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We consider in a simply connected two- or three-dimensional bounded domain the

Dirichlet boundary value problem for a partial integro-di�erential equation, which contains

the Laplace di�erential operator and the Fredholm integral operator over the domain.

To investigate the weak solution, the formulated problem is rewritten in a variational

formulation in corresponding Sobolev spaces. The uniqueness and existence of the weak

solution are shown by the Lax-Milgram theorem. To establish the classical solution, the

potential theory is involved. We represent the solution as a combination of the volume

potential and the double-layer potential. Then the given problem is reduced to the system

of boundary-domain integral equations of the second kind. We analyze the kernels of

corresponding integral operators and show their compactness in the spaces of continuous

functions. The well-posedness follows from the Riesz-Schauder theory.

Key words: partial integro-di�erential equation, weak and classical solutions, boundary-

domain integral equations.

1. Introduction

Partial Integro-Di�erential Equation (PIDE) is an important branch of modern math-
ematics. PIDEs arise naturally in the study of stochastic processes with jumps. This
type of processes are of particular interest in �nance, population dynamics, and in some
physical and biological models [5, 8, 11]. We consider the linear PIDE which contains
an elliptical partial di�erential operator and a Fredholm integral operator, which in the
general case has the following form

d∑
i,j=1

aij
∂u

∂xi

∂u

∂xj
+

d∑
i=1

bi
∂u

∂xi
+ cu+

∫
D

k(x, y)u(y)dy = f(x)

in some domain D ⊂ Rd, d ∈ N. Here aij , bi, c, k and f are given functions in D.
This equation can be interpreted as some kind of more general Fokker-Plank equation.

As a simple case we investigate the following Dirichlet boundary value problem for the
Laplace equation with a compact perturbation.

Let D ⊂ Rd, d = 2, 3 be a simply connected bounded domain with the boundary Γ.
We search the function u : D → R, which satis�es the partial integro-di�erential equation

−∆u(x) +

∫
D

k(x, y)u(y)dy = f(x), x ∈ D (1)

and the Dirichlet boundary condition

u(x) = 0, x ∈ Γ, (2)
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where k : D ×D → R and f : D → R are given functions.
Our goal is to establish the solvability of the boundary value problem (1)-(2) in weak

and classical senses and to reduce this problem to boundary-domain integral equations
(BDIE).

The outline of the paper is as follows. In the section 2 we use the Lax-Milgram
theorem to prove the existence and uniqueness of the weak solution for the problem (1)-
(2). In the main section 3 the problem (1)-(2) is reduced to the system of BDIE with the
help of combination of volume and double layer potentials for the Laplace equation. By
the Riesz-Schauder theory we show the well possedness of this system in corresponding
spaces of continuous functions.

Note that the use of the integral equation approach doesn't decrease the dimension
of the problem. But it gives us the possibility to apply some mesh-less numerical method
to received BDIEs in contrast with the problem (1)-(2). This point will be investigated
in our future work.

2. Weak solution

We denote ⟨·, ·⟩ the inner product in the Lebesgue space L2(D) and kmin =
min
x,y∈D̄

K(x, y). We make the following assumption during this section: Γ ∈ C1,

f ∈ L2(D), k ∈ C(D ×D) and if kmin < 0

|kmin| ≤
1

λ1|D|
, (3)

where λ1 is the smallest eigenvalue of the Laplace operator with the Dirichlet boundary
condition on Γ.

Let H1(D) denotes the Sobolev space of all functions belong to L2(D) for which their
�rst order weak derivatives also belong to L2(D) and H1

0 (D) is the closure in H1(D) of
the set of all functions with compact support in D. It is known [6], that the function
v from H1(D) belong to H1

0 (D) if and only if v = 0 on Γ. We use also the notation
V = H1

0 (D) and introduce the integral operator

(Ku)(x) =

∫
D

k(x, y)u(y)dy, x ∈ D.

