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In this paper we investigate a method that has been proposed by Rangogni and Occhi
of approximating the interior Dirichlet boundary value problem for the generalized Laplace
equation into the boundary value problem for simpler elliptic equations together with
the boundary integral equations approach. Based on some assumptions the considered
problem can be substituted by the Dirichlet problem for the Laplace, Klein-Gordon or
Helmholtz equations. Small theoretical notes regarding the uniqueness of the solution to
these boundary value problems are provided. Afterward, having fundamental solutions
which are well known for each of these equations, we use the boundary integral equations
method representing the solution as a single- or double-layer potential in conjunction with
the quadrature method to obtain a fully discrete system of linear algebraic equations with
unknown approximate values of the density at quadrature points. The well-posedness of the
integral equations in appropriate spaces and the convergence analysis are also considered.
Calculating the approximate solution of the problem for a constant-coefficient equation, the
approximate solution for the generalized Laplace equation is obtained as well by making
one simple additional action. Finally, several numerical examples for different domains
with different discretization parameters are provided in order to show the effectiveness of
this approach, especially in the case of exact reduction to a constant-coefficient equation.

Key words: Dirichlet problem, generalized Laplace equation, boundary integral equations,
potentials, quadrature method.

1. INTRODUCTION

During mathematical modelling of many physical processes, the elliptic differential
equations with variable coefficients often appear. In particular, a function that corre-
sponds to variable coefficients mostly defines some specific property (for example, elec-
trical or thermal conductivity) of a physical process in a domain.

We shall consider the generalized Laplace equation following the definition in [10,
11], although this second-order elliptic equation with variable coefficients is also called
conductivity equation or EIT (electric impedance tomography) equation [8] or stationary
heat transfer equation [6].

Since, in general, there is no explicit view of a fundamental solution for this differential
equation or its finding can be quite complicated the parametrix (Levi function) is used
instead. Using parametrix and utilizing Green’s third identity (see [6]) the interior Dirich-
let boundary value problem for the generalized Laplace equation in a two-dimensional
domain was reduced to two systems of boundary-domain integral equations and there
was shown their equivalence to the original boundary value problem. In [7] a new family
of parametrices was explored for the elliptic operator to obtain an equivalent system
of boundary-domain integral equations and unique solvability in appropriate spaces was
investigated.
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The main disadvantage of using parametrix is that we do not decrease the dimension
of the problem. While there are several well-known efficient methods for obtaining an
approximate solution of problems for the Laplace equation, its generalized variant is
considerably more complex, and therefore requires special handling. For example, one
can apply certain assumptions and approximations in order to transform this equation
in a way that makes using numerical methods becomes appropriate.

In this paper we will demonstrate one of such methods, which was proposed by Ran-
gogni and Occhi [10] and was used in combination with the boundary elements method.
Here we will apply the boundary integrals approach together with the quadrature method
as a means of obtaining a numerical approximation of the problem instead of the boun-
dary element method. Note, that the quadrature method is also called the Nystrém
method for the integral equation of the second kind. In particular, we will be using it
to the Dirichlet problem for the Laplace, Klein-Gordon and Helmholtz equations, which
are involved in the aforementioned transformation process.

So, in this work we use the idea from the [10] to transform the starting equation
with variable coefficients into a constant-coefficient equation for which a fundamental
solution is available and then apply an effective numerical method. The first step in the
procedure is to avoid the first partial derivatives of the unknown function and next step
is to approximate the obtained equation.

For the outline of the work, in Section 2, we transformed the generalized Laplace
equation to a constant-coefficient differential equation using the approach from the paper
[10]. The fundamental solution of each equation that has been obtained and properties of
potentials are provided in Section 3. In section 4, the Dirichlet boundary value problem
for these equations is considered together with theoretical notes, the boundary integral
equations method and full discretization. In Section 5, numerical examples for different
domain configurations are considered. Some conclusions are given in Section 6.

