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In this paper we investigate a method that has been proposed by Rangogni and Occhi

of approximating the interior Dirichlet boundary value problem for the generalized Laplace

equation into the boundary value problem for simpler elliptic equations together with

the boundary integral equations approach. Based on some assumptions the considered

problem can be substituted by the Dirichlet problem for the Laplace, Klein-Gordon or

Helmholtz equations. Small theoretical notes regarding the uniqueness of the solution to

these boundary value problems are provided. Afterward, having fundamental solutions

which are well known for each of these equations, we use the boundary integral equations

method representing the solution as a single- or double-layer potential in conjunction with

the quadrature method to obtain a fully discrete system of linear algebraic equations with

unknown approximate values of the density at quadrature points. The well-posedness of the

integral equations in appropriate spaces and the convergence analysis are also considered.

Ñalculating the approximate solution of the problem for a constant-coe�cient equation, the

approximate solution for the generalized Laplace equation is obtained as well by making

one simple additional action. Finally, several numerical examples for di�erent domains

with di�erent discretization parameters are provided in order to show the e�ectiveness of

this approach, especially in the case of exact reduction to a constant-coe�cient equation.

Key words: Dirichlet problem, generalized Laplace equation, boundary integral equations,

potentials, quadrature method.

1. Introduction

During mathematical modelling of many physical processes, the elliptic di�erential
equations with variable coe�cients often appear. In particular, a function that corre-
sponds to variable coe�cients mostly de�nes some speci�c property (for example, elec-
trical or thermal conductivity) of a physical process in a domain.

We shall consider the generalized Laplace equation following the de�nition in [10,
11], although this second-order elliptic equation with variable coe�cients is also called
conductivity equation or EIT (electric impedance tomography) equation [8] or stationary
heat transfer equation [6].

Since, in general, there is no explicit view of a fundamental solution for this di�erential
equation or its �nding can be quite complicated the parametrix (Levi function) is used
instead. Using parametrix and utilizing Green's third identity (see [6]) the interior Dirich-
let boundary value problem for the generalized Laplace equation in a two-dimensional
domain was reduced to two systems of boundary-domain integral equations and there
was shown their equivalence to the original boundary value problem. In [7] a new family
of parametrices was explored for the elliptic operator to obtain an equivalent system
of boundary-domain integral equations and unique solvability in appropriate spaces was
investigated.
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The main disadvantage of using parametrix is that we do not decrease the dimension
of the problem. While there are several well-known e�cient methods for obtaining an
approximate solution of problems for the Laplace equation, its generalized variant is
considerably more complex, and therefore requires special handling. For example, one
can apply certain assumptions and approximations in order to transform this equation
in a way that makes using numerical methods becomes appropriate.

In this paper we will demonstrate one of such methods, which was proposed by Ran-
gogni and Occhi [10] and was used in combination with the boundary elements method.
Here we will apply the boundary integrals approach together with the quadrature method
as a means of obtaining a numerical approximation of the problem instead of the boun-
dary element method. Note, that the quadrature method is also called the Nystr�om
method for the integral equation of the second kind. In particular, we will be using it
to the Dirichlet problem for the Laplace, Klein-Gordon and Helmholtz equations, which
are involved in the aforementioned transformation process.

So, in this work we use the idea from the [10] to transform the starting equation
with variable coe�cients into a constant-coe�cient equation for which a fundamental
solution is available and then apply an e�ective numerical method. The �rst step in the
procedure is to avoid the �rst partial derivatives of the unknown function and next step
is to approximate the obtained equation.

For the outline of the work, in Section 2, we transformed the generalized Laplace
equation to a constant-coe�cient di�erential equation using the approach from the paper
[10]. The fundamental solution of each equation that has been obtained and properties of
potentials are provided in Section 3. In section 4, the Dirichlet boundary value problem
for these equations is considered together with theoretical notes, the boundary integral
equations method and full discretization. In Section 5, numerical examples for di�erent
domain con�gurations are considered. Some conclusions are given in Section 6.