Note that the operator K : L2(D) → L2(D) is compact. According to the smooth
properties of the kernel k, we can estimate for all u, v ∈ H1(D)

⟨Ku, v⟩ ≤ ∥k∥∞|D|∥u∥H1∥v∥H1 . (4)

Assume that u ∈ H2(D) solves the problem (1)-(2). We multiply the equation (1) by
v ∈ V and integrate over D. The use of Green-Ostrogradski formula with the boundary
value condition (2) leads to the variational equation

2∑
i=1

⟨
∂u

∂xi
,
∂v

∂xi

⟩
+ ⟨Ku, v⟩ = ⟨f, v⟩ , v ∈ V. (5)

Let us rewrite the equation (5) in an abstract form. We have a bilinear form a : V×V → R

a(u, v) =

2∑
ℓ=1

⟨
∂u

∂xℓ
,
∂v

∂xℓ

⟩
+ ⟨Ku, v⟩
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and a linear form ℓ : V → R
ℓ(v) = ⟨f, v⟩ .

Thus the variational formulation then have the form

a(u, v) = ℓ(v) for all v ∈ V. (6)

Theorem 1. There exists a unique solution u ∈ H1
0 (D) of the variational prob-

lem (6).
Proof. We can rewrite the bilinear form a as

a(u, v) = aL(u, v) + ⟨Ku, v⟩

with a bilinear form aL : V × V → R

aL(u, v) =

2∑
i=1

⟨
∂u

∂xi
,
∂v

∂xi

⟩
.

It is well known (see for example [4]) that aL is continuous and V -elliptic, i.e.

|aL(u, v)| ≤ C1∥u∥V ∥v∥V and aL(u, u) ≥
1

λ1
∥u∥2V .

Taking into account the inequalities (4), we have immediately

|a(u, v)| ≤ (C1 + ∥k∥∞|D|) ∥u∥V ∥v∥V .

To prove that a is V -elliptic we di�erent two cases.
1. Let kmin ≥ 0. Then ⟨Ku, u⟩ ≥ 0 and we have that a(u, u) ≥ aL(u, u) for all u ∈ V
and therefore a is V -elliptic.
2. Let kmin < 0. Then ⟨Ku, u⟩ ≥ kmin|D|∥u∥2V and as result a(u, u) ≥ (λ−1

1 +
kmin|D|)∥u∥2V . According to the condition (3), the bilinear form a is again V -elliptic.

Thus our bilinear form a is continuous and V -elliptic and the linear form ℓ is contin-
uous. Then the statement of the theorem follows from the Lax-Milgram theorem. 2

The condition (3) can be simpli�ed for the two-dimensional case as follows. Let our
simply connected domain D contains the disc with maximal radius R. Then the minimal
Dirichlet eigenvalue can be estimated as [1]

λ1 ≥ A

R2

with A = 0.6197. Thus the requested property (3) for the function k looks as |kmin| ≤
0.52.

The solution of (6) is called a weak solution of (1)-(2). Following [6] if Γ ∈ C2 and
f ∈ L2(D) the weak solution of the variational problem aL(u, v) = ⟨f, v⟩, v ∈ V belongs
to H2(D). If we get then back to the problem (1)�(2) it is clear then that their has a
unique solution u ∈ H2(D) ∩ H1

0 (D). More regularity assumptions on the right hand
side f implies the existence of the classical solution of the considered problem. But we
would like to investigate the solvability of (1)�(2) in the classical sense involving integral
equations. This give us some way to �nd the numerical solution of (1)�(2) in the future.

