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A direct method of Lie-algebraic discrete approximation for numerical solving the
Cauchy problem for the backward heat equation is proposed in this paper. The key idea of
direct method of Lie-algebraic discrete approximations is using analytical approaches, in
particular the method of small parameter or Taylor series expansion, to construct analyti-
cal approximation of the solution for the problem in the form of power series with respect
to the time variable.

The conditions for convergence of analytical series are studied in particular. By means
of small parameter method the recurrence relation for evaluation of each member of a se-
quence is provided. This approach enables fast computation and significant reduction of
computational cost in compare to Generalized method of Lie-algebraic discrete approxima-
tions which performs complete discretization by all variables.

Thereafter, the discrete match of recurrence relation is built using quasi-representations
of the Lie-algebra basis elements, which means, that each differential operator is replaced
by its analogue matrix which is quasi-representation of differential operator in finite dimen-
sional space. It is proved that computational scheme has a factorial rate of convergence.

The proposed approach is applied to model case and obtained results are compared
with finite difference method, classical method of Lie-algebraic discrete approximations
and Generalized method of Lie-algebraic discrete approximation. The convergence rates
for all of these methods are compared in different functional spaces. In addition, we study
the count of arithmetical operations for equal set of nodes. Demonstrated a possibility for
reusability of the numerical scheme for heat equation.

Key words: direct method of Lie-algebraic discrete approximations, backward heat equa-
tion, finite dimensional quasi representation, Lagrange polynomial, small parameter me-
thod, factorial convergence.

1. INTRODUCTION

Backward heat equation has many applications in the diverse scientific fields: signal
processing, image processing, eliminating of diffusion [29]. Hence effective numerical
solution is an actual problem besides the existing of various approaches [19, 20].

We propose solution via the Direct method of Lie-algebraic discrete approximations
that was firstly proposed for advection equation in [24] and has been approbated on
conference [27]. This method was extended for nonlinear equation, namely Burger’s
nonviscous equation and was discussed on conference [5]. This method belongs to wide
family of the methods that use Lie-algebraic discrete approximations [1-5, 7, 8, 10, 12-18,
21-28, 30].

Main prerequisite for these methods is that differential operator should be an element
of the universe enveloping Heisenberg-Weyl’s algebra with basis elements from the Lie
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algebra {1,z,d/dz}, i.e. differential operator within the differential equation must be a
superposition and/or linear combination of these base elements of Lie algebra. As a next
step we introduce the finite dimensional discrete quasi representations of {1,z,d/dz} as
matrices {I, X, Z}.

Next, if we reduce partial differential equation to system of ordinary differential equa-
tions we get the (classic) Method of Lie-algebraic discrete approximations [1, 8, 10, 14]; if
we reduce partial differential equation to the system of algebraic equation (either linear
or nonlinear) we get the Generalized Method of Lie-algebraic discrete approximations
[21-23].

Let us explain the idea of Direct method of Lie-algebraic discrete approximation on
the model problem that is investigated in [24]. Considering a bounded domain Q :=
(0,1) C R, time limit 7" < 400, cylinder Qr = Q x (0,7] we take the Banach space
V = W (Qr) and formulate the Cauchy problem

given advection coefficient ¢ € R,
distribution at initial moment of time ¢ = ¢(x);

find function u = u(z,t) € V such, that: (1)

ou ou
E_FC%_O’ V(x,t) € Qr, B
u|t:0 =p,pE Wwee.ee ((_|C|Ta |C|T) U Q) )

where space V. = W™ (@) denotes the functional space in which all functions and
its derivatives up to arbitrary order are bounded in the domain Qr, i.e.

W= (Qr) ={u: Qr = R: D € L™(Qr),Yo € N}.

The idea of a direct method of Lie-algebraic discrete approximations consists in the
use of analytical approaches, in particular the method of a small parameter, to construct
an approximate analytic solution of a problem (1) in the form of a power series

Un(2,t) = Z (ukk'> =p—cp't+ cQLp"E o (1)l ’)E. (2)
Pt ! ! !

After this, the corresponding discrete series was constructed for (2) using the finite di-
mensional quasi-representations of elements of the Lie algebra

t2 tm

n k
~ t n _n n
Un,p(t) = E (uk,h> = @p — cZppt + 2%y, o +..+(=1)"""Z cphﬁ, (3)

k!
k=0

where the matrix Z approximates the differential operator d/dx. Moreover, the series
(3) is finite, since the matrix Z is nilpotent [15].
It was proved in [24] that the computational scheme is convergent with error rate

|C‘n+1Tn+1 + (Qmaaj {|C|T’ dzamQ})n+1
(n+1)!

