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We consider the Cauchy boundary value problem for the Laplace equation in a planar
bounded doubly-connected domain. Our goal is to reconstruct the Cauchy data on the
interior boundary from given Cauchy data on the outer boundary. It is an example of
the linear ill-posed inverse problem. Using the indirect integral equation method based
on a double-layer representation for the Cauchy problem we receive a system of integral
equations to be solved for two unknown densities. It is shown that the system has a unique
solution for a dense set of data. Next we parametrize this system to periodical integral
equations and separate the given hypersingularity in some kernels as a special weight func-
tion. The numerical solution of integral equations is realized by Nystroem method based
on trigonometrical quadrature rules. As result the full discrete system of linear equations
with respect to approximation values of unknown densities in the quadrature points is re-
ceived. Since this system is ill-posed it is solved by Tikhonov regularization. The value
of the regularization parameter is chosen by trial and error. It gives us the possibility to
receive the stable solution. The influence of the discretization is also included in a brief
error analysis. Results of numerical experiments for the reconstruction of the function and
its normal derivative on the interior boundary show that accurate approximations can be
obtained with the double-layer method also for the noisy Cauchy data. In the case of noisy
data, random pointwise errors are added to the function values on the outer boundary with
the percentage given in terms of the least squares norm.

Key words: Cauchy problem, double-layer potential, hypersingular integral equation, Ny-
strom method, Tikhonov regularization.

1. INTRODUCTION

The Cauchy problem for the Laplace equation has been studied for over a century and
serves as a typical example of a linear inverse ill-posed problem. The Cauchy problem
has several important applications, for example, in cardiology, corrosion detection, elec-
trostatics, geophysics, leak identification, non-destructive testing and plasma physics,
for references see [2], where also references to some regularizing solution methods are
given. We shall not go into details or list further references on history and properties
of Cauchy problems, but only state that data are assumed compatible such that there
exists a solution. We focus on recent layer potential methods for the Cauchy problem.

Layer potential based methods leading to first kind Fredholm integral equations have
been successful for well-posed boundary value problems both for theoretical investigations
and numerical calculations. For ill-posed Cauchy problems reduction via layer potentials
is more recent and less studied. Starting with the work [2] and building on results
from [1], a string of works have been produced showing that a single-layer approach can
be applied also to ill-posed Cauchy problems, and is in fact simple and straightforward
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but yet mathematically rigorous. This single-layer method has been implemented and
tested in various planar domains both doubly and simply connected as well as unbounded,
for details and references see the overview in [3]. The method is not restricted to the
Laplace equation but can also be applied to, for example, the similar ill-posed problem in
elasticity and for other stationary and non-stationary fields of various physical processes,
see [4,5].

To further complete the research on layer based methods for ill-posed Cauchy prob-
lems, it is natural to consider the use of a double-layer instead of a single-layer. Therefore,
we present a double-layer method for the Cauchy problem for the Laplace equation in
planar doubly-connected domains. As is known for the Dirichlet problem for the Laplace
equation in multiply connected domains, the classical double-layer potential has to be
adjusted with additional terms to generate a unique solution, see [13, Chapt. IV, Sect.
31] and [7]. The similar modification is adopted here. Using this layer representation
leads to a hypersingularity appearing in the resulting system of integral equations. We
examine the influence of this singularity and its effect on the regularization.

For the outline of this work, in Section 2, we present what is termed the indirect
integral method based on a double-layer representation for the Cauchy problem, leading
to a system of integral equations to be solved for two unknown densities. The operator
corresponding to this system is injective and has dense range, see Theorem 1. In Section 3,
we show how to discretize the obtained system using the Nystrém method and discuss
the stable solution of it via Tikhonov regularization. The influence of the discretization
is also included in a brief error analysis. Section 4 is devoted to numerical investigations;
numerical examples are given showing that accurate solutions can be obtained also in
the case of noisy Cauchy data. Some conclusions are stated in Section 5.

