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This paper presents a customizable version of the termination detection algorithm
for distributed systems. We follow an approach developed for designing general purpose
distributed algorithms customizable to a speci�c operational context within the InDiGO
framework [1]. To customize such algorithms, they must be expressed in a form amenable
to customization. We present a mechanism which allows a designer to expose the design
knowledge related to the communication structure of an algorithm. This involves identi-
fying interaction sets used for communication in an algorithm, and de�ning the semantics
of these sets in terms of queries supported by the analysis infrastructure of the InDiGO
framework. The bene�ts of customizable versions of distributed algorithms are presented
using an example of a customizable version of the termination detection algorithm.
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1. Introduction

In the traditional approach for the development of distributed applications, the ap-
plication uses the basic event service to implement interactions between its compo-
nents [2�4]. In general, an application may require a richer set of distributed system
services. For example, in bidding applications, we may need a termination detection
algorithm to detect when the bidding is over. To isolate the designer from the intrica-
cies of a distributed system, one can provide a library of distributed algorithms, which
implements di�erent types of services.

When an approach to provide a library of distributed algorithms is used, the designers
of the library algorithms are faced with two opposing forces. One is to develop generic
reusable algorithms that can be used in a wide variety of applications. On the other
hand, applications may require algorithms to meet stringent performance constraints,
which may force the designer to develop customized versions of the algorithms. The
following example illustrates this tradeo�:

Distributed algorithms often do not make any assumption regarding the application
and are therefore conservative in nature. However, application components may follow a
speci�c communication pattern or topology. For example, in a tele-teaching application,
sessions or groups may be formed for di�erent purposes with varying number of partic-
ipants. Each such group may follow a speci�c communication pattern (for example, an
answer message may be sent only in response to a question message) or a topology (for
example, a ring or a star), which the underlying algorithms may be able to exploit. Thus,
a straightforward use of a generic algorithm may not be e�cient and this may force the
designers to come up with their own implementations.

As an example of a possible optimization, let's consider a termination detection prob-
lem. In general, an algorithm for termination detection has to determine that all com-
ponents are passive and all channels are empty. In a particular application, however, the
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passive states of the components may be dependent on each other. As a simple example,
if component A communicates only with B and performs tasks assigned by B only, then
A will always be passive whenever B is passive. Such dependencies can be used to reduce
the number of components to be polled for passive states.

For example, for a star topology shown in Fig. 1, if process 2 would like to determine
termination, it would send a marker message to processes 1, 3 and 4.

Fig. 1. Termination detection example � sending of Marker messages

The processes respond with either Done message (if they are passive) or Continue message
(if they are still active) as in Fig. 2. If process 2 receives Done message from all the
processes and it has remained passive since it sent the marker messages out, termination
is detected.

Fig. 2. Termination detection example � receiving of Done messages

But, in a particular application, if component 1 communicates only with component 2
and performs tasks assigned by 2 only, then 1 will always be passive whenever 2 is passive.

For example, Answer message could only be sent in response to a Question message
(see Fig. 3). Then, if process 2 receives all the answer messages from process 1 and is
passive, then process 1 is passive also (since it can only be activated by a message from
process 2).

Then, in generic algorithm, process 2 will still send a marker message to all processes.
But the message to process 1 is not needed (see Fig. 4).

Message Done from process 1 is not needed either (see Fig. 5). So, the generic algo-
rithm is going to be ine�cient. Such dependencies as described above can be used to
reduce the number of components to be polled for passive states.
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Fig. 3. Termination detection example � ordering on Q/A messages

Fig. 4. Termination detection example � taking ordering information into account
for Marker messages

Fig. 5. Termination detection example � taking ordering information into account
for Done messages
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One can take advantage of the application structure to optimize the performance of the
distributed algorithms. So, if the algorithms in the library are used as-is, the resulting
implementations may be ine�cient. In such cases, an application developer may be
tempted to develop algorithms suited to the application from scratch.

2. Termination detection algorithm

2.1. The Termination Detection Problem

The problem of detecting that a distributed algorithm has terminated is both impor-
tant and non-trivial. Even if observation has shown that all the constituent processes of
the algorithm are in a passive state � that is, are not active � this cannot be taken as a
proof that the algorithm as a whole has terminated because the process observed to be
passive maybe reactivated by a message from a process that has not yet been observed
and which then becomes passive. The problem would be simple if knowledge were avail-
able, at any instant, of a global state that took into account both the processes and the
communication channels. Designing an algorithm for the problem thus comes down to
designing a distributed control mechanism that will recognize a particular state of global
stability, that of termination.