Let D be a simply connected bounded domain in R? with boundary I' € C? (see
Fig. 1). We consider the following interior Dirichlet boundary value problem in the
two-dimensional domain D: find such function w € C?*(D) N C(D) that satisfies the
generalized Laplace equation

V-(eVw)=0 inD (1)

and the boundary condition
w=g¢g on I, (2)

where function o € C*°(D), o > 0 and sufficiently smooth function g are known. By v
we denote the outward unit normal to the boundary and V- and V are divergence and
gradient operators, respectively.

The problem can be interpreted as a stationary heat transfer problem in an isotropic
medium for a planar bounded domain with prescribed temperature on the boundary and
known thermal conductivity o.

2. REDUCTION TO A CONSTANT-COEFFICIENT EQUATION

Let us briefly provide a scheme, described in [10,11] how to obtain a constant-
coefficient elliptic equation based on suitable assumptions. Since o is a positive function
we can rewrite the equation (1) in the form

1
Aw+ —Vw-Vo=0 in D. (3)
o
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Fig. 1. An example of a domain D

Note that we get an ordinary Laplace equation if o = const. Let the solution w(x)
have the following form

w(z) =v(x)h(z), x € D. (4)

Ouce we substitute (4) in (3), and introduce a condition that i(z) eliminates the coeffi-
cients in front of ;—;’1 and (%;, we get a differential equation for h. According to [10], its

analytical solution is as follows:

h(z) = . (5)

As a result, equation (3) will look like this
Av(x) + g(z)v(x) =0, =z €D, (6)

where
_|Vo@)  Ao(x)
alw) = 402 () 20(x) " M

From here on out |z| represents the Euclidian norm of the vector z. Taking into account
that o(x) > 0, the described transformations result in an equivalent equation. If a
fundamental solution is known for (6), then this differential equation may be replaced
by an equivalent boundary integral equation.

Finding the fundamental solution for the equation (6) remains a relatively complicated
task due to the presence of a non-constant function g. To alleviate this issue, a method
of approximating this equation was proposed in [10]. Although the following algorithm
is rather primitive, it results in a constant-coefficient partial differential equation which
could be solved numerically by using the boundary integral equations method.

We assume that the values of function ¢ within the domain D are in a narrow range,
which is often encountered in real-life experiments. In that case, the derivatives of ¢ in
q will be close to zero, and may be neglected. It also follows that for points in D, the
following ratio holds

max|g(z)|

Rzi. z]_, xGD.
min |g(z)]
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Considering this, we may replace the function ¢ with a constant-coefficient, which will
be the arithmetic mean value of ¢ in D. We get the following expression as a result

Au(z) +RFu(z) =0, =z €D, (8)

where

_ 1
K= WS(D)/DQ@)C{CC,

F is a real value and meas(D) is a measure of the domain D. Let us define x? = |&|.
Therefore, we have three possible types of equations for (8) depending on the value
R:
— K =0 - Laplace equation: Au(z) =0, =z € D,
— & < 0 — Klein-Gordon equation:  Au(z) — k*u(z) =0, z € D,
~ > 0 - Helmholtz equation: ~ Au(z) + k*u(x) =0, x € D.

These types of elliptic partial differential equations can be solved by using the boundary
integral equations approach.

We also consider the boundary condition (2) for the generalized Laplace equation (1).
For the aforementioned Dirichlet condition and taking into account the decomposition
of the solution (4), we obtain an equivalent boundary condition for the transformed
differential problem

u(@) = f(a), wel, (9)

where f(z) = +/o(z) g(z).

We now have all the data required to numerically solve the problem (8)-(9) using
the boundary integrals method. There are many known numerical methods that can
efficiently solve problems based on this equation. In particular, the boundary elements
method was successfully used in [10] and [11]. It was chosen because of its ease of use
and its applicability for problems on infinite domains. The purpose of this paper is
to investigate the efficiency of the boundary integrals method, which has a solid and
well-researched theoretic foundation and is also applicable for different types of domains.

It is well known that the Dirichlet problem for Laplace and Klein-Gordon equations
has at most one solution (see [9,12]). But there are some problems with uniqueness in
the case of the Helmholtz equation. If Im x > 0 then the interior Dirichlet problem has at
most one solution (see [5]), but for real values s this problem, in general, is not solvable
uniquely. However, there are some sufficient conditions to check the uniqueness of the
solution [12].