Before undertaking the outlined work, we end this section by formulating more pre-
cisely the Cauchy problem we study. Let Do C R? be a bounded domain with boundary
curve I's. This curve is assumed to be simple closed and sufficiently smooth; this means
in particular that the curve has no self-intersections and is connected, and the curve itself
has no boundary. Let then I'; be a simple closed (smooth) curve lying wholly within Dy
with the interior of I'; being denoted D;. The solution domain D is the region between
the two curves I'1 and I'y, thus D = D \ D;. The outward unit normal to the bound-
ary is denoted by v, see further Fig. 1 for an example of the configuration. We assume
additionally that the origin does not belong to the domain D.
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I's

Fig. 1. Example of a solution domain D

Let u € C?(D) N C*(D) be harmonic, that is a solution to the Laplace equation

Au=0 inD (1)
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with u also satisfying the following two boundary conditions on the outer curve I's,

u=f onls and @:g on I's. (2)
ov

This is the Cauchy problem that we shall present a double-layer approach for to generate
a stable numerical approximation of the solution wu.

Before ending this section, we note that our suggested approach is different from
the one given by Sun [14] for the Cauchy problem. In [14], an additional domain B
containing the given domain D is introduced, and the solution is represented as a double-
layer potential over the boundary 0B. As a result, ill-posed integral equations of the first
kind are obtained. The similar idea when using ill-posed integral equations in potential
theory are presented by Kress, see for example, [11, p. 343].

2. ILL-POSED SYSTEM OF HYPERSINGULAR INTEGRAL EQUATIONS

The use of a double-layer potential for the interior Dirichlet problem in multiply
connected domains involves some modification of the representation of the solution.
Modification is necessary to ensure the well-posedness of the obtained system of inte-
gral equations since there are non-trivial null solutions. A modification is suggested by
Mikhlin in [13, Chapt. IV, Sect. 31] and successfully used by other authors for exam-
ple [7,9]. Therefore, following [13], we seek the solution to the Cauchy problem (1)—(2)
in the following form

2
w) =3 [t "o dow) + Allaf, €D, ®

where ¢1 € C(I'1) and ¢o € C(I'3) are unknown densities (continuous densities imply a
straightforward interpretation of the boundary integrals), A € R is an unknown constant
and

D(z,y) = —In o (4)

2r |z —yl|’
is the fundamental solution of the Laplace equation in R2.
Using the classical jump properties of the double-layer potential and its normal deriva-
tive, the representation (3) satisfies (1)—(2) provided that the two densities ¢ and ¢
together with the constant A solve the following system

1 2 0P (x,y) 2
—2¢2($)+;/¢e(y)ay(y)ds(y)+A1n33| = f(z), x €Ty,

) af(x) /m(y)w ds(y) + 247 |:|gx) —g(s). zely, 5
=1 o

4

/@@@wza
'y

We show below that the above system has at most one solution for a dense set of data.
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We introduce the following boundary integral operators

__0 02(z,y) ,
(T (@) = 5 / (1) G dsty). @ € T ©
) @) = [ w0 Gt st € )

J
and

Qo= [ swisiy).

together with the two functions
2 A - v(z)
Gi(xz) =Inl|z|*, Giz)=2——— =z €Ty,

|z[?

where 7,5 = 1, 2.
Then we rewrite the system (5) in the following operator form

1
Do1¢1 + <—2I + D22) P2+ AGs = f,
~ 8
To1¢91 + Toogo + AGy = g, (®)
Q191 =0.

The operator matrix of the left-hand side in (8) is denoted by B and is considered as a
mapping B : L?(T'1) x L?(I'y) x R — L?(I'y) x L?(T'3) x R, where

1
Dyy —zI+ Dy Gs

2 5 (9)
15, T Gy |-
Q1 0 0

B =

The system (8) corresponds to the ill-posed Cauchy problem (1)-(2), and will there-
fore inherit the ill-posedness. Thus, rather than showing well-posedness, it is important
that the operator B has properties such that Tikhonov regularization can be applied for
the stable solution. We therefore show the following result.

Theorem 1. The operator B defined in (9) is injective and has dense range in the
space L*(T'y) x L*(T'3) x {0}.