Note, that it is possible to replace the integral in (1) with a more general (nonlinear)
operator, for results in this direction see [3, 13] with a general setting covered in [2, 12].
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3. Classical solution

Now we assume during this section that Γ ∈ C2, f ∈ C(D) and k ∈ C(D ×D). We
look for the classical solution u ∈ C2(D) ∩ C(D̄) of the problem (1)-(2). We would like
to apply for it the integral equation technique. Let

Φ(x, y) =


1

2π
ln

1

|x− y|
, x, y ∈ R2, x ̸= y,

1

4π

1

|x− y|
, x, y ∈ R3, x ̸= y

be a fundamental solution of the Laplace operator and by ν we denote the outward unit
normal to the boundary Γ.
According to properties of volume and double layer potentials for the Laplace equation,
we have the following result.

Theorem 2. The solution of the problem (1)�(2) can be presented in the form

u(x) =

∫
D

φ(y)Φ(x, y)dy +

∫
Γ

ψ(y)
∂Φ

∂ν(y)
(x, y)ds(y), x ∈ D,

where the unknown densities φ ∈ C(D) and ψ ∈ C(Γ) satisfy the system of BDIE
φ(x)−

∫
D

φ(y)G(x, y)dy −
∫
Γ

ψ(y)
∂G

∂ν(y)
(x, y)ds(y) = −f(x), x ∈ D,

ψ(x)− 2

∫
D

φ(y)Φ(x, y)dy − 2

∫
Γ

ψ(y)
∂Φ

∂ν(y)
(x, y)ds(y) = 0, x ∈ Γ

(7)

with

G(x, y) =

∫
D

k(x, z)Φ(z, y)dz.

To analyze the solvability of the system (7) we need to know the smooth properties of
the kernel G.

Lemma 3. The kernel G is continuous, i.e. G ∈ C(D ×D).
Proof. Clearly it is su�cient to consider the simple case of a ball (a disc in R2) DR

with the radius R. We have

G(x, y) = k(x, z∗)I(y), with I(y) =

∫
DR

Φ(z, y)dz, z∗ ∈ DR.

The value of the integral only depends on the distance ϱ = |x|. Firstly we analyze the
two dimensional case. Let x = (0, ϱ). Now introduce the polar coordinate z1 = r cosϕ,
z2 = r sinϕ and reduce the integral I to

I(y) = Ĩ(ϱ) = − 1

π

∫ R

0

r

∫ 2π

0

ln
(
r2 + ϱ2 − 2rϱ sinϕ

)
dϕdr.

The following table integral can be found in [10]∫ 2π

0

ln(a+ c sin t)dt = 2π ln
a+

√
a2 − c2

2
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for a2 > c2. Then we have immediately Ĩ(ϱ) = 2(R2 − ϱ2 −R2 lnR).
For the three-dimensional case we assume x = (0, 0, ϱ) and introduce the spherical coor-
dinates z1 = r sin θ cosϕ, z2 = r sin θ sinϕ and z3 = r cos θ. Then we have

I(y) = Ĩ(ϱ) =
1

2

∫ R

0

r2
∫ π

0

sin θ√
r2 + ϱ2 − 2rϱ cos θ

dθdr.

The straightforward calculation gives Ĩ(ϱ) =
R2

2
− ϱ2

6
. 2

Now we investigate the well-possedness of the BDIE (7).
Theorem 4. The system of BDIE (7) is uniquely solvable.

Proof. Firstly we consider the homogeneous system of BDIEs and construct with their
solutions φ̃ ∈ C(D) and ψ̃ ∈ C(Γ) the combination of potentials

v(x) =

∫
D

φ̃(y)Φ(x, y)dy +

∫
Γ

ψ̃(y)
∂Φ

∂ν(y)
(x, y)ds(y), x ∈ D. (8)

Clearly the function v satis�es the homogeneous problem

−∆v(x) +

∫
D

k(x, y)v(y)dy = 0 x ∈ D, v(x) = 0, x ∈ Γ.