Proposition 1. If k2 does not coincide with any eigenvalue of Laplace operator
for the Dirichlet problem in the domain D then the Dirichlet problem (8)-(9) for the
Helmholtz equation with homogeneous boundary data has the only trivial solution.

Corollary 2. If k? does not coincide with any eigenvalue of Laplace operator for the
Dirichlet problem in the domain D then the interior Dirichlet problem for the Helmholtz
equation (8)-(9) has at most one solution.

Additionally, the following statement from [5] can be used to establish the uniqueness.

Proposition 3. Let D — bounded domain with diameter d, u € C*(D) N C(D) —
solution of the Helmholtz equation in D with condition u =0 on I' and let

2lk2(e? — 1) < 1.

Then w =0 in D.
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The fundamental solution of the Laplace equation in R? has the following form

Dy (z,y) = T #y.

—ln
21 |z —y|

For the Klein-Gordon equation, there exists the fundamental solution in the following
form

1
®o(z,y) = 5 Ko(slz —yl), @y € Rz #y,

where K is the modified Bessel function of the second kind and zeroth order [1] and has
the following representation

(z*/4)*
CORN

Ko(z) =In - 10 +Zln2+wk+1))

O

where

n—1
p(1) ==y, Pm)=—+> k' n>2
k=1

m

Here v = lim (Y + —1Inm) =~ 0.5772156649... is the Euler’s constant. While using the

boundary integral equations method, we also make use of the following modified Bessel
function of the first order K3

Ki(2) = 2 —ln;h(z) — ikzzo (1H2+ 5(7/1(k+1) +7/’(k+2))) m’
%) 2/4
k' kE+ 1)

Note that I} (z) = I1(z), K{(z) = Ki(z) and Io(z)7 I;(z) are the modified Bessel function
of the first kind of zeroth and first order, respectively.

In the case of the Helmholtz equation for the two-dimensional case with real-valued
r? the fundamental solution is a real-valued part of the Hankel function Hél) of the first
kind of zeroth order (see [1,5,10]).

1 1
@a(e,y) = Re(H (ke —y)) = =7 No(sl —gl). y €R? a#y,

where Ny is the Neumann function that was used as a new real-valued fundamental
solution. The Bessel function of the second kind of zeroth order, denoted by Yp, is
occasionally denoted instead of Ny. The Neumann function Ny has the following view

No(z) = % {1n§ +7} Jo(z) + % {Z(_l)kﬂnk (2%/4) } 7

2 (k1)2
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where Jy(z) — the Bessel function of the first kind of zeroth order can be given by the

series [1]
(5)

k
and 7y, is a harmonic number, defined by the formula n, = > %
i=1

o D
JO(Z) - ,;J (k")Q

3. BOUNDARY INTEGRAL EQUATIONS METHOD

As was mentioned previously, the main advantage of dealing with equations with
constant coefficients is that their fundamental solutions are well-known. So it is possi-
ble to apply the boundary integral equations approach decreasing the dimension of the
problem.

3.1. DIRICHLET PROBLEM FOR THE LAPLACE EQUATION

In order to solve the boundary value problem (8)-(9), we transform it into an equiva-
lent integral equation using the potential theory.

To construct an expression for the solution in case k2 = 0 we use the double-layer
potential

uw) = [t Ty, aeD. (10)

Substituting it into the boundary condition (9) an integral equation of the second kind

is obtained
aCDI (1’, y)

ov(y)

We assume that the curve I' has the following parametric representation

1
~3o1@)+ [ o) ds(y) = f(x), weT. ()

I'=A{z(t) = (21(2), z2(t)), t € [0, 27]}, (12)

where z; € C%(R) are 27-periodic functions, i = 1,2, and |z'(¢)| > 0.
Taking this into account the integral equation (11) leads to the following parametrized
integral equation

—Zu(t) + 7/0 i pi(T)L(t, 7)dr = f(t), te 0,27, (13)

where i1 (1) = ¢1(2(1)), f(t) = f(x(t)) and

(z(t) — =(7)) - v(z(1))
|=(t) — (7)?
Analyzing the kernel L(t,7) one can observe that both input points lay on the same

curve and when 7 — ¢ it is possible to find the limit of the expression. That limit can
be found analytically by using L’Hopital’s rule. As a result, we get the following

L(t,7) = |z (7).