A process is said to be active if it is executing the instructions of its program and
is passive if it is in any other state. A passive process can be either terminated, having
completed its task, or waiting for messages from other processes. If all the processes are
passive and no messages are in transit, the complete distributed algorithm is said to be
terminated.

2.2. Description of a Distributed Termination Detection

Algorithm

We present the distributed termination detection algorithm that was �rst described
in [5]. The algorithm is shown in Fig. 6 and works as following. Processes are labeled
Pi, 0 ≤ i ≤ n. We employ a token to transmit the values quietp. The token cycles
through the processes visiting P(i+1)mod n after departing from Pi. A cycle is initiated
by a process Pinit, called the initiator. If the token completes the cycle (returns to Pinit)
after visiting all the processes and if all processes P return a value quietP of true in this
cycle, then the inititator detects termination, i.e. it sets claim to true. If any process
q returns a value quietq of false in a cycle, then the current cycle is terminated and a
new cycle is initiated with q as the initiator. A process ends one observation period and
immediately starts the next observation period when it sends the token. The algorithm,
described next in detail, shows how quietP is set.

There are no shared variables in a distributed system. However, for purposes of
exposition we assume that claim is a shared global variable which has an initial value of
false and which may be set true by any process. Such a global variable can be simulated
by message transmissions; for instance, the process that sets claim to true may send
messages to all other processes notifying them.

Two types of messages are employed in the termination detection algorithm:

� (marker)
� (token, initiator)

Each process has the following constants and variables that will be subscripted, by i,
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when referring to a speci�c process i.
� ic: number of incoming channels to the process, a constant
� idle: process is idle
� quiet : process has been continuously idle since the token was last sent by the
process; false if the token has never been sent by this process

� have_token: process holds the token
� init : the value of the initiator in the (token, initiator) message last sent or recieved;
unde�ned if the process has never received such a message

� m: number of markers received, since the token was last sent by the process

Initial conditions

� The token is at Pk

� mi = the number of channels from processes with indices greater than i, for all i,
i.e., the cardinality of the set, {c | c is a channel from Pj to Pi ∧ j > i}
(This initial condition is required because otherwise, the token will permanently
stay at one process)

� quieti = false, for all i
� have_tokeni = true for i = 0; false otherwise
� initi is arbitrary, for all i

Code for process Pi:

01 :: receive(marker)
02 m ← m + 1
03 :: receive(app)
04 if (quiet)
05 quiet ← false
06 :: receive(token, initiator)
07 init ← initiator
08 have_token ← true
09 :: (have_token ∧ (ic = m) ∧ idle)
10 if (quiet ∧ (init = i))
11 claim ← true // termination detected
12 else if (quiet ∧ (init ̸= i)) // continue old cycle
13 m ← 0
14 send marker to all neighbors
15 have_token ← false
16 send(token, init) to P(i+1)mod n

17 else if (!quiet) // initiate new cycle
18 m ← 0
19 quiet ← true
20 init ← i
21 send marker to all neighbors
22 have_token ← false
23 send(token, init) to P(i+1)mod n

Fig. 6. Distributed termination detection algorithm for an arbitrary topology
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3. Development of customizable algorithms

In this section, we discuss the design of customizable distributed algorithms. One can
follow several complimentary approaches to build a customizable distributed algorithms
library. One approach is to develop a set of algorithms for the same problem, with
each algorithm o�ering advantages over its alternatives in speci�c operational contexts.
For example, this approach was followed in [6] to design a set of mechanisms for event
communication whose relative performance are dependent on factors such as number
and location of producers and consumers and publication rates. In order to analyze
the application, tools were developed to select the most appropriate mechanism for each
event type. In this paper, we follow a complimentary approach wherein we want to
customize speci�c algorithms themselves (rather than selecting between algorithms). To
enable customization, an algorithm developer must expose design knowledge pertaining
to an algorithm in a form which can be leveraged for analysis [7, 8]. Algorithms have
been designed with parameters such as maximum number of possible node failures or
con�ict relations to adapt their behavior. While parameters such as con�ict relation
exploit application semantics, they do not directly analyze the application structure for
optimization.