Let D be a simply connected bounded domain in R2 with boundary Γ ∈ C2 (see
Fig. 1). We consider the following interior Dirichlet boundary value problem in the
two-dimensional domain D: �nd such function w ∈ C2(D) ∩ C(D) that satis�es the
generalized Laplace equation

∇ · (σ∇w) = 0 in D (1)

and the boundary condition
w = g on Γ, (2)

where function σ ∈ C∞(D), σ > 0 and su�ciently smooth function g are known. By ν
we denote the outward unit normal to the boundary and ∇· and ∇ are divergence and
gradient operators, respectively.

The problem can be interpreted as a stationary heat transfer problem in an isotropic
medium for a planar bounded domain with prescribed temperature on the boundary and
known thermal conductivity σ.

2. Reduction to a constant-coefficient equation

Let us brie�y provide a scheme, described in [10, 11] how to obtain a constant-
coe�cient elliptic equation based on suitable assumptions. Since σ is a positive function
we can rewrite the equation (1) in the form

∆w +
1

σ
∇w · ∇σ = 0 in D. (3)
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Fig. 1. An example of a domain D

Note that we get an ordinary Laplace equation if σ ≡ const. Let the solution w(x)
have the following form

w(x) = v(x)h(x), x ∈ D. (4)

Once we substitute (4) in (3), and introduce a condition that h(x) eliminates the coe�-
cients in front of ∂v

∂x1
and ∂v

∂x2
, we get a di�erential equation for h. According to [10], its

analytical solution is as follows:

h(x) =
1√
σ(x)

. (5)

As a result, equation (3) will look like this

∆v(x) + q(x)v(x) = 0, x ∈ D, (6)

where

q(x) =
|∇σ(x)|2

4σ2(x)
− ∆σ(x)

2σ(x)
. (7)

From here on out |x| represents the Euclidian norm of the vector x. Taking into account
that σ(x) > 0, the described transformations result in an equivalent equation. If a
fundamental solution is known for (6), then this di�erential equation may be replaced
by an equivalent boundary integral equation.

Finding the fundamental solution for the equation (6) remains a relatively complicated
task due to the presence of a non-constant function q. To alleviate this issue, a method
of approximating this equation was proposed in [10]. Although the following algorithm
is rather primitive, it results in a constant-coe�cient partial di�erential equation which
could be solved numerically by using the boundary integral equations method.

We assume that the values of function σ within the domain D are in a narrow range,
which is often encountered in real-life experiments. In that case, the derivatives of σ in
q will be close to zero, and may be neglected. It also follows that for points in D, the
following ratio holds

R =
max |q(x)|
min |q(x)|

≈ 1, x ∈ D.
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Considering this, we may replace the function q with a constant-coe�cient, which will
be the arithmetic mean value of q in D. We get the following expression as a result

∆u(x) + κu(x) = 0, x ∈ D, (8)

where

κ =
1

meas(D)

∫
D

q(x)dx,

κ is a real value and meas(D) is a measure of the domain D. Let us de�ne κ2 = |κ|.
Therefore, we have three possible types of equations for (8) depending on the value

κ:

� κ = 0 � Laplace equation: ∆u(x) = 0, x ∈ D,
� κ < 0 � Klein-Gordon equation: ∆u(x)− κ2u(x) = 0, x ∈ D,
� κ > 0 � Helmholtz equation: ∆u(x) + κ2u(x) = 0, x ∈ D.

These types of elliptic partial di�erential equations can be solved by using the boundary
integral equations approach.

We also consider the boundary condition (2) for the generalized Laplace equation (1).
For the aforementioned Dirichlet condition and taking into account the decomposition
of the solution (4), we obtain an equivalent boundary condition for the transformed
di�erential problem

u(x) = f(x), x ∈ Γ, (9)

where f(x) =
√
σ(x) g(x).

We now have all the data required to numerically solve the problem (8)-(9) using
the boundary integrals method. There are many known numerical methods that can
e�ciently solve problems based on this equation. In particular, the boundary elements
method was successfully used in [10] and [11]. It was chosen because of its ease of use
and its applicability for problems on in�nite domains. The purpose of this paper is
to investigate the e�ciency of the boundary integrals method, which has a solid and
well-researched theoretic foundation and is also applicable for di�erent types of domains.