. _ 2"t - v(x(®)
llglt L(t,7) = B TTIOI
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Hence, the modified kernel is given below

(z(t) = =(7)) - v(2(1))

w0 ey O AT
L(t,7) =
) vet)
2w T

After that, we obtain the transformed parametrized integral equation that can be
solved numerically

1 1

_i'ul(t) + g/o i p1(T)L(t, 7)dT = f(t), t €[0,2n]. (14)

Referring to Riesz theory for compact operators it is easy to show that considered
integral equations are uniquely solvable in the space of continuous functions and the
solutions depend continuously on data (see, for instance, [9]).

3.2. DIRICHLET PROBLEM FOR THE KLEIN-GORDON EQUATION
Similarly to the case of the Laplace equation, we use the double-layer potential

0Ps(z,y)
u(x) = ———ds(y), xeD 15
@ = [ eatn i Lasty (15)
in order to obtain an integral equation
1 a(I)Q (l’, y)
- 28T gs(y) = T 1
s020) + [ al) TR ds) = f(@). e, (16)
which considering (12) can be rewritten as
1 pa(t) 1/27T _ 7
) ‘.Z‘I(t)l or 0 ,U'Q(T)K(taT)dT - f(t)a te [07 2”}, (17)

where pig(t) = @2 ()2 (t)], f(t) = f(x(t)), K(t,7)is the kernel of the equation, based
on the function K7

(z(t) — (7)) - v(x(7))
K(t,7) = kK1 (k|z(t) — x(7)]) @) = 2(0)| .

It is easy to verify that the kernel K is continuous at 7 = ¢, but to get a smoother
kernel we split it making logarithmic function explicit for further quadrature application.
So, for the Klein-Gordon equation we perform a decomposition using the weight functions,
which become useful later for numerical computation of the integrals involved.

The decomposition itself has the following form

_ 4 t—
K(t,7) = KO(t,7)In (f sin? TT) + K@ (1),
e

where

® 1 wfa(t) — () O 2O D)y,

K(l)(t,T) _ |x(t) — z(7)] )

0, t=r,
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4 —
K(t,7)— KM (t,7) ln(f sin? b7
e

K® (t,7) =
2 (1) - v(a(t)

t =
2 ()

As a result, we get the following parametrized integral equation on t € [0, 27|

1 1 27 4 —
pa(t) / i () (K“)(m) In (= sin® tTT) + K(Q)(t,f)> dr =
0

C202(t) 2w e

), t#T

(18)

Similarly, as for the Laplace equation, the well-posedness of the integral equations of
the second kind in the space of continuous functions can be proved using Riesz theory.

3.3. DIRICHLET PROBLEM FOR THE HELMHOLTZ EQUATION

Lastly, for the Helmholtz equation we use the single-layer potential

u(z) = /Ftpg(y)@g,(x,y)ds(y), xeD

with continuous density ¢ that is a solution of the integral equation

[ eaw@aeyasv) = fo). wer.
r
Denote the series from the Neumann function Ny as follows

def /4 <1+ 1) (22/4) . ( 1 1) (22/4)

5= @y ) e T\ tets) TEne

2 3
Using parameterization of I' the integral equation (20) can be written

3

27 _
= [ i = fo. e p.2e
where jig() = ga(a(r)la’ (7)), F(t) = f((t)) and

rlz(t) — 2(7)]

H(t,7) = —Jo(klz(t) — z(7)]) {ln <2) —i—v} — S(klx(t) — z(1)]).

