, 0)⊤. In the �g. 2 presented values of the
�rst component of the exact u⃗ex and approximated u⃗N,n solutions at (z1, t), t ∈ (0, 5] for
di�erent values of parameters N and n. The absolute errors ∥u⃗N,n(z1, ·) − u⃗ex(z1, ·)∥2
of the approximated solution are given in table 1. Similar results are obtained for other
test points in the domain D or for the second component of the solution.

4.2. Example 2
Due to the fact that it is di�cult to �nd an analytical representation of the exact

solution of the problem (1), in the second example we consider the same exact solution
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Fig. 3. The domain D, test point z1, distribution of the source and collocation
points, used in the example 2

Fig. 4. Values of the �rst component of the exact and approximated
solutions at (z1, t), t ∈ (0, 5] for the example 2

as in the example 1, but for a di�erent domain con�guration. The boundary curves of
the domain D have following representation (see �g. 3)

Γ2 =
{
x2(s) = (cos s, sin s− 0.5 sin2 s+ 0.5), s ∈ [0, 2π]

}
and

Γ1 = {x1(s) = (0.6 cos s, 0.5 sin s), s ∈ [0, 2π]} .

Let's consider the test point z1 = (0, 0.7)⊤. In the �g. 4 presented values of the �rst
component of the exact u⃗ex and approximated u⃗N,n solutions at (z1, t), t ∈ (0, 5] for
di�erent values of parameters N and n. The absolute errors ∥u⃗N,n(z1, ·)− u⃗ex(z1, ·)∥2 of
the approximated solution are given in table 2.

In general, time of the program execution is about 45 seconds for N = 25 and
n = 32, the program was executed on a conventional workstation with a 2.60 GHz
Intel(R) Core(TM) i7 CPU. Results of both numerical examples con�rms the applicabil-
ity of the MFS for the numerical solution of the non-stationary Dirichlet problem for the
elastodynamic equation.
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Table 2

The errors of the approximated solution at (z1, t), t ∈ (0, 5] for the example 2

N ∥ [u⃗N,32(z1, ·)]1 − [u⃗ex(z1, ·)]1 ∥2 n ∥ [u⃗25,n(z1, ·)]1 − [u⃗ex(z1, ·)]1 ∥2
5 1.8E − 1 16 2.1E − 2
15 8.2E − 2 32 7.4E − 3
25 7.4E − 3 64 7.2E − 3

5. Conclusions
The method of fundamental solutions is proposed for numerical solution of the well-

posed Dirichlet problem for the hyperbolic elastodynamic equation. Using the Laguerre
transformation in time, the problem is reduced to the sequence of the stationary Dirichlet
problems for which the fundamental sequence is known. This makes it possible to develop
the MFS for the sequence of stationary problems without using the RBF method. The
source points for the MFS are distributed on the generated arti�cial boundaries and by
the collocation method, the recurrent linear systems are obtained for the calculation of
the unknown coe�cients. Results of some numerical experiments are presented, which
con�rm the applicability of the proposed method.
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Ðîçãëÿíóòî çàñòîñóâàííÿ ìåòîäó ôóíäàìåíòàëüíèõ ðîçâ'ÿçêiâ (ÌÔÐ) äëÿ ÷èñåëü-
íîãî ðîçâ'ÿçóâàííÿ ïî÷àòêîâî-êðàéîâî¨ çàäà÷i åëàñòîäèíàìiêè â ïëîñêèõ äâîçâ'ÿçíèõ
îáëàñòÿõ. Çà äîïîìîãîþ ïåðåòâîðåííÿ Ëàãåððà ïî ÷àñîâié çìiííié, íåñòàöiîíàðíà
çàäà÷à ÷àñòêîâî äèñêðåòèçîâàíà äî ïîñëiäîâíîñòi ñòàöiîíàðíèõ çàäà÷ Äiðiõëå ç íåîäíî-
ðiäíèì ðiâíÿííÿì, äëÿ ÿêî¨ âiäîìà ïîñëiäîâíiñòü ôóíäàìåíòàëüíèõ ðîçâ'ÿçêiâ. Ðîç-
â'ÿçêè ñòàöiîíàðíèõ çàäà÷ çíàõîäèìî çà ÌÔÐ, êîëè íåâiäîìi ôóíêöi¨ àïðîêñèìóþòüñÿ
ëiíiéíîþ êîìáiíàöi¹þ çâóæåíü åëåìåíòiâ ç ôóíäàìåíòàëüíî¨ ïîñëiäîâíîñòi, à òî÷êè
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äæåðåëà ðîçìiùó¹ìî ðiâíîìiðíî íà øòó÷íèõ ãðàíèöÿõ, ðîçòàøîâàíèõ íà ôiêñîâà-
íèõ âiäñòàíÿõ âiä ãðàíèöü îáëàñòi. Íåâiäîìi êîåôiöi¹íòè ó ÌÔÐ-àïðîêñèìàöiÿõ
çíàõîäèìî, âèêîðèñòîâóþ÷è ìåòîä êîëîêàöi¨ ç âðàõóâàííÿì óìîâ Äiðiõëå íà ãðàíèöÿõ
îáëàñòi. Â ðåçóëüòàòi, îäåðæó¹ìî ïîñëiäîâíiñòü ðåêóðåíòíèõ ÑËÀÐ ç îäíàêîâîþ
ìàòðèöåþ òà ðåêóðåíòíèìè ïðàâèìè ÷àñòèíàìè, çàëåæíèìè âiä ðîçâ'ÿçêiâ iç ïîïåðåä-
íiõ iòåðàöié. Çàçâè÷àé, äëÿ ÷èñåëüíîãî ðîçâ'ÿçóâàííÿ çàäà÷i ç íåîäíîðiäíèì ðiâíÿí-
íÿì çà ìåòîäîì ôóíäàìåíòàëüíèõ ðîçâ'ÿçêiâ, ïîòðiáíî çíàéòè ÷àñòêîâèé ðîçâ'ÿçîê
íåîäíîðiäíîãî ðiâíÿííÿ, íàïðèêëàä, çà ìåòîäîì ðàäiàëüíèõ áàçèñíèõ ôóíêöié, ïðîòå,
çà íàøèì ïiäõîäîì, öüîãî íå ïîòðiáíî. Îïèñàíî ïîêðîêîâèé àëãîðèòì äëÿ ÷èñåëüíîãî
ðîçâ'ÿçóâàííÿ ïîñòàâëåíî¨ çàäà÷i òà ïîêàçàíî àëãîðèòì ðîçïîäiëó òî÷îê êîëîêàöi¨ òà
òî÷îê äæåðåëà. Íàâåäåíî ðåçóëüòàòè ÷èñåëüíèõ åêñïåðèìåíòiâ äëÿ ðiçíèõ êîíôiãóðà-
öié îáëàñòåé, ÿêi ïiäòâåðäæóþòü çàñòîñîâíiñòü òà åôåêòèâíiñòü äàíîãî ïiäõîäó.

Êëþ÷îâi ñëîâà: çàäà÷à Äiðiõëå, ðiâíÿííÿ åëàñòîäèíàìiêè, ìåòîä ôóíäàìåíòàëüíèõ
ðîçâ'ÿçêiâ, ïåðåòâîðåííÿ Ëàãåððà.