[ = unllvi, < " oo

Computational experiments showed that with the same accuracy and convergence
indicators that are characteristic for the generalized method of Lie-algebraic discrete ap-
proximations, we succeeded in significantly reducing the number of arithmetic operations
using approach from [24].
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This paper is constructed in the following way: we formulate the model problem to
which we apply the proposed numerical scheme in second chapter, analytical foundations
for the proposed numerical approach are discussed in the third chapter and its Lie-
algebraic discretization of the recurrence relation is investigated in the fourth chapter.
Numerical results with arithmetic operations count for the model problem are provided
in the fifth chapter.

2. PROBLEM FORMULATION

Considering a bounded domain = (0, 1) C R, time limit 7' < 400, cylinder
Qr = Q x (0,T] we take the Banach space V = W (@) and formulate the Cauchy
problem

given heat conduction coefficient a € R,a > 0,

temperature at initial moment of time ¢ = p(z);

find function u = u(z,t) € V such, that (4)
ou 0%u

a, — _a@7 (Z‘,t) € QT7

uli=o = ¢(2), ¢(z) € C (Q).

The solution of problem (4) we seek using iterative approach method via Lie-alge-
braic discrete approximations, i.e. by means of Direct method of Lie-algebraic discrete
approximations.

3. ITERATIVE APPROACH AND ITS CONVERGENCE

The main focus of the direct method of Lie-algebraic discrete approximation is to
approximate the solution directly. First of all we make the analytical setup for the
proposed approach.

Proofs for the following lemmas can be easy obtained from the proof in [26] for heat
equation by changing a = 1 to a = —1 for the current problem.

Let us denote the derivative of the function as p*) = d*p/dz*.

Lemma 1. (The identity of series expansions). The solution expansion

00 tk
ur = Z ﬂkm, (5)
k=0
where Uy = (—1)kakg0(2k), can be derived by means of iterative approach and provided

here expansion is a Taylor series expansion with respect to time variable.
Lemma 2. (Convergence of the iterative approach). The sequence {uy(z,t)} defined
in (5) converges uniformly to the exact solution, i.e.

lim_un(z,6) = u(e, )
where u(z,t) is the solution of the problem (4).

Lemma 3. (Recurrence relation for the expansion terms). Terms {uy(z)},_, in
expression (5) can be computed by means of the following recurrence relation

_ o
it = g (), ©)
’EL():LP.
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Approach based on Small Parameter Method for obtaining (6) allows fast symbolic
computation and it is a good foundation for direct method Lie-algebraic discrete ap-
proximations. Next chapter is devoted to constructing the numerical scheme on top of
recurrence relation via finite dimensional quasi representations. This is an essence of
Direct method of Lie-algebraic discrete approzimations.

4. NUMERICAL SCHEME

Let n, denotes the count of nodes in domain €2 and n; denotes count of nodes in
interval [0, 7] and Q7. denotes the mesh of nodes built upon nodes {x;}., and {t;},.
Lagrange polynomials /;(x) built at the nodes {z;}"*, form the basis in finite dimensional
space Vp,.

Let us denote the matrix Z as finite dimensional quasi representation of the differential
operator d/dz. The matrix Z is built upon the rule Z;; = I’ (z;) [16]. The key property

of this matrix is such, that matrix Z* = (Z )k approximates differential operator d* /dz*
and matrix Z is nilpotent [15], i.e. there is some number n that all further multiplications
give nil matrix: Yk >n: Z¥ = 0.

Let v; denotes the Lagrange interpolation of function v(z) built at nodes {x;}; .
Main approximation inequalities are proved in [24] for approximation and its derivatives:

. n—k+1
[ =) S(imnﬁ?+1ynv“+”nm
(o] n — .

and approximating operator for arbitrary order of derivative
[v® = Z*0lly, < [[v® — 0}

Having built all required quasi-representations we provide the following lemma as
a key finding of this paper, namely the discrete recurrence relation as a Lie-algebraic
discrete approximation of the recurrence relation.

Lemma 4. (Finite dimensional recurrence relation for the expansion terms). Terms
{tpn}y_, in expression

n 3 tk
Unp =D Uy (7)
k=0 ’

can be computed by means of the following recurrence relation:

gy = —aZ? (Ug.p),
Ug,p = Ph -

(8)

which is the Lie-algebraic discretization of the recurrence relation (6).