(21)

This kernel H has a logarithmic singularity and following the approach from [9] to make

such singularity explicit, the kernel can be expressed as

-7

4
H(t,7) = HY(t,7)In ( sin? * ) + H®(t,7),
e

where 1
H(l)(t,T) = —§J0(Ii|($(t)) - LC(T)D,

4 L t-
H(t,7) — HV(t,7)In (sin2 27>, t#T,

e
H?(t,7) =
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Therefore the equation (21) can be rewritten as:
1 2
2

113(T) {H(l)(t 7)In (e sin? . ; T> +H® (m)} dr = f(t), te[0,27]. (22)

For any inhomogeneity f that belongs to the linear subspace of all continuous func-
tions ¢ € C(I") for which double-layer potential with density ¢ has continuous normal
derivatives on both sides of I, the integral equation (20) of the first kind for the Dirichlet
problem has a unique solution provided k is not an interior Dirichlet eigenvalue (more
details, see [5]). However, even if this condition is satisfied, the problem is improperly
posed in C(T), but considering other spaces (for instance, Holder spaces) and applying
regularization theory [9] the well-posed problem might be obtained.

4. FULL DISCRETIZATION

We use the quadrature method to solve the obtained integral equations (14), (18),
(22). This method involves interpolation of the integrands using trigonometric polyno-
mials and applying the appropriate quadrature formulas with further collocation of the
approximating equations at the quadrature points.

To use the quadrature formula, we split the interval [0, 27] with an even number of
nodes

=" j=0..2n-1

We use the trapezoid quadrature to approximate the integral

! %f() ~ L3 sy (23)
o 2n = 7

For the integral with logarithmic function that appears in (18), (22) we use trigono-
metric interpolation of f with the exact integration that yields the approximation

1 27

o f(r)In (isith

where R;(t) is the following weight function

_ T) dr ~ i Ft)R; (1), (24)

n—1
1(1 1 1
R;(t) = - (2 + mil - cosm(t —t;) + o cosn(t — tj)> .

Applying these quadratures and collocating at quadrature points allows us to con-
struct a fully discrete system of linear algebraic equations for approximated unknown
values of the density jiy; ~ wr(t;) at each node within the interval, where k = 1,3
defines the equation (k = 1 — Laplace equation; k = 2 — Klein-Gordon equation; k = 3 —
Helmholtz equation).

1. Laplace equation

For the Laplace equation we have

2n—1

_7“11 Z :ulj tzat f(tl)v ZZOaaQn_]- (25)
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Having the approximate values of the density, the approximate solution u,(z) at
any point of the domain can be calculated using the formula below

> inL(x,t), x €D, (26)

u(x) = uy(z) =

where

2. Klein-Gordon equation

Full discretization of the equation (18) has the view

2n—1

‘LL21 (1) 1 (2) ~ )
[+ DK b KO t)) = f(t,), i =0,2n — 1.
2‘53 Z ’u2-7 ( (t“t ) om (tlﬁt]) f(tl)a 1 07 n

(27)

Solving this system, obtained values fi; are used in the approximation of the
solution u in the domain D

u(zr) ~ u 2i Z reD, (28)

where

K(z,tj) = kK1 (klz — z(t;)]) (@ —=(t)) - ’/(tj).

3. Helmholtz equation

The corresponding system of linear algebraic equations for the equation (22) will
be the following

2n—1

Z iz ; ( HW (1) + ;nH(Q)(t,»,tj)) = f(t;), i=0,....2n—1. (29)

Then the approximate solution of the Dirichlet problem for the Helmholtz equation
can be found as

u(z) & up(z) = % Z fs ;i H(z,t;), z€D, (30)

where 1
H(z,t;) = =7 No(k|z — z(t;)])-

Taking into account (4) and (5) and having u, (z) the approximate solution w,,(x) of
the considered problem (1)-(2) can be calculated by the formula

wp () = , x€D. (31)
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The convergence analysis and error estimate of the applied method to the integral
equations of the second kind (for Laplace and Klein-Gordon equations) and the first kind
(for the Helmholtz equation) can be carried out based on the collective compact operators
theory and the estimate of the trigonometric interpolation in appropriate Banach spaces
([4], [9]). Note that if the boundary and the boundary data are analytic then the absolute
error decreases exponentially, however, this estimate is correct for the original problem
only in the case of exact reducing to a constant-coefficient equation.