It is well known that the Dirichlet problem for Laplace and Klein-Gordon equations
has at most one solution (see [9, 12]). But there are some problems with uniqueness in
the case of the Helmholtz equation. If Imκ > 0 then the interior Dirichlet problem has at
most one solution (see [5]), but for real values κ this problem, in general, is not solvable
uniquely. However, there are some su�cient conditions to check the uniqueness of the
solution [12].

Proposition 1. If κ2 does not coincide with any eigenvalue of Laplace operator
for the Dirichlet problem in the domain D then the Dirichlet problem (8)-(9) for the
Helmholtz equation with homogeneous boundary data has the only trivial solution.

Corollary 2. If κ2 does not coincide with any eigenvalue of Laplace operator for the
Dirichlet problem in the domain D then the interior Dirichlet problem for the Helmholtz
equation (8)-(9) has at most one solution.

Additionally, the following statement from [5] can be used to establish the uniqueness.
Proposition 3. Let D � bounded domain with diameter d, u ∈ C2(D) ∩ C(D) �

solution of the Helmholtz equation in D with condition u = 0 on Γ and let

2|κ|2(ed − 1) < 1.

Then u = 0 in D.
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The fundamental solution of the Laplace equation in R2 has the following form

Φ1(x, y) =
1

2π
ln

1

|x− y|
, x ̸= y.

For the Klein-Gordon equation, there exists the fundamental solution in the following
form

Φ2(x, y) =
1

2π
K0(κ|x− y|), x, y ∈ R2, x ̸= y,

where K0 is the modi�ed Bessel function of the second kind and zeroth order [1] and has
the following representation

K0(z) = ln
1

z
I0(z) +

∞∑
k=0

(ln 2 + ψ(k + 1))
(z2/4)k

(k!)2
,

where

I0(z) =

∞∑
k=0

(z2/4)k

(k!)2
,

ψ(1) = −γ, ψ(n) = −γ +

n−1∑
k=1

k−1, n ≥ 2.

Here γ = lim
m→∞

(
m∑

k=1

1
k − lnm) ≈ 0.5772156649... is the Euler's constant. While using the

boundary integral equations method, we also make use of the following modi�ed Bessel
function of the �rst order K1

K1(z) =
1

z
− ln

1

z
I1(z)−

z

2

∞∑
k=0

(
ln 2 +

1

2
(ψ(k + 1) + ψ(k + 2))

)
(z2/4)k

k!(k + 1)!
,

I1(z) =
z

2

∞∑
k=0

(z2/4)k

k!(k + 1)!
.

Note that I ′0(z) = I1(z), K
′
0(z) = K1(z) and I0(z), I1(z) are the modi�ed Bessel function

of the �rst kind of zeroth and �rst order, respectively.
In the case of the Helmholtz equation for the two-dimensional case with real-valued

κ2 the fundamental solution is a real-valued part of the Hankel function H
(1)
0 of the �rst

kind of zeroth order (see [1, 5, 10]).

Φ3(x, y) = Re
( i
4
H

(1)
0 (κ|x− y|)

)
= −1

4
N0(κ|x− y|), x, y ∈ R2, x ̸= y,

where N0 is the Neumann function that was used as a new real-valued fundamental
solution. The Bessel function of the second kind of zeroth order, denoted by Y0, is
occasionally denoted instead of N0. The Neumann function N0 has the following view

N0(z) =
2

π

{
ln
z

2
+ γ
}
J0(z) +

2

π

{ ∞∑
k=1

(−1)k+1ηk

(
z2/4

)k
(k!)2

}
,
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where J0(z) � the Bessel function of the �rst kind of zeroth order can be given by the
series [1]

J0(z) =

∞∑
k=0

(−1)k

(k!)2

(z
2

)2k
and ηk is a harmonic number, de�ned by the formula ηk =

k∑
i=1

1
i .