From the maximum principle for the PIDE [7] we conclude that v = 0 in D.
Next we act by the Laplace operator to the representation (8) and receive that −∆v(x) =
φ̃(x), x ∈ D. Thus φ̃ = 0 in D. Then we have for ψ̃ the following boundary integral
equation of the second kind

ψ̃(x)− 2

∫ 2π

0

ψ̃(y)
∂Φ

∂ν(y)
(x, y)ds(y) = 0, x ∈ Γ.

It is well known [9] that ψ̃ = 0.
Now we introduce the integral operators

(A11φ)(x) =

∫
D

φ(y)G(x, y)dy, (A12φ)(x) =

∫
Γ

φ(y)
∂G

∂ν(y)
(x, y)dy, x ∈ D,

(A21φ)(x) = 2

∫
D

φ(y)Φ(x, y)dy, (A22φ)(x) = 2

∫
Γ

φ(y)
∂Φ

∂ν(y)
(x, y)dy, x ∈ Γ.

Then we can rewrite the system (7) in the following operator form{
(I −A11)φ−A12ψ = −f in D,
−A21φ+ (I −A22)ψ = 0 on Γ.

(9)

According to lemma 3, the kernels G(x, y) for all x, y ∈ D and ∂G
∂ν(y) (x, y) for all x ∈ D

and y ∈ Γ are continuous. Also the kernel Φ(x, y) for all x ∈ Γ and y ∈ D is continuous
too, and ∂Φ

∂ν(y) (x, y) for all x, y ∈ Γ is continous for R2 case and has a week singularity

in R3. Therefore integral operators A11 : C(D) → C(D), A12 : C(Γ) → C(D), A21 :
C(D) → C(Γ) and A22 : C(Γ) → C(Γ) in the system (9) are compact. As a result,
we can apply the Riesz-Schauder solvability theory to the operator equation (9) (see
for example [9]). Thus from the proved uniqueness of the solution of (7) follows their
existence and stability. 2

Now we get the solvability of the problem (1)�(2) in the classical sense.
Theorem 5. The problem (1)�(2) has a unique solution.
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4. Conclusions

We investigated the Dirichlet boundary value problem for a simplest case of a PIDE
named the Fokker-Plank equation. This equation contains a combination of a partial
elliptic operator and a Fredholm integral operator. Uniqueness and existence of the
weak solution in Sobolev space are shown by the Lax-Milgram theorem. Also we proved
the well-posedness of this problem in the classical sense. To do it we reduced this problem
to the system of BDIEs and recall the Riesz-Schauder solvability theory. Our future plans
are connected with the numerical solution of the received BDIE.

References

1. Ba�nuelosR. Carroll, T. Brownian motion and the fundamental frequency of a drum //Duke
Math. J. � 1994. � V. 75. � P. 575�602.

2. BarlesG. On the Dirichlet problem for second-order elliptic integro-di�erential equations
/G.Barles, E.Chasseigne, C. Imbert // Indiana University Mathematics Journal. � 2008. �
V. 57. � P. 213�246.

3. CorreaF.J.S.A. Existence of solutions of integro-di�erential semilinear elliptic equations
/F.J.S.A.Correa, LimaN. de Assis, R.N. de Lima //Applicable Analysis. � 2021. � DOI:
10.1080/00036811.2021.2005786.

4. DautrayR. Mathematical Analysis and Numerical Methods for Science and Technology. �
Vol.2. Functional and Variational Methods. /R.Dautray, J.-L. Lions. � Springer, 1988.

5. DehghanM. Solution of a partial integro-di�erential equation arising from viscoelasticity
/M.Dehghan // International Journal of Computer Mathematics. � 2006. � V. 83. � P. 123�
129.