5. NUMERICAL EXAMPLES

Example 1. Let D is bounded by the circle with radius equal to one, which means
that
I' = {x(t) = (cos(t),sin(t)), t € [0, 2x]}.

Also o(x) = (2421 +22)%, = € D and g(x) = (22 — 22)2+ 21 + 22)7 !, z € T
Tt is easy to verify that the exact solution wey(z) of the problem (1)-(2) is wez(x) =
(22 — 22)(2 4+ 21 + 22)71, * € D. Straightforward calculation of ¢ from (7) yields
q(x) =0, so the main differential equation can be reduced to the Laplace equation. The
absolute errors of the solution at two points of the domain D are provided in Table 1.
Since the elliptic equation with variable coefficients was reduced to the Laplace equation
without any approximations, the exponential rate of the convergence can be observed in
the table. Note that the same convergence can be available for the other two types of
equations in case ¢ in (7) is calculated exactly and it is a number.

Table 1

Absolute error for Ex. 1

n [Wea(2) — wy (2)]
2=(0.5,0) | 2=(-0.6,0.7)
16 | 3.96E-10 | 1.48E-02
32 | 5.55E-17 | 9.90E-04
64 | 9.71B-17 | 2.30E-06
128 | 5.55E-17 | 7.62B-12

The absolute error graph based on errors at points %/ € D and calculated using
discretization parameter n = 128 is shown on Fig. 2.
The points % are defined by the following formula

i]_vl (xl(tjmz(tj)), i=1,N, (32)

where t; = jo/M, j=0,2M — 1, with N =20, M = 32.
It can be observed that the error is worse at some points near the boundary of the

domain which is expected.
Example 2. We consider the solution D domain with the the boundary I'

z =

T = {z(t) = (0.5 + 0.25cos(t), 0.5 + 0.45sin(t) — 0.35sin’(t)), ¢ € [0,27]}.

i 140.5|z|?
The function we,(z) = 5= In —55\z‘|€| 7

for data o(z) = 1+0.5z|?, 2 € D and g(z) = 5= In((2+ |z|?)[z|~2), = € T. It is easy to

z € D is the exact solution of the problem (1)-(2)
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Fig. 2. Absolute error in D for Ex. 1 (n=128)

verify that

) 1 1
() =2 (3 oy ~ R )

The values R and  can be calculated approximately and we take them as follows R =~
1.61, k = 0.85934. Note, that for this example k < 0, so Klein-Gordon equation is being
considered. The results are displayed in Table 2 as absolute errors at two points for
different values of the parameter n. The convergence to the exact solution is observed.

Table 2

Absolute error for Ex. 2

n [We (2) — wn ()|
2=(0.4,-0.1) | z=(0.3,0.6)
16 7.38E-02 8.23E-04
32 6.93E-03 1.64E-05
64 2.75E-04 1.41E-05
128 2.15E-04 1.41E-05

The absolute errors calculated at points 2%/ are shown on Fig. 3, where

i—1 i — 1
i = (l ~— (@1(t) = 0.5) + 0.5, ZT(@(tj) ~0.2) +0.2), i=T.N, (33

7 =0,2M — 1 and N, M are the same as in the previous example.
Example 3. Let the boundary I' of the domain D has the following parametric

representation
I = {z(t) = (0.2cos(t), 0.5 4 0.6 sin(t) — 0.6sin?(t)), t € [0, 27]}.

Input data are o(z) = €®* cos(x2)+3, € D and the function on the boundary g(z) =
e" sin(xz), © € I'. The exact solution is we,(z) = e*'sin(xz), = € D. The function
q(x) = 0.25e%*1 (e"1cos(xs) + 3)~2 and based on meas(D) ~ 0.378 we can estimate &,
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0.02~ "

Fig. 3. Absolute error in D for Ex. 2 (n=128)

Table 3

Absolute error for Ex. 3.

n [Wea (7) — w(2)]
x=(0.1,0.5) | x=(-0.1,-0.3)
16 1.92E-04 2.20E-03
32 1.19E-06 2.31E-04
64 1.27E-06 1.82E-05
128 | 1.27E-06 3.71E-06