3. Boundary integral equations method

As was mentioned previously, the main advantage of dealing with equations with
constant coe�cients is that their fundamental solutions are well-known. So it is possi-
ble to apply the boundary integral equations approach decreasing the dimension of the
problem.

3.1. Dirichlet problem for the Laplace equation

In order to solve the boundary value problem (8)-(9), we transform it into an equiva-
lent integral equation using the potential theory.

To construct an expression for the solution in case κ2 ≡ 0 we use the double-layer
potential

u(x) =

∫
Γ

φ1(y)
∂Φ1(x, y)

∂ν(y)
ds(y), x ∈ D. (10)

Substituting it into the boundary condition (9) an integral equation of the second kind
is obtained

−1

2
φ1(x) +

∫
Γ

φ1(y)
∂Φ1(x, y)

∂ν(y)
ds(y) = f(x), x ∈ Γ. (11)

We assume that the curve Γ has the following parametric representation

Γ = {x(t) = (x1(t), x2(t)), t ∈ [0, 2π]}, (12)

where xi ∈ C2(R) are 2π-periodic functions, i = 1, 2, and |x′(t)| > 0.

Taking this into account the integral equation (11) leads to the following parametrized
integral equation

−1

2
µ1(t) +

1

2π

∫ 2π

0

µ1(τ)L(t, τ)dτ = f̃(t), t ∈ [0, 2π], (13)

where µ1(t) = φ1(x(t)), f̃(t) = f(x(t)) and

L(t, τ) =
(x(t)− x(τ)) · ν(x(τ))

|x(t)− x(τ)|2
|x′(τ)|.

Analyzing the kernel L(t, τ) one can observe that both input points lay on the same
curve and when τ → t it is possible to �nd the limit of the expression. That limit can
be found analytically by using L'Hopital's rule. As a result, we get the following

lim
τ→t

L(t, τ) =
x′′(t) · ν(x(t))

2|x′(t)|
.
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Hence, the modi�ed kernel is given below

L̃(t, τ) =


(x(t)− x(τ)) · ν(x(τ))

|x(t)− x(τ)|2
|x′(τ)|, t ̸= τ,

x′′(t) · ν(x(t))
2 |x′(t)|

, t = τ.

After that, we obtain the transformed parametrized integral equation that can be
solved numerically

−1

2
µ1(t) +

1

2π

∫ 2π

0

µ1(τ)L̃(t, τ)dτ = f̃(t), t ∈ [0, 2π]. (14)

Referring to Riesz theory for compact operators it is easy to show that considered
integral equations are uniquely solvable in the space of continuous functions and the
solutions depend continuously on data (see, for instance, [9]).

3.2. Dirichlet problem for the Klein-Gordon equation

Similarly to the case of the Laplace equation, we use the double-layer potential

u(x) =

∫
Γ

φ2(y)
∂Φ2(x, y)

∂ν(y)
ds(y), x ∈ D (15)

in order to obtain an integral equation

−1

2
φ2(x) +

∫
Γ

φ2(y)
∂Φ2(x, y)

∂ν(y)
ds(y) = f(x), x ∈ Γ, (16)

which considering (12) can be rewritten as

−1

2

µ2(t)

|x′(t)|
+

1

2π

∫ 2π

0

µ2(τ)K(t, τ)dτ = f̃(t), t ∈ [0, 2π], (17)

where µ2(t) = φ2(x(t))|x′(t)|, f̃(t) = f(x(t)), K(t, τ) is the kernel of the equation, based
on the function K1

K(t, τ) = κK1(κ|x(t)− x(τ)|) (x(t)− x(τ)) · ν(x(τ))
|x(t)− x(τ)|

.

It is easy to verify that the kernel K is continuous at τ = t, but to get a smoother
kernel we split it making logarithmic function explicit for further quadrature application.
So, for the Klein-Gordon equation we perform a decomposition using the weight functions,
which become useful later for numerical computation of the integrals involved.

