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We consider in a simply connected two- or three-dimensional bounded domain the
Dirichlet boundary value problem for a partial integro-differential equation, which contains
the Laplace differential operator and the Fredholm integral operator over the domain.
To investigate the weak solution, the formulated problem is rewritten in a variational
formulation in corresponding Sobolev spaces. The uniqueness and existence of the weak
solution are shown by the Lax-Milgram theorem. To establish the classical solution, the
potential theory is involved. We represent the solution as a combination of the volume
potential and the double-layer potential. Then the given problem is reduced to the system
of boundary-domain integral equations of the second kind. We analyze the kernels of
corresponding integral operators and show their compactness in the spaces of continuous
functions. The well-posedness follows from the Riesz-Schauder theory.

Key words: partial integro-differential equation, weak and classical solutions, boundary-
domain integral equations.

1. INTRODUCTION

Partial Integro-Differential Equation (PIDE) is an important branch of modern math-
ematics. PIDEs arise naturally in the study of stochastic processes with jumps. This
type of processes are of particular interest in finance, population dynamics, and in some
physical and biological models [5,8,11]. We consider the linear PIDE which contains
an elliptical partial differential operator and a Fredholm integral operator, which in the
general case has the following form

d d
ou Ou ou
D St |, e ahutard = 1t

4,j=1

in some domain D C R%, d € N. Here aij, b, ¢, k and f are given functions in D.

This equation can be interpreted as some kind of more general Fokker-Plank equation.
As a simple case we investigate the following Dirichlet boundary value problem for the
Laplace equation with a compact perturbation.

Let D C R?, d = 2,3 be a simply connected bounded domain with the boundary I
We search the function v : D — R, which satisfies the partial integro-differential equation

~Au(z) + /D k(e y)u(y)dy = f(z), ze€D (1)

and the Dirichlet boundary condition
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where k: D x D — R and f: D — R are given functions.

Our goal is to establish the solvability of the boundary value problem (1)-(2) in weak
and classical senses and to reduce this problem to boundary-domain integral equations
(BDIE).

The outline of the paper is as follows. In the section 2 we use the Lax-Milgram
theorem to prove the existence and uniqueness of the weak solution for the problem (1)-
(2). In the main section 3 the problem (1)-(2) is reduced to the system of BDIE with the
help of combination of volume and double layer potentials for the Laplace equation. By
the Riesz-Schauder theory we show the well possedness of this system in corresponding
spaces of continuous functions.

Note that the use of the integral equation approach doesn’t decrease the dimension
of the problem. But it gives us the possibility to apply some mesh-less numerical method
to received BDIEs in contrast with the problem (1)-(2). This point will be investigated
in our future work.

2. WEAK SOLUTION

We denote (-,-) the inner product in the Lebesgue space L?(D) and kpin =

min K(z,y). We make the following assumption during this section: T' € C1,
z,yeD

feL*D), ke C(Dx D) and if kpin <0

1
I Q—
|km7,n| = )\1|D|’ (3)

where \; is the smallest eigenvalue of the Laplace operator with the Dirichlet boundary
condition on I'.

Let H'(D) denotes the Sobolev space of all functions belong to L?(D) for which their
first order weak derivatives also belong to L?(D) and Hg (D) is the closure in H!(D) of
the set of all functions with compact support in D. It is known [6], that the function
v from H'(D) belong to H}(D) if and only if v = 0 on I'. We use also the notation
V = H}(D) and introduce the integral operator

(K@) = [ kepuiy. aeD.
Note that the operator K : L?(D) — L?(D) is compact. According to the smooth
properties of the kernel k, we can estimate for all u,v € H'(D)
(Ku,v) < |[kllco| Dll|ull [0l a2 (4)

Assume that u € H?(D) solves the problem (1)-(2). We multiply the equation (1) by
v € V and integrate over D. The use of Green-Ostrogradski formula with the boundary
value condition (2) leads to the variational equation

2
Z<§‘Z7§;}z>+<Ku’v>:<f,v>’ veV. (5)

1=

Let us rewrite the equation (5) in an abstract form. We have a bilinear forma : VxV — R

2/ ou O
a(u,v)zz 92, O + (Ku,v)

{=1
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and a linear form ¢: V — R
L) =(f,v).