Fig. 4. Absolute error in D for Ex. 3 (n=128)

which is positive number, and set k = 0.14. Also, R is calculated approximately with
the following value R ~ 1.9. Recall that the greater value R, the less effective the
considered approach will be. Absolute errors at two points and the graph of absolute
errors calculated at points (32) are displayed in Table 3 and on Fig. 4, respectively.
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6. CONCLUSIONS

In this work, the use of the method of boundary integral equations has been investi-

gated in combination with the method of approximation of the interior Dirichlet problem
described in [10] for the generalized Laplace equation. It has been shown that the con-
sidered approach gives a high rate of convergence in case of the exact reduction of the
main differential equation to the three well-known types of constant-coefficient elliptic
equations together with reducing the two-dimensional problem to one-dimensional. The
ways to avoid restrictions that allow us to reduce the elliptic equations with variable
coefficients to constant-coefficient equations may be a theme for further investigations.
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YHNCEJIBHE PO3B’I3YBAHHA BHYTPIIIITHbOI 3AIAYI
AIPIXJIE OJIS1 Y3ATAJIBHEHOI'O PIBHAHHS JIATIJIACA
METOAO0OM I'PAHNYHUX IHTETPAJIbHUX PIBHAHD

A. Bemuueii, /1. AdpanacbeB

Jveiecorutl Hayionaavrud ynisepcumem iment leana Pparka,
eys. Ywuieepcumecvka, 1, Jlveis, 79000,
e-mail: andriy.beshley@Inu.edu.ua, dmytro.afanasiev@Ilnu.edu.ua

JlociizKeHO OJUH 3 MeTOJIiB allpOKCUMalil BHYTPIinIHbol 3amadi Jlipixiae gmas y3aramas-
HEHOTO piBHsgHHS Jlamnaca g0 Kpa#oBol 3amadi 3 mpocTimuMu eninTUYHUME DiBHAHHIMA
pa3oM 3 METOAOM TDAHWUYHUX IHTErPAJbLHUX DIBHAHL. BHUXOAAYM 3 NMEBHUX NPUIIYIIEHb,
PO3rJIsiHyTY 3aja4y MOXKHA 3BecTH 10 3anadi [lipixse ggs piBHsuus Jlamnaca, Koeiina-
T'oppona uu I'enpmrospria. Ilicss mporo, Maroun GpyHIAMEHTAIbHI PO3B’I3KHU 11 KOKHOI'O
3 piBHSIHB, 3aCTOCOBYEMO METOJ T'PAHUYHUX IHTErpPAJIbHUX PIiBHSHDB, MOJAIYHA PO3B’SI30K
3a/a4i y BUIJISII MOTEHIaJy mpocToro abo MmoABIHHOIO mapy Ta BUKOPUCTOBYHOYH METO,
KBaJpATyp JJI OTPUMAHHS MOBHICTIO JUCKPETH30BAHOI CUCTEMU JiHINHUX PIBHAHD 3 HAOIH-
JKEHVMU 3Ha9eHHsIMH HeBioMol ryctunn. O64uucuBim HAOIM>KEeHUH PO3B’ 130K 3a4a4i 1J1st
PiBHSHHS 3 MOCTIiHHUMH KoedillieHTaMu, OTPUMAHO TAKOXK HAOJMKEHUU pO3B’SI30K s
y3araJjibHeHOrO piBHsiHHs Jlamjaca. HaBejieHO KijibKa 4YMCEIbHUX IPUKJIAAIB 3 Pi3HUMEH
nmapaMeTpaMU JUCKDPeTHU3aIllil, sKi JeMOHCTPYIOTh e€(deKTHUBHICTH 3aCTOCOBAHOIO IiJIXOMY,
0CO0JIMBO Y BHIIQJIKY TOYHOI'O 3BEJI€HHS /10 PIBHsSIHHS 3 HOCTiMHMMU KoedinienTamu.

Knatouwosi caosa: KpaiioBa 3amada Jlipixse, y3araabHeHe piBHgAHHS Jlamnaca, TpaHWYHI
inTerpasbHi DiBHSIHHS, IOTEHIIAJIN, METOM KB IPATYD.