The decomposition itself has the following form

K̃(t, τ) = K(1)(t, τ) ln
(4
e
sin2

t− τ

2

)
+K(2)(t, τ),

where

K(1)(t, τ) =


κ

2
I1(κ|x(t)− x(τ)|) (x(t)− x(τ)) · ν(x(τ))

|x(t)− x(τ)|
, t ̸= τ,

0, t = τ,
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K(2)(t, τ) =


K(t, τ)−K(1)(t, τ) ln

(4
e
sin2

t− τ

2

)
, t ̸= τ

x′′(t) · ν(x(t))
2|x′(t)|2

, t = τ.

As a result, we get the following parametrized integral equation on t ∈ [0, 2π]

−1

2

µ2(t)

|x′(t)|
+

1

2π

∫ 2π

0

µ2(τ)

(
K(1)(t, τ) ln

(4
e
sin2

t− τ

2

)
+K(2)(t, τ)

)
dτ = f̃(t). (18)

Similarly, as for the Laplace equation, the well-posedness of the integral equations of
the second kind in the space of continuous functions can be proved using Riesz theory.

3.3. Dirichlet problem for the Helmholtz equation

Lastly, for the Helmholtz equation we use the single-layer potential

u(x) =

∫
Γ

φ3(y)Φ3(x, y)ds(y), x ∈ D (19)

with continuous density φ that is a solution of the integral equation∫
Γ

φ3(y)Φ3(x, y)ds(y) = f(x), x ∈ Γ. (20)

Denote the series from the Neumann function N0 as follows

S(z)
def
=

z2/4

(1!)2
−
(
1 +

1

2

) (
z2/4

)2
(2!)2

+

(
1 +

1

2
+

1

3

) (
z2/4

)3
(3!)2

− . . . .

Using parameterization of Γ the integral equation (20) can be written

1

2π

∫ 2π

0

µ3(τ)H(t, τ)dτ = f̃(t), t ∈ [0, 2π], (21)

where µ3(τ) = φ3(x(τ))|x′(τ)|, f̃(t) = f(x(t)) and

H(t, τ) = −J0(κ|x(t)− x(τ)|)
{
ln

(
κ|x(t)− x(τ)|

2

)
+ γ

}
− S(κ|x(t)− x(τ)|).

This kernel H has a logarithmic singularity and following the approach from [9] to make
such singularity explicit, the kernel can be expressed as

H(t, τ) = H(1)(t, τ) ln

(
4

e
sin2

t− τ

2

)
+H(2)(t, τ),

where

H(1)(t, τ) = −1

2
J0(κ|(x(t))− x(τ)|),

H(2)(t, τ) =


H(t, τ)−H(1)(t, τ) ln

(
4

e
sin2

t− τ

2

)
, t ̸= τ,

1

2
ln

4

eκ2|x′(t)|2
− γ, t = τ.
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Therefore the equation (21) can be rewritten as:

1

2π

∫ 2π

0

µ3(τ)

{
H(1)(t, τ) ln

(
4

e
sin2

t− τ

2

)
+H(2)(t, τ)

}
dτ = f̃(t), t ∈ [0, 2π]. (22)

For any inhomogeneity f that belongs to the linear subspace of all continuous func-
tions ψ ∈ C(Γ) for which double-layer potential with density ψ has continuous normal
derivatives on both sides of Γ, the integral equation (20) of the �rst kind for the Dirichlet
problem has a unique solution provided k is not an interior Dirichlet eigenvalue (more
details, see [5]). However, even if this condition is satis�ed, the problem is improperly
posed in C(Γ), but considering other spaces (for instance, H�older spaces) and applying
regularization theory [9] the well-posed problem might be obtained.

4. Full discretization

We use the quadrature method to solve the obtained integral equations (14), (18),
(22). This method involves interpolation of the integrands using trigonometric polyno-
mials and applying the appropriate quadrature formulas with further collocation of the
approximating equations at the quadrature points.

To use the quadrature formula, we split the interval [0, 2π] with an even number of
nodes

tj =
jπ

n
, j = 0, ..., 2n− 1.