Proof. The proof of current lemma is identical to the proof in [26] by changing a =1
to a = —1 for the current problem. O

The key finding of this paper is the proposition of method which has almost the same
properties regarding the convergence but has more comprehensive way in the constructing
and implementation of the numerical scheme.

Let us recall the following series estimation

n/2

1 2nt
D i < @)

k=0
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proved in [26], lemmas from [24] formulate a theorem regarding convergence of the nu-
merical scheme.
Theorem 5. (Convergence of the direct Lie-algebraic numerical scheme). Let u =

n/2 k
t
u(z,t) be the solution of the problem (4), u, = Z ((—1)kak<p(2k)k'> be the Taylor
k=0 ’
n 'I’L/Q tk
expansion of the solution and up, = Z Z <(—1)kak22kgohk') l;(z)| be the finite
j=0 k=0 :

dimensional solution. Then built numerical scheme (8) is convergent having the factorial

rate of convergence:

(2maz {a, diamQ, T})"
4(n/2 —1)!

Tn/2+1
lw = unllv, <

G L L

otn+1

’8"+1u

oo

Proof. Triangle inequality shows the natural way to split the norm ||u — up|y, in the
following way:
lu = unllvi, < llu = wnsallvi + luns2 = unllvs,
where the first norm |lu — u,, /2|y, represents the accuracy of approximation of the so-
lution by means Taylor expansion and second form represents the error of Taylor series
approximation by means of Lie-algebraic finite dimensional quasi representations. Using
the property of error estimation of Taylor series we obtain the estimation for the first

norm:
Tn/2+1 8n+1u

e = gl < e = tmpzlloe < 7y | e

Decomposition of the ||u, /2 — upllv;, implies yields the following calculations:

n/2 n/2

tk tk
||un/2 —upllv, = Z(*l)kakw(zk)y - Z(—l)’“a’“ZQ%hE =
k=0 k=0 ) Vi
n/2 n/2
= o (50 - 2) <3k e - )| £ <
k=0 kT v k!

Vi

n/2 k n/2 . n+1—-2k k
t (diamS) T
< k H (2k) _ (Zk)H < RopoAter) ) 2 H (n+1)H )
<D e 1 ook!—kZ:O“ (n+1-—2k) ) &I -
Let us denote M = max {a, diam$, T} then we derive the estimation for ||u, 2 — un|v,:

n/2

Mn+172k: Mk
_ < M/ ) H (”H)H
n 2 = unllvi, < kzzo <(n T1o 2k:)!) i
n/2 —
B HSO(HH)H Z M+l - Mntlgn—1 “‘P(n+1)“ _ @Mt Hw(nﬂ)H _
o = (nt1-2k) = (2 1) o 4(2-1)! 5

As a conclusion of the above findings we can verify that lim ||u, /o —un[lv;, = 0, in fact:
n—oo

2M n+1
lim ||un/2 _uh”Vh < HSD(TL—H)H lim <()'> =0.
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Finally we have the estimation (9) which implies the convergence of the proposed in (7)
numerical scheme, namely lim |u — upl||v, = 0, since
n—oo

i fu—wlly, < (1m (= wolly, + 1 s — sy, ) = 0.

5. NUMERICAL EXAMPLE

Let us proceed to the analysis of numerical results. For that purpose, we consider a
cylindric domain Qr := (0,1) x (0,1),i.e z € (0,1), t € (0,1). and a model problem:

find function u = u(z,t) such, that:
ou 0%u

E — —@, (a?,t) € QT7 (10)

ult=o = sinz,

having the exact solution u(z,t) = €’ sin(z).
The norm of the error of approximating the exact solution u —up, = u(z,t) — up(x,t)
in the functional space L?(Qr) is calculated by the formula

[l — uh||%2(QT) = / (u — up)® dadt,
Qr

in the functional space L>®(Qr,) is calculated at the discretization nodes:

lu—unllLo(@r,y = sup  |u(z,t) —up(z,t)|,
(z,t)EQT

and the norm in the Sobolev’s space W2(Q7) [6] is calculated according to

du  dup\’ ou  Oup\”
2 _ 2 h h
||u — uhHW1,2(QT) = / [(u — Uh) + <8$L‘ - (’)x) + <8t - 8t> ] dxdt.