6. Evans L.C. Partial Di�erential Equations / L.C. Evans. � Second Edition. � Springer, 2010.

7. GarroniM. Second Order Elliptic Integro-Di�erential Problems /M.Garroni, J.Menaldi. �
Chapman & Hall/CRC, 2002.

8. HirsaA. An Introduction to the Mathematics of Financial Derivatives /A.,Hirsa, S.N.Neft-
ci. � Academic Press, 2013.

9. KressR. Linear Integral Equations. � Third Edition /R.Kress. � Springer, 2013.

10. PrudnikovA.P., BrychkovYu. A., MarichevO. I. Integrals and Series: Elementary Func-
tions /A.P. Prudnikov, Yu.A.Brychkov, O.I.Marichev. � Gordon and Breach Science Pub-
lishers, 1986.

11. Sadegh ZadehK. An integro-partial di�erential equation for modeling bio�uids �ow in frac-
tured biomaterials /K. Sadegh Zadeh // J. Theor. Biol. � 2011. � V. 273. � P. 72�79.

12. TairaK. Boundary value problems for elliptic integro-di�erential operators /K.Taira. �
//Math. Z. � 1996. � V. 222. � P. 305�327.

13. Tsai L.-Y. On the solvability of integro-di�erential equations of elliptic type /L.-Y.Tsai
//Chinise Journal of Mathematics. � 1986. � V. 14. � P. 163�177.

Article: received 15.09.2022
revised 12.10.2022

printing adoption 19.10.2022



ChapkoR., PalianytsiaO.

44 ISSN 2078�5097. Âiñí. Ëüâiâ. óí-òó. Ñåð. ïðèêë. ìàòåì. òà iíô. 2022. Âèï. 30

ÏÐÎ ÌÅÒÎÄ ÃÐÀÍÈ×ÍÎ-ÏÐÎÑÒÎÐÎÂÈÕ IÍÒÅÃÐÀËIÂ

ÄËß IÍÒÅÃÐÎ-ÄÈÔÅÐÅÍÖIÀËÜÍÎÃÎ ÐIÂÍßÍÍß

Â ×ÀÑÒÈÍÍÈÕ ÏÎÕIÄÍÈÕ

Ð.Õàïêî, Î.Ïàëÿíèöÿ

Ëüâiâñüêèé íàöiîíàëüíèé óíiâåðñèòåò iìåíi Iâàíà Ôðàíêà,

âóë. Óíiâåðñèòåñüêà, 1, Ëüâiâ, 79000,

e-mail: roman.chapko@lnu.edu.ua

Ó îäíîçâ'ÿçíié îáìåæåíié îáëàñòi ðîçãëÿíóòî êðàéîâó çàäà÷ó Äiðiõëå äëÿ iíòåãðî-

äèôåðåíöiàëüíîãî ðiâíÿííÿ â ÷àñòêîâèõ ïîõiäíèõ, ÿêå ìiñòèòü äèôåðåíöiàëüíèé îïå-

ðàòîð Ëàïëàñà òà iíòåãðàëüíèé îïåðàòîð ïî çàäàíié îáëàñòi. Äîñëiäæåíî iñíóâàí-

íÿ òà ¹äèíiñòü ñëàáêîãî òàê êëàñè÷íîãî ðîçâ'ÿçêiâ. Ó âèïàäêó ñëàáêîãî ðîçâ'ÿçêó

âèêîðèñòàíî òåîðåìó Ëàêñà-Ìiëãðàìà, à ó âèïàäêó êëàñè÷íîãî � òåîðiþ Ðiññà-Øàó-

äåðà. Ó ïiäñóìêó ðîçãëÿäóâàíà êðàéîâà çàäà÷à ðåäóêîâàíà äî ñèñòåìè êîðåêòíèõ

ãðàíè÷íî-ïðîñòîðîâèõ iíòåãðàëüíèõ ðiâíÿíü.

Êëþ÷îâi ñëîâà: iíòåãðî-äèôåðåíöiàëüíå ðiâíÿííÿ â ÷àñòèííèõ ïîõiäíèõ, ñëàáêèé i

êëàñè÷íèé ðîçâ'ÿçêè, ãðàíè÷íî-ïðîñòîðîâå iíòåãðàëüíå ðiâíÿííÿ.