Thus the variational formulation then have the form
a(u,v) =£(v) forall veV. (6)

Theorem 1. There exists a unique solution u € H} (D) of the variational prob-
lem (6).
Proof. We can rewrite the bilinear form a as

a(u,v) = ar(u,v) + (Ku,v)

with a bilinear form ar, : V xV — R
2/ ou v
ar(u,v) = Z <8mi’ 8$Z> .
It is well known (see for example [4]) that ay, is continuous and V-elliptic, i.e.

1
lar(u,0) < Cillullv[lvllv and  ap(u,u) > =[ulli-
1

Taking into account the inequalities (4), we have immediately
la(u, v)| < (Co+ [[kllo| D] [Jullv[[v]v-

To prove that a is V-elliptic we different two cases.

1. Let kpin > 0. Then (Ku,u) > 0 and we have that a(u,u) > ar(u,u) for all u € V

and therefore a is V-elliptic.

2. Let Kpin < 0. Then (Ku,u) > kpin|D|||ul|? and as result a(u,u) > (A7' +

Emin|D|)||ul?. According to the condition (3), the bilinear form a is again V-elliptic.
Thus our bilinear form a is continuous and V-elliptic and the linear form ¢ is contin-

uous. Then the statement of the theorem follows from the Lax-Milgram theorem. O

The condition (3) can be simplified for the two-dimensional case as follows. Let our

simply connected domain D contains the disc with maximal radius R. Then the minimal

Dirichlet eigenvalue can be estimated as [1]

A
Alzﬁ

with A = 0.6197. Thus the requested property (3) for the function k looks as |kmin| <
0.52.

The solution of (6) is called a weak solution of (1)-(2). Following [6] if I' € C? and
f € L?(D) the weak solution of the variational problem ar,(u,v) = (f,v), v € V belongs
to H?(D). If we get then back to the problem (1)-(2) it is clear then that their has a
unique solution u € H2(D) N H}(D). More regularity assumptions on the right hand
side f implies the existence of the classical solution of the considered problem. But we
would like to investigate the solvability of (1)—(2) in the classical sense involving integral
equations. This give us some way to find the numerical solution of (1)—(2) in the future.

Note, that it is possible to replace the integral in (1) with a more general (nonlinear)
operator, for results in this direction see [3,13] with a general setting covered in [2,12].
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3. CLASSICAL SOLUTION

Now we assume during this section that I' € C?, f € C(D) and k € C(D x D). We
look for the classical solution u € C?(D) N C(D) of the problem (1)-(2). We would like
to apply for it the integral equation technique. Let

1 1
—In 7'r7y€R2a'r;éy7
21 |z -yl

P(z,y) =
1 3
s ,l',yER7$7éy
P

be a fundamental solution of the Laplace operator and by v we denote the outward unit
normal to the boundary T'.
According to properties of volume and double layer potentials for the Laplace equation,
we have the following result.

Theorem 2. The solution of the problem (1)—(2) can be presented in the form

uw) = [ oty + [ v s (ndst), aeD.

where the unknown densities ¢ € C(D) and ¢ € C(T) satisfy the system of BDIE

ﬂ@*L@@G@w@*A¢@

¢@0—2Aﬁdw®@wﬂy—zéww)a¢

G) (z.9)ds(y) = —f(z), =€ D,
()

)(:E,y)ds(y) =0, zel

with
G(z,y) /kxz (z,y)dz.

To analyze the solvability of the system (7) we need to know the smooth properties of
the kernel G.

Lemma 3. The kernel G is continuous, i.e. G € C(D x D).

Proof. Clearly it is sufficient to consider the simple case of a ball (a disc in R?) Dg
with the radius R. We have

G(z,y) = k(z,2")I(y), with I(y) = /D ®(z,y)dz, z* € Dg.

The value of the integral only depends on the distance o = |z|. Firstly we analyze the
two dimensional case. Let = (0, 9). Now introduce the polar coordinate z; =  cos ¢,
2o = rsin ¢ and reduce the integral I to

2m
I(y) =1I(o :——/ / (r* + 0* — 2rosin @) dedr.

The following table integral can be found in [10]

a++va?—c?