Proof. Assume that B¢ = 0, where ¢ = (¢1,¢2,A) € L?(I'y) x L?(I'z) x R. The
element u given by the modified double-layer potential (3) is then a solution to the
Laplace equation in the interior of D with u|p, = 0 and Ju/Ov|r, = 0. Thus, by
Holmgren’s theorem, u = 0 in D. Consider then the Dirichlet boundary value problem in
the domain D with homogeneous boundary conditions. We have a representation of the
solution to that Dirichlet problem in the form of the modified double-layer potential (3)
with the last condition of (8) being satisfied by the assumption B¢ = 0. According
to [13, Chapt. IV, Sect. 31|, we can therefore conclude that the densities ¢; = 0 and
¢2 =0 as well as A = 0 in the representation (3). Hence, the operator B is injective.

We then show that B has dense range in L?(I'y) x L?(I'y) x {0}. Let f» be a fixed
smooth function on I'y and f; an arbitrary smooth function on I';. The solution « to the
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Dirichlet problem having Au = 0in D and v = fy on I's and u = f; on I'y, can, according
to [13, Chapt. IV, Sect. 31], be represented as the modified double-layer potential (3)
with the last condition in (8) satisfied.

Let g2 = g2(f1) be the restriction to I's of the normal derivative of this modified
double-layer potential. We claim that as f; varies arbitrarily, g»(f1) forms a dense set
in L?(T';). Assume on the contrary that g»(f1) does not form a dense set. Then there
exists a non-trivial element zo with

/F 02(F1) ()22 () ds(y) = 0 (10)

for every choice of f;.

Let v be a solution to the Dirichlet problem having Av = 0 in D and v = 25 on 'y
and v = 0 on I'y. Applying Green’s formula utilizing the boundary conditions for u and
v together with (10) render

g fz(y)%(y) ds(y) + g fl(y)%(y) ds(y) = 0.

Since fo and v are fixed and f; arbitrary, by taking f; = 0, we find that the first term
in the left-hand side vanish. We are then left with

ov
. fi (y)g(y) ds(y) = 0.

Since fi is arbitrary, we conclude that the normal derivative of v vanish on I';. From
the construction, v also vanish on I'y. By Holmgren’s theorem, v = 0 in D, hence 2 is
zero, which is a contradiction.

To conclude, for each smooth function fs on I's, there is a dense set of functions gs
for which (8) has a solution. It therefore follows that the operator B has a dense range
in L2(F2) X L2(F2) X {0} O

We point out that the above proof of injectivity follows the steps in [1, Theorem
4.1]. Moreover, the result obtained in the denseness part stating that for each smooth
function f, there is a dense set of functions g, for which (8) has a solution, is in accordance
with [6, Chapt. 3, Thm. 1.1]. There it is shown that a dense set of Cauchy data for elliptic
equations is obtained by taking restrictions of solutions to a mixed boundary problem.

We can then write our inverse problem as an operator equation

By=F
to be solved for ¢ = (¢1, P2, A) given the data F' = (f, g,0). To restore stability, Tikhonov
regularization is employed, that is we solve the regularized system

(B*B + al)p, = B*F,

where B* is the adjoint operator to B, and o > 0 is a regularization parameter to be
chosen appropriately.
According to the representation (3) the Cauchy data on I'y can be calculated as

u(z) = %qﬁl(x) + (D11¢n)(@) + (D1262)(2) + AG: (),

ou

a(ﬂf) = (Tu¢1)(x) + (Thag)(x) + AG: (2).
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3. FULL DISCRETIZATION

We assume that the boundary curves have the parametrization
T = {zi(t) = (2:1(t), 242(t)), t€]0,27]},

where z;: R — R? is 2m-periodic with |2/(¢)| > 0 for all ¢t € [0,27], z; € C3([0,27] x
[0,27)), i = 1,2.