We use the trapezoid quadrature to approximate the integral

1

2π

∫ 2π

0

f(τ)dτ ≈ 1

2n

2n−1∑
j=0

f(tj). (23)

For the integral with logarithmic function that appears in (18), (22) we use trigono-
metric interpolation of f with the exact integration that yields the approximation

1

2π

∫ 2π

0

f(τ) ln

(
4

e
sin2

t− τ

2

)
dτ ≈

2n−1∑
j=0

f(tj)Rj(t), (24)

where Rj(t) is the following weight function

Rj(t) = − 1

n

(
1

2
+

n−1∑
m=1

1

m
cosm(t− tj) +

1

2n
cosn(t− tj)

)
.

Applying these quadratures and collocating at quadrature points allows us to con-
struct a fully discrete system of linear algebraic equations for approximated unknown
values of the density µ̃k,j ≈ µk(tj) at each node within the interval, where k = 1, 3
de�nes the equation (k = 1 � Laplace equation; k = 2 � Klein-Gordon equation; k = 3 �
Helmholtz equation).

1. Laplace equation

For the Laplace equation we have

−1

2
µ̃1,i +

1

2n

2n−1∑
j=0

µ̃1,jL̃(ti, tj) = f̃(ti), i = 0, ..., 2n− 1. (25)
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Having the approximate values of the density, the approximate solution un(x) at
any point of the domain can be calculated using the formula below

u(x) ≈ un(x) =
1

2n

2n−1∑
j=0

µ̃1,jL(x, tj), x ∈ D, (26)

where

L(x, tj) =
(x(tj)− x) · ν(x(tj))

|x− x(tj)|2
|x′(tj)|.

2. Klein-Gordon equation

Full discretization of the equation (18) has the view

− µ̃2,i

2|x′(ti)|
+

2n−1∑
j=0

µ̃2,j

(
Rj(ti)K

(1)(ti, tj) +
1

2n
K(2)(ti, tj)

)
= f̃(ti), i = 0, 2n− 1.

(27)

Solving this system, obtained values µ̃2,j are used in the approximation of the
solution u in the domain D

u(x) ≈ un(x) =
1

2n

2n−1∑
j=0

µ̃2,jK(x, tj), x ∈ D, (28)

where

K(x, tj) = κK1(κ|x− x(tj)|)
(x− x(tj)) · ν(tj)

|x− x(tj)|
.

3. Helmholtz equation

The corresponding system of linear algebraic equations for the equation (22) will
be the following

2n−1∑
j=0

µ̃3,j

(
Rj(ti)H

(1)(ti, tj) +
1

2n
H(2)(ti, tj)

)
= f̃(ti), i = 0, . . . , 2n− 1. (29)

Then the approximate solution of the Dirichlet problem for the Helmholtz equation
can be found as

u(x) ≈ un(x) =
π

n

2n−1∑
j=0

µ̃3,jH(x, tj), x ∈ D, (30)

where

H(x, tj) = −1

4
N0(κ|x− x(tj)|).

Taking into account (4) and (5) and having un(x) the approximate solution wn(x) of
the considered problem (1)-(2) can be calculated by the formula

wn(x) =
un(x)√
σ(x)

, x ∈ D. (31)
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The convergence analysis and error estimate of the applied method to the integral
equations of the second kind (for Laplace and Klein-Gordon equations) and the �rst kind
(for the Helmholtz equation) can be carried out based on the collective compact operators
theory and the estimate of the trigonometric interpolation in appropriate Banach spaces
( [4], [9]). Note that if the boundary and the boundary data are analytic then the absolute
error decreases exponentially, however, this estimate is correct for the original problem
only in the case of exact reducing to a constant-coe�cient equation.

5. Numerical examples

Example 1. Let D is bounded by the circle with radius equal to one, which means
that

Γ = {x(t) = (cos(t), sin(t)), t ∈ [0, 2π]}.
Also σ(x) = (2 + x1 + x2)

2, x ∈ D and g(x) = (x21 − x22)(2 + x1 + x2)
−1, x ∈ Γ.