2m
/ In(a + csint)dt = 27 In
0 2
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for a®> > ¢®. Then we have immediately I (o) = 2(R? — 0> — R*In R).
For the three-dimensional case we assume x = (0,0, ¢) and introduce the spherical coor-
dinates z; = rsinf cos ¢, zo = rsinfsin ¢ and z3 = rcosf. Then we have

~ 1 [k g sin @
I(y)=I(p) = = r? / dbdr.
m=iw=5[ NCEr e,

B R2 2
The straightforward calculation gives I(p) = 5 9. O

Now we investigate the well-possedness of the BDIE (7).
Theorem 4. The system of BDIE (7) is uniquely solvable.
Proof. Firstly we consider the homogeneous system of BDIEs and construct with their
solutions ¢ € C(D) and @ € C(I') the combination of potentials
. ~ 0D
o@) = [ ey + [ g ist). e D. ®
D r v (y)

Clearly the function v satisfies the homogeneous problem
—Av(z) +/ kE(x,y)v(y)dy=0 =z €D, v(iz) =0, zel.
D

From the maximum principle for the PIDE [7] we conclude that v =0 in D.

Next we act by the Laplace operator to the representation (8) and receive that —Awv(z) =
P(z), x € D. Thus ¢ = 0 in D. Then we have for ¢ the following boundary integral
equation of the second kind

- T 9D

It is well known [9] that ¢ = 0.
Now we introduce the integral operators

(A1) () :/Dw(y)G(fmy)dy, (A1) () =/s0(y)£(x,y)dy, reD,

(z,y)ds(y) =0, =zel.

r v(y)
(n)(@) =2 [ p)¥(ed. (Ame)(a) =2 [ o)z lesy, veT,

Then we can rewrite the system (7) in the following operator form

(I*All)@*Alflp = 7f in Da (9)
—Aglgﬁ + (I — AQQ)’I/J =0 onl.

According to lemma 3, the kernels G(z,y) for all z,y € D and 8?/—(C;)(ac,y) for all x € D
and y € I' are continuous. Also the kernel ®(z,y) for all z € I' and y € D is continuous
too, and %(m,y) for all z,y € T is continous for R? case and has a week singularity
in R3. Therefore integral operators A1y : C(D) — C(D), A1z : C(T) — C(D), Az :
C(D) —» C(I') and Az : C(I') — C(I') in the system (9) are compact. As a result,
we can apply the Riesz-Schauder solvability theory to the operator equation (9) (see
for example [9]). Thus from the proved uniqueness of the solution of (7) follows their
existence and stability. a

Now we get the solvability of the problem (1)—(2) in the classical sense.

Theorem 5. The problem (1)—(2) has a unique solution.
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4. CONCLUSIONS
We investigated the Dirichlet boundary value problem for a simplest case of a PIDE

named the Fokker-Plank equation. This equation contains a combination of a partial
elliptic operator and a Fredholm integral operator. Uniqueness and existence of the
weak solution in Sobolev space are shown by the Lax-Milgram theorem. Also we proved
the well-posedness of this problem in the classical sense. To do it we reduced this problem
to the system of BDIEs and recall the Riesz-Schauder solvability theory. Our future plans
are connected with the numerical solution of the received BDIE.
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ITPO METOJA TPAHUYHO-ITPOCTOPOBUX IHTEI'PAJIIB
AJ1d IHTEI'PO-IN®EPEHIITAJIBHOTI'O PIBHAHHSI
B YACTUHHUX ITOXIIHUX
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YV oxHO3B’sA3Hil 06MexeHiit 06acTi po3TyIAHYTO KpaitoBy 3ama4ay Jlipixsie g inTerpo-
nudepeHiagbHOro PiBHSHHS B YaCTKOBHX IOXIJHUX, sKe MiCTHTH audepeHniaabHuil ome-
parop Jlammaca Ta iHTerpasbHHil omepaTop mo 3ajaHiit obmacti. Jlocmimkeno icHyBaH-
HsI Ta €JUHICTb CJAOKOr0 TaK KJIACHYHOTO PO3B’S3KiB. Y BHIQJKY CJIA0OKOr0 pPO3B’SI3KY
BHKOPHCTaHO TeopeMy Jlakca-Minrpama, a y BUIaaKy KJacH4HOro — Teopiro Picca-Illay-
nepa. VYV HOACYMKY pO3TJsiTyBaHa KpaidoBa 3a7a4Ya PeJAyKOBAaHA 0 CUCTEMHU KODPEKTHHX
TPAHUYHO-IIPOCTOPOBUX IHTErPAJbHUX PiBHSIHB.

Knatou06i caosa: inTerpo-audepeHiiiajbae piBHSIHHS B YaCTUHHUX IOXiJHUX, Caabkwii i
KJIACUIHUN PO3B’A3KH, FPAHUIHO-IIPOCTOPOBE iHTErpajibHe PiBHIHHSI.