In this paper, we study mechanisms to expose knowledge related to the communica-
tion structure of an algorithm for possible optimizations.

3.1. Interaction sets

We require the algorithm designers to adopt the following approach:

For each algorithm alg, the designer �rst identi�es the interaction sets, denoted by
alg.interaction_set, which characterize its communication structure and specify the pro-
cesses participating in each interaction. The designer then writes alg in terms of these
sets. As we will show later, this involves a simple transformation of the existing algo-
rithms.

Alternatively, one can de�ne sets with well de�ned meanings for a class of algorithms.
The sets could be general enough to be used in a number of distributed algorithms or
could be very speci�c to a particular type of algorithms or even a particular algorithm.

In a later part of this paper we look at an example of a distributed algorithm for which
we de�ne algorithm speci�c interaction sets that describe the communication structure
of that particular algorithms.

3.2. Membership criteria for interaction sets

Next, for each interaction set interaction_set, the algorithm designer de�nes the
membership criterion, denoted by interaction_set.membership_criterion, which speci�es
the criterion for a process to be involved in an interaction and so de�nes if a process
is a part of the interaction set. The membership criteria must be de�ned in terms of
the queries supported by the analysis infrastructure. This criterion is a problem-speci�c
property that a process must satisfy to participate in the interaction. As shown in the
example below, this allows the sets to be de�ned in a problem-speci�c manner (rather
than only in terms of physical topology).

The membership criteria need to be expressed in such a form that tools are able to
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parse it. For that reason, we require the algorithm developer to specify membership
criteria for interaction sets in a standardized form. An example of such an input �le for
the membership criterion of an interaction set is shown in listing 1. It speci�es the name
of the interaction set, the name of the query to run and the arguments for the query in
a comma delimited format.

1 SRT. i , ALL, not exc lu s i v e , i . in_cs = 1 , j . in_cs = 1
2 . . .

Listing 1. Sample of membership criteria

InDiGo framework supports a number of basic queries that can be used in de�ning
membership criteria.

It is the responsibility of the algorithm designer to ensure the correctness of the
algorithm written in terms of interaction sests with respect to membership criteria. Just
like in traditinal algorithm development, algorithm designers are to provide correctness
proofs with respect to algorithm properties.

3.3. Rules for dynamic updates to the interaction sets

Finally, we allow the algorithm designer to leverage the design knowledge and provide
information for dynamic updates to the interaction sets.

In an algorithm, as a result of message passing, a process may obtain knowledge of
the states of the application entities at other processes. For example, when process i
receives a request message from process j in a mutual exclusion algorithm, it knows that
an application entity at process j is in the requesting state. This information can be
used to further constrain the interaction sets via dynamic update.

As with the membership criteria for interaction sets, information on dynamic updates
to the interaction sets needs to be expressed in such a form that tools are able to parse
it. For that reason, we also require the algorithm developer to specify information on
dynamic updates to the interaction sets in a standardized form. We require the algorithm
developer to add a condition to the input �le. This condition will describe which node in
the abstraction model of our system will be enabled when a process is in a certain state.

These dynamic rules are used during the system execution to further constrain inter-
action sets based on the information received through message passing of the executing
system.

3.4. Customized Version of the Distributed Termination

Detection Algorithm

The communication structure of the algorithm shown in Fig. 6 can be characterized
by the following three interaction sets:

� send_marker_to (SMT) is the set of all neighbor processors to which a marker
message has to be sent.

� wait_response_from (WRF) is the set of all neighbor processors from whom a
marker message is to be received.

� send_token_to (STT) is a singleton set consisting of the id of the next processor
to send token to.
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The algorithm written using these sets is shown in Fig. 7. As can be seen, the transfor-
mation is simple.