T

The exact solution is known for the problem (10), thus we use the following rule for
[l — ua|
[[w — unall

and [|u — up /2]| = 0, thus the value 0/0 is denoted by NaN (not a number).

The model problem is investigated by explicit scheme of finite differences method
(FDM), the method of Lie-algebraic discrete approximations (MLADA), Generalized
method of Lie-algebraic discrete approximations (GMLADA) and Direct method of Lie-
algebraic discrete approximations (DMLADA). The solution of Cauchy problem with the
system of differential equations was performed using Mathematica. Let us denote the
step of discretization by space variable by Az = ﬁ, and At = ﬁ as the step
of discretization by time variable. If discretization steps by both variables are equal
then we use h = Az = At for FDM and GMLADA. Nevertheless h denotes the step of
discretization by space variable for MLADA, because time step is chosen automatically
while solving the Cauchy problem with the system of differential equation by means of
Wolfram Mathematica software.

evaluating the rate of convergence: pp = log, ( ) If we get value ||lu—up|| =0
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Table. 1. Error estimations in L?(Q7) space.

Step h FDM MLADA GMLADA DMLADA
h=1/2 0.129611 0.256518 0.0844799 0.0873493
h=1/4 0.0713553 0.0808159 0.020411 0.0204055
h=1/8 0.0380837 0.00404986 | 0.000689873 0.000689873
h=1/16 | 3.50191 - 1010 1827.91 1.43891-10=7 | 1.43891-10~"

Table. 2. Error estimations in L (Qr ) space.

Step h FDM MLADA GMLADA DMLADA
h=1/2 0.420034 0.976364 0.36965 0.369653
h=1/4 0.241512 0.356581 0.099300 0.0992996
h=1/8 0.130843 0.0212378 0.0038209 0.00382094
h=1/16 | 7.08679-10'" | 12995.3 | 9.1009 10 ° | 9.10089-10~°

Table. 3. Error estimations in W12(Qr) space.

Step h FDM MLADA GMLADA DMLADA
h=1/2 0.413269 0.984519 0.374173 0.378134
h=1/4 0.2323471 0.360836 0.104918 0.104912
h=1/8 0.124427 0.0239794 0.00464834 0.00464834
h=1/16 | 2.00806 - 1012 | 223435 | 1.49632-10© | 1.49632 - 10~

Table. 4. Rates of convergence in L?(Q7) space.
Step h FDM MLADA | GMLADA | DMLADA
h=1/2 | 0.861099 1.66635 2.04926 2.09784
h=1/4 | 0.905849 4.3187 4.88687 4.88648
h=1/8 | —39.7421 | —18.7839 12.2271 12.2271

Table. 5. Rates of convergence in L>(Qr) space.
Step h FDM MLADA | GMLADA | DMLADA
h=1/2 | 0.798413 1.45319 1.89631 1.89631
h=1/4 | 0.884252 4.06952 4.69979 4.69979
h=1/8 | —42.3004 | —19.2229 12.0356 12.0356

Table. 6. Rates of convergence in W12(Qr) space.
Step h FDM MLADA | GMLADA | DMLADA
h=1/2 | 0.830802 1.44808 1.83445 1.84972
h=1/4 | 0.900985 3.91147 4.4964 4.49632
h=1/8 | —43.9394 | —19.8296 11.6011 11.6011

From the above tables we can see the increase of errors in MLADA. This is caused by
the stiff system of ordinary differential equations to which the partial differential equation
was reduced to. Such systems need either increasing the count of nodes or usage of some
special numerical techniques.

Table. 7. Count of arithmetic operations for n, = n; = 3

Step h = 1/16 FDM MLADA | GMLADA | DMLADA
Error in L%(Q7) space 0.0419804 | 0.129574 | 0.0479767 | 0.0507986
Additions, substractions 42 141 1081 42
Multiplications 50 157 1173 51
Divisions 18 3 42 2
Time (ms) 5 1 41 7
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Table. 8. Count of arithmetic operations for n, =n; =5
Step h =1/16 FDM MLADA | GMLADA | DMLADA
Error in L%(Q7) space 0.0199765 | 0.051718 | 0.0146769 | 0.0146827
Additions, substractions 146 607 92921 150
Multiplications 152 663 93785 175
Divisions 66 5 420 4
Time (ms) 5 1 84 7
Table. 9. Count of arithmetic operations for n, =n; =9
Step h = 1/16 FDM MLADA GMLADA DMLADA
Error in L?(Qr) space 0.00965197 | 0.00343672 | 0.000637523 | 0.000637523
Additions, substractions 546 3291 14007601 774
Multiplications 524 3499 14018193 855
Divisions 258 9 5256 8
Time (ms) 6 2 998 15
Table. 10. Count of arithmetic operations for n, = n; = 17
Step h =1/16 FDM MLADA GMLADA DMLADA
Error in L?(Q7) space 4.19664 - 10T | 18151.3 | 1.85966 - 10~¢ | 1.85966 - 10~
Additions, substractions 2114 21043 2767151201 4998
Multiplications 1940 21843 2767300001 5287
Divisions 1026 17 74256 16
Time (ms) 7 4 203068 22