Using these parametric representations in (6) and (7), we get the parametrized system
of integral equations

% ﬂ-wl( )Kg](t,T)dT—¢2(t)+
27
+% wQ(T)KQQ(t, T)dT + 2AG2($2(t)) = f(t),

1 [ ’ 1 2 T—t
%2 ; wl(T)Lgl(t,T)dTJr AT [ Wh(7) cot dr+ (11)
[ a0 Laalt. )| + AGa(ea) = 300

2

; Y1 (7)]ay (1)|dT = 0,

where 1;(t) = ¢(xi(t)), i = 1,2, f(t) = 2f(22(t)), §(t) = g(x2(t)) for ¢ € [0, 27].

Here, we used well-known relations between the normal derivative of the double-layer
potential and the single-layer potential (see [11]).

Recalling the fundamental solution of the Laplace equation for planar domains,
see (4), the kernels can be written as

2(2i(t) — z(7)) - v(z5(1)) |,

Kij(th): |Z‘Z(t)—$j(7')|2 ](T)|7 27&]
nd
) Lis(t T)_< 2(wi(t) — (7)) - v(@i(t)) (wi(t) — (7)) - v(2;(7))
o () -l )
) WO %

i () - v(xi(t))
Rl == )
and
22;(t) - (wi(7) — wi(t))ai(7) - (wa(7) —@i(t))  @i(t) - 23(7)
i (t) — i (7)[* |zi(t) = zi(7)|?
1

Li(t,7) = —ma t#T,
L w0 @) (@) @)
12 6l Afi)? 20zi()* 7 ’
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We consider quadrature rules constructed via trigonometrical interpolation [11] with
2n equidistant nodal points

ti="=, j=0,...,2n—1, (12)

with respect to the 2n-dimensional space 7,, of trigonometric polynomials of the form

n n—1
T = {v(s) = Z G COSTNMS + Z b SINMS, Ay, by, € R}
m=0 m=1

Denote by {£; € 75,5 =0,...,2n — 1} the corresponding Lagrange basis.
The two quadrature rules are

1 [ t—7,  RA
or ), J()cot—g—dr~ kZ:o Te(t) f(t), (13)
and
1 21 1 2n—1
— dr ~ — t 14
o, S X g (14
with the weight functions derived from [12],
. 18 1
T;(t) = —— mcos(m(t —t;)) — icos(n(t—tj)).
n
m=1

Using the Nystrom method with quadratures (13) and (14) in the integral equations
(11), we obtain the following system of linear equations

2n—1 2n—1

1 — 1 _ _
o > Ko (tity) + o D Py i Koo(tisty) — i+ 2AGs(w2(t:)) = F,
) =0
1 2n—17
m Z Yy ;Lo (tisty)+
=0
2n—1 (15)
1 — [ 1 : -
+ 125 (t)] D Wy [Tj(ti) + o Laalti ty) | + AGa(a2(t)) =73,
2\ =0
271—17
Z wl,j x/l(t])| =0
=0

to be solved for @171‘ ~ 11(t;) and JQJ ~ 1by(t;) with the right-hand side f; = f(t;) and
G; = g(t;) for i = 0,...,2n — 1. Rearranging (15), we arrive at the following system of
linear algebraic equations:

Ax =b, (16)
where the matrix A € R +1X4n+l and x = [1)1,1,, A]T with b = [f,5,0]". The matrix

A will have a large condition number due to the ill-posedness of the Cauchy problem.
To obtain a stable smooth solution regularization of this system is necessary.
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As explained at the end of the previous section, to solve (16) in a stable way, we employ
Tikhonov regularization; the standard version of Tikhonov regularization amounts to
solve the minimization problem

min {|| Ax —b* |13+ A |[x ) (7)

where A € R is a regularization parameter that has to be appropriately chosen and b®
are the given noisy data with error level §. The Tikhonov regularized solution z in (17)
is equivalently given as the solution to the regularized normal equations

(A*A + \)xy = A*b°, (18)

where A* is the transpose of the matrix A. Although there are optimal choices for the
regularization parameter (the discrepancy principle), it is often simpler and faster to use
a heuristic choice such as the L-curve rule [8].