Code for process Pi:

01 :: receive(marker)
02 m ← m + 1
03 :: receive(app)
04 if (quiet)
05 quiet ← false
06 :: receive(token, initiator)
07 init ← initiator
08 have_token ← true
09 :: (have_token ∧ (WRF.size = m) ∧ idle)
10 if (quiet ∧ (init = i))
11 claim ← true // termination detected
12 else if (quiet ∧ (init ̸= i)) // continue old cycle
13 m ← 0
14 update_SMT()
15 send marker to SMT
16 have_token ← false
17 update_STT()
18 send(token, init) to STT
19 else if (!quiet) // initiate new cycle
20 m ← 0
21 quiet ← true
22 init ← i
23 update_SMT()
24 send marker to SMT
25 have_token ← false
26 update_STT()
27 send(token, init) to STT

Fig. 7. Customized version of distributed termination detection algorithm

Next, we de�ne the membership criteria for these sets. For simplicity, we have as-
sumed that at most one application component is mapped to each site and will use Ci to
denote the component mapped to site i. Let Nbri denote the set of processes such that
a component at processor i communicates with a component at processor j in App. We
de�ne SMTi as following: SMTi = {j : j ∈ Nbri)}. SMT set for processor i speci�es
neighbours of i. WRFi is de�ned the same as SMTi.

We de�ne STT (i) as following:

STT (i) = if i < n− 1
j = i+ 1

else
j = 0
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This speci�es that i must send the token to P(i+1)mod n processor next. For dynamic
membership, we identify assertion �enabled(Ci.passive_noact)�, stating that component
Ci is passive and has not sent any messages to activate other components since its own
last activation. Calls to procedures update_SMT (lines 14 and 24) and update_STT
(lines 17 and 26) are added and called before the sets are used. The code for these
procedures is synthesized by the dynamic optimization rules.

4. Conclusion

In this paper we presented an approach to designing general purpose distributed
algorithms customizable to a speci�c operational context. As an example, we used a ter-
mination detection algorithm. We have developed a mechanism, which allows a designer
to expose design knowledge related to the communication structure of an algorithm.
This involves identifying the interaction sets used for communication in an algorithm,
and de�ning the semantics of these sets in terms of queries supported by the analysis
infrastructure of the InDiGO framework.
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Ïîäàíà ïðèäàòíà äî íàëàøòóâàííÿ âåðñiÿ àëãîðèòìó âèÿâëåííÿ çàâåðøåííÿ ó
ðîçïîäiëåíèõ ñèñòåìàõ. Ìè äîòðèìó¹ìîñü ðîçðîáëåíîãî ïiäõîäó äëÿ ïðî¹êòóâàííÿ
ðîçïîäiëåíèõ àëãîðèòìiâ çàãàëüíîãî ïðèçíà÷åííÿ, íàëàøòîâàíèõ ïiä êîíêðåòíèé îïå-
ðàöiéíèé êîíòåêñò ó ðàìêàõ ôðåéìâîðêó InDiGO [1]. Äëÿ öüîãî òàêi àëãîðèòìè ìàþòü
áóòè âèðàæåíi ó ôîðìi, ùî ïiäëÿãà¹ íàëàøòóâàííþ. Ïîäà¹ìî ìåõàíiçì, ÿêèé äà¹
çìîãó äèçàéíåðó âèÿâèòè çíàííÿ ç äèçàéíó, ïîâ'ÿçàíi ç êîìóíiêàöiéíîþ ñòðóêòóðîþ
àëãîðèòìó. Öå ïåðåäáà÷à¹ âèÿâëåííÿ íàáîðiâ âçà¹ìîäi¨, ùî âèêîðèñòîâóþòüñÿ äëÿ
ñïiëêóâàííÿ â àëãîðèòìi, âèçíà÷åííÿ ¨õíüî¨ ñåìàíòèêè ç ïîãëÿäó çàïèòiâ, ïiäòðèìó-
âàíèõ iíôðàñòðóêòóðîþ àíàëiçó ôðåéìâîðêó InDiGO. Ïåðåâàãè íàëàøòîâàíèõ âåðñié
ðîçïîäiëåíèõ àëãîðèòìiâ ïðåäñòàâëåíi íà ïðèêëà	äi êàñòîìiçîâàíî¨ âåðñi¨ àëãîðèòìó
âèÿâëåííÿ çàâåðøåííÿ ðîáîòè ó ðîçïîäiëåíèõ ñèñòåìàõ.

Êëþ÷îâi ñëîâà: ðîçïîäiëåíi àëãîðèòìè, àëãîðèòìè âèÿâëåííÿ çàâåðøåííÿ ðîáîòè ó
ðîçïîäiëåíèõ ñèñòåìàõ, íàëàøòóâàííÿ, InDiGO, ôðåéìâîðêè.