It is easy to verify that the exact solution wex(x) of the problem (1)-(2) is wex(x) =
(x21 − x22)(2 + x1 + x2)

−1, x ∈ D. Straightforward calculation of q from (7) yields
q(x) ≡ 0, so the main di�erential equation can be reduced to the Laplace equation. The
absolute errors of the solution at two points of the domain D are provided in Table 1.
Since the elliptic equation with variable coe�cients was reduced to the Laplace equation
without any approximations, the exponential rate of the convergence can be observed in
the table. Note that the same convergence can be available for the other two types of
equations in case q in (7) is calculated exactly and it is a number.

Table 1

Absolute error for Ex. 1

n |wex(x)− wn(x)|
x=(0.5,0) x=(-0.6,0.7)

16 3.96E-10 1.48E-02
32 5.55E-17 9.90E-04
64 9.71E-17 2.30E-06
128 5.55E-17 7.62E-12

The absolute error graph based on errors at points xij ∈ D and calculated using
discretization parameter n = 128 is shown on Fig. 2.

The points xij are de�ned by the following formula

xij =
i− 1

N

(
x1(tj), x2(tj)

)
, i = 1, N, (32)

where tj = jπ/M, j = 0, 2M − 1, with N = 20, M = 32.
It can be observed that the error is worse at some points near the boundary of the

domain which is expected.
Example 2. We consider the solution D domain with the the boundary Γ

Γ = {x(t) = (0.5 + 0.25 cos(t), 0.5 + 0.45 sin(t)− 0.35 sin2(t)), t ∈ [0, 2π]}.

The function wex(x) =
1
2π ln 1+0.5|x|2

0.5|x|2 , x ∈ D is the exact solution of the problem (1)-(2)

for data σ(x) = 1+ 0.5|x|2, x ∈ D and g(x) = 1
2π ln((2+ |x|2)|x|−2), x ∈ Γ. It is easy to
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Fig. 2. Absolute error in D for Ex. 1 (n=128)

verify that

q(x) = 2|x|2
( 1

2(2 + |x|2)2
− 1

|x|2(2 + |x|2)

)
.

The values R and κ can be calculated approximately and we take them as follows R ≈
1.61, κ = 0.85934. Note, that for this example κ < 0, so Klein-Gordon equation is being
considered. The results are displayed in Table 2 as absolute errors at two points for
di�erent values of the parameter n. The convergence to the exact solution is observed.

Table 2

Absolute error for Ex. 2

n |wex(x)− wn(x)|
x=(0.4,-0.1) x=(0.3,0.6)

16 7.38E-02 8.23E-04
32 6.93E-03 1.64E-05
64 2.75E-04 1.41E-05
128 2.15E-04 1.41E-05

The absolute errors calculated at points xij are shown on Fig. 3, where

xij =
( i− 1

N
(x1(tj)− 0.5) + 0.5,

i− 1

N
(x2(tj)− 0.2) + 0.2

)
, i = 1, N, (33)

j = 0, 2M − 1 and N,M are the same as in the previous example.
Example 3. Let the boundary Γ of the domain D has the following parametric

representation

Γ = {x(t) = (0.2 cos(t), 0.5 + 0.6 sin(t)− 0.6 sin2(t)), t ∈ [0, 2π]}.

Input data are σ(x) = ex1 cos(x2)+3, x ∈ D and the function on the boundary g(x) =
ex1 sin(x2), x ∈ Γ. The exact solution is wex(x) = ex1 sin(x2), x ∈ D. The function
q(x) = 0.25e2x1(ex1cos(x2) + 3)−2 and based on meas(D) ≈ 0.378 we can estimate κ,
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Fig. 3. Absolute error in D for Ex. 2 (n=128)

Table 3

Absolute error for Ex. 3.

n |wex(x)− wn(x)|
x=(0.1,0.5) x=(-0.1,-0.3)