A convergence analysis can be carried out based on general results given for example
in [10]. Denote by wén € Tn, £ = 1,2, solutions obtained via (18) as

2n—1

W)= > T L)
j=0

and by ¥ n € Ty, £ = 1,2, solutions obtained via (16) as

2n—1

binlt) = 3 TesLi0)

Clearly, we have the following inequality

1950 = Yellze < 1930 — Yenllze + 1Yen — Yellz2-
It is possible under additional assumptions on the matrix A to show the estimates
97 = tenllz < CVS, C>0
and

1Ven — elle < inf{{jte — &l|L2, € € Ta}-

Thus, in the case of exact data the error estimate of this approach corresponds to the
case of well-posed hypersingular integral equations (see [12]).
The numerical value of the Cauchy data on I'; can by calculated as

2 2n—1
1—x 1 —
wn(@1(t:)) = 500+ o ;:1 ZJ by i K1e(ti ;) + ANGi(21(t:))
1 =
and
ou,, S 1 12,
W(ﬂcl(ti)) = EAG)] j;o (Ui [Tj(ti) + %Ln(tutj)} + o ]Z::o ¥y jL1a(tist))

+ANG (21 (L))
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4. NUMERICAL EXPERIMENTS

We illustrate by numerical examples the robustness, for both exact and noisy data, of
the proposed double-layer method for the reconstruction of a harmonic function satisfying
the Cauchy problem (1)—(2). In the case of noisy data, random pointwise errors are added
to the function values g on the outer boundary I'; with the percentage given in terms
of the L?-norm. The discretization parameter controlling the number of mesh points on
each boundary curve is taken as n = 32 in (12). The value of the regularization parameter
A is chosen by trial and error; we calculated the numerical solutions for A = 10~ with
m =1,...,15, and use the value giving the most accurate result.

Ezample 1. The solution domain D is bounded by the curves (see Fig. 2a)

I'y = {z1(s) = (0.6 coss,0.4sins),s € [0,2n]}, Ty = {z2(s) = (coss,sins), s € [0, 27]}.

We consider the harmonic function ue,(x) = 22 — 2, with € D, as the exact solution

1
1
0 0
T -1 Iy
-1
-1 0 1 —1 0 1
a) The domain D in Ex. 1 b) The domain D in Ex. 2

Fig. 2. The two solution domains used in the numerical experiments

of the Cauchy problem (1)-(2). The Cauchy data is then given as

f(x):xf—xg, g(x) = 2(w1, —x2) - v(x), x €T}
We use the discrete L2-error es as a measure of the quality of the reconstruction of the
function values, where

2n—1 1/2
er = <21n Do f(at) - Un(xz(ti))P)

=0

and corresponding L2-error ¢z to measure the quality of the reconstruction of the normal
derivative.

The results of the numerical reconstruction of the Cauchy data on the interior curve
I'; with the proposed method in the case of 3% noise are presented in Figs. 3a and 3b.
The solid line in each figure is the analytical value and the dashed line the corresponding
approximation. The approximations will improve further with less noise and we mention
that in the case of exact data, we obtain e = 2.6 F —8 and ¢o = 2.2F —T7for A =1F —8.
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a) Function, ez = 0.02 b) Normal derivative, g2 = 0.09

Fig. 3. Cauchy data reconstruction on I'y for 3% noise in the data in Ex. 1: A=1FE — 2

Ezample 2. The domain D has boundary curves given by (see Fig. 2b)

Iy = {z1(s) = (1/(0.5cos 5)2 + (0.25sin 5)2(cos s,sin s), s € [0, 27]}
and
I'y = {z2(s) = (cos s, 1.3sins), s € [0, 27]}.
We choose as the exact solution the following harmonic function
Uer(x) = ®(2,9y"), €D, y*¢D

with y* = (3,0) and ® the fundamental solution given in (4).