The main benefit of using the proposed numerical scheme is reduced count of arith-
metic operations maintaining the same computational properties as a generalized method
of Lie-algebraic discrete approximations. Provided tables demonstrate such behavior.

Moreover, proposed approach is reusable for backward heat equation and original
heat equation in that sense that the same numerical scheme can be used and only single
change of coefficient is needed, i.e. a := 1 for original heat equation and a := —1 for
backward heat equation. The same behavior was observed for Generalized method of Lie
algebraic discrete approximations [23].

6. CONCLUSIONS

We have applied the direct method of Lie-algebraic discrete approximations for solv-
ing the Cauchy problem for backward heat equation in this paper. Different numerical
schemes (finite difference method, classical method of Lie-algebraic discrete approxima-
tions, generalized method of Lie-algebraic discrete approximations and direct method of
Lie-algebraic discrete approximations) are compared for solving the Cauchy problem for
backward heat equation. One can obtain numerical result with the same high precision
and with significantly less computational costs in compare to the generalized method
of Lie-algebraic discrete approximations because that method approximates the solution
instead of the differential operator of the equation.
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IMPIMUI METO/I, JII-AJITEBPUYHUX JTUCKPETHUX
ATIPOKCUMAIIIN OJIS PO3B’SI3YBAHHSI OBEPHEHOI'O
PIBHAHHA TEIIJIOITPOBIZIHOCTI

A.Kingu6amok', M. IIpuryaa?

 IIpusammuti nidnpuemenn,
Kuis, e-mail: kindybaliuk.arkadii@outlook.com
2 Ivsiscoruts nayionarvnut yrwieepcumem imeni Isana Ppanxa,
eya. Ymuieepcumemcevra, 1, JIveis, 79000, e-mail: mykola.prytula@gmail.com

3ampornoHOBaHO Ta OOTI'PYHTOBAHO NpsiMuil MeTo ] JIi-ajre6puIHUX AUCKPETHUX ATPOK-
CHMAIiil sl YUCeJbHOTO PO3B’sA3yBaHHS 3a1adi Komi ams o6epHeHOro piBHAHHS TEITO-
nposigaocTi. Igest npsimoro merony Jli-ajre6puYHUX AMCKPETHUX ANPOKCHUMAIN MOJISTAE
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y TOMY, IO 3 BUKOPHUCTAHHSIM AHAJITHIHUX MAXOLIB, 30KPEMa METOJd MAJIOTO IapaMeTpa,
abo poskmnany y psap Teitmopa, moby1oBaHO HAOIUKEHUH aHAJIITHYIHUM PO3B’A30K 3a7a4i y
BUIJIsiJIi CTEIIEHEBOIO Psijly 3a 9aCOBOI 3MiHHOIO. Iliciisi boro mobyoBaHO HOro JUCKpeT-
HUH BiAMOBIIHUK 3 BUKOPUCTAHHAM KBa3izobparkeHb eaeMmeHTiB aiarebpu JIi. loBemeno, mo
o64uc/OBajIbHA cXeMa Ma€ (akTopiajabHUil HOpPsigoK 30ikHOCTI. 3’5COBAHO MOXKJIMBIiCTH
MOBTOPHOI'O BUKOPUCTAHHS OOYUCIIOBAJIBHOI CXeMH [Jis1 PIBHAHHS TEILJIOIPOBIHOCTI.

Karonosi caosa: npsmuit meron Jli-asreOpuaHnx OUCKPETHHX AIPOKCHMAaIlii, obepHeHe
PiBHSIHHSI TeIJIOMPOBIAHOCTI, CKIHYeHHOBUMIipHE KBa3izoOparkeHHs, mojinoMm Jlarpamxa,
MeTOJ MaJIoro mapamerpa, ¢pakropiasbaa 30iKHICTD.