16 1.92E-04 2.20E-03
32 1.19E-06 2.31E-04
64 1.27E-06 1.82E-05
128 1.27E-06 3.71E-06

Fig. 4. Absolute error in D for Ex. 3 (n=128)

which is positive number, and set κ = 0.14. Also, R is calculated approximately with
the following value R ≈ 1.9. Recall that the greater value R, the less e�ective the
considered approach will be. Absolute errors at two points and the graph of absolute
errors calculated at points (32) are displayed in Table 3 and on Fig. 4, respectively.
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6. Conclusions

In this work, the use of the method of boundary integral equations has been investi-
gated in combination with the method of approximation of the interior Dirichlet problem
described in [10] for the generalized Laplace equation. It has been shown that the con-
sidered approach gives a high rate of convergence in case of the exact reduction of the
main di�erential equation to the three well-known types of constant-coe�cient elliptic
equations together with reducing the two-dimensional problem to one-dimensional. The
ways to avoid restrictions that allow us to reduce the elliptic equations with variable
coe�cients to constant-coe�cient equations may be a theme for further investigations.
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Äîñëiäæåíî îäèí ç ìåòîäiâ àïðîêñèìàöi¨ âíóòðiøíüî¨ çàäà÷i Äiðiõëå äëÿ óçàãàëü-

íåíîãî ðiâíÿííÿ Ëàïëàñà äî êðàéîâî¨ çàäà÷i ç ïðîñòiøèìè åëiïòè÷íèìè ðiâíÿííÿìè

ðàçîì ç ìåòîäîì ãðàíè÷íèõ iíòåãðàëüíèõ ðiâíÿíü. Âèõîäÿ÷è ç ïåâíèõ ïðèïóùåíü,

ðîçãëÿíóòó çàäà÷ó ìîæíà çâåñòè äî çàäà÷i Äiðiõëå äëÿ ðiâíÿííÿ Ëàïëàñà, Êëåéíà-

Ãîðäîíà ÷è Ãåëüìãîëüöà. Ïiñëÿ öüîãî, ìàþ÷è ôóíäàìåíòàëüíi ðîçâ'ÿçêè äëÿ êîæíîãî

ç ðiâíÿíü, çàñòîñîâó¹ìî ìåòîä ãðàíè÷íèõ iíòåãðàëüíèõ ðiâíÿíü, ïîäàþ÷è ðîçâ'ÿçîê

çàäà÷i ó âèãëÿäi ïîòåíöiàëó ïðîñòîãî àáî ïîäâiéíîãî øàðó òà âèêîðèñòîâóþ÷è ìåòîä

êâàäðàòóð äëÿ îòðèìàííÿ ïîâíiñòþ äèñêðåòèçîâàíî¨ ñèñòåìè ëiíiéíèõ ðiâíÿíü ç íàáëè-

æåíèìè çíà÷åííÿìè íåâiäîìî¨ ãóñòèíè. Îá÷èñëèâøè íàáëèæåíèé ðîçâ'ÿçîê çàäà÷i äëÿ

ðiâíÿííÿ ç ïîñòiéíèìè êîåôiöi¹íòàìè, îòðèìàíî òàêîæ íàáëèæåíèé ðîçâ'ÿçîê äëÿ

óçàãàëüíåíîãî ðiâíÿííÿ Ëàïëàñà. Íàâåäåíî êiëüêà ÷èñåëüíèõ ïðèêëàäiâ ç ðiçíèìè

ïàðàìåòðàìè äèñêðåòèçàöi¨, ÿêi äåìîíñòðóþòü åôåêòèâíiñòü çàñòîñîâàíîãî ïiäõîäó,

îñîáëèâî ó âèïàäêó òî÷íîãî çâåäåííÿ äî ðiâíÿííÿ ç ïîñòiéíèìè êîåôiöi¹íòàìè.

Êëþ÷îâi ñëîâà: êðàéîâà çàäà÷à Äiðiõëå, óçàãàëüíåíå ðiâíÿííÿ Ëàïëàñà, ãðàíè÷íi

iíòåãðàëüíi ðiâíÿííÿ, ïîòåíöiàëè, ìåòîä êâàäðàòóð.