In Fig. 4 are the results of the reconstruction of the Cauchy data on the boundary
I'; in the case of 3% noise. For exact data, we obtained e; = 1.7E — 7 and ¢ = 8.1E —6
for A =1F — 10.

a) Function, ez = 0.01 b) Normal derivative, g2 = 0.07

Fig. 4. Cauchy data reconstruction on I'y for 3% noise in the data in Ex.2: A =1E —3

As we see in Fig 3 and Fig 4 the reconstruction of the function values on I'y has
high accuracy also for noisy data. It is pleasing to see that also the normal derivative
is reconstructed with acceptable accuracy. Differentiation is itself an ill-posed problem,
thus finding numerically the normal derivative is an additional challenge compared to
finding the function values.
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5. CONCLUSIONS
The numerical solution of the planar Cauchy problem for the Laplace equation in

doubly connected domains is considered. Using a double-layer potential approach the
Cauchy problem is reduced to a system of ill-posed integral equations having a hyper-
singularity in the kernels. The injectivity of the corresponding linear operator together
with denseness of its range are shown. The full discretization is realized by a trigono-
metrical Nystrom type method. It leads to a linear system which is solved by Tikhonov
regularization. The numerical experiments confirmed the usability of proposed approach
including in the case of noisy data for generating a stable solution to the Cauchy problem.
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Posrasijaerbest kpaiioBa 3aga4a Kowi juist piBasinas Jlansaca B mi10CKiit 1BO3B si3Hil
obsiacti. Meta — pekoHCcTpyroBaTHu JaHi Komi Ha BHyTpIiniHIA Mexxi 3a BiqoMuMu JaHUMEH
Komi #Ha 3oBHimHIN Mexi. Ile nmpuksiam miHiiHOT HEKOPEKTHOT 06epHeHOT 3a1a4i. Bukopuc-
TOBYIOYH HEIPSIMUI METO[] IHTerpaJIbHUX PIBHSAHD, SIKUH IPYHTYETHCS HA IOJAHH] PO3B’SI3KY
3agaui Komi y ¢dopwMmi moreHniasy moaBiiHOro Imapy, OTPUMAHO CHCTEMY iHTerpajbHUX
PiBHSIHB IIOJI0 ABOX HEBiIOMEX IyCTHH. 3’SICOBAHO, IO I[si CUCTEMA MA€ €JUHUI PO3B’SI30K
71 MIIBHOT MHOXKHHE JaHUX. Jlaji BUKOHAHO MapaMeTPU3AII0 CUCTEMHU 10 MEePiOgUuIHUX
iHTerpaJbHUX PIBHAHB i BHAIIEHO HAsABHY rinepcobauBiCTH y BArIAAl cneniaabHOI BAroBol
dyuknii. YucespHe po3B’a3yBaHHs iHTErpaJIbHUX PDIBHAHb peaJizoBano MeTonoM Hucrtpbo-
Ma 3 TPUTOHOMETPHUYHUMHU KBAAPATYypaMu. VY MiACYMKY OTPUMAHO MOBHICTIO JUCKPETHY
crucTeMy JIiHIHHEX PIBHSHB CTOCOBHO AIPOKCHMANIHHUX 3HAUEHb HEBiJOMUX I'yCTHH y KBAJ-
parypHux By3isax. [1o3ask 151 CHCTeMa HEKOPEKTHA, TO s i1 pO3B’sI3yBaHHS 3aCTOCOBAHO
meTos perynsipusaril Tixonosa. ITapamerp perynsipusarnii Bubpano muisixom rnepebopy. Ile
JAJI0 3MOT'y OTPHMATH CTiMKHil po3B’sa30K. Bunup muckperwusarnii 3’sSCOBAHO B KOPOTKOMY
anasizi moxmbku. Pe3ysbraru YnceIbHUX €KCHEPUMEHTIB PEeKOHCTPYKHil dyukmil Ta iT
HOPMAaJIBHOI IOXiJTHOI Ha BHYTpPIIIHI# MeXi 3aCBIUyIOTh, IO CTiWKi HAOJIUKEHHST MOXKHA
OTpUMATH METOJOM MOTEHNialy HOABIMHOrO mapy i y Bumagky gammx Komi 3 mymowm.
VY BumaaKy AaHWX 3 IIYMOM BHIQJKOBa MOXMOKA J0JaBaJjiaCch J0 3HAaYeHb (DYHKINT Ha
30BHIIIHIN MexXKi y BiCOTKaX, HOpPMOBAHUX Y CEPEeIHBO-KBAIPATUYIHIM HOPMI.
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