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The Dirichlet boundary value problem for the elastostatic equation in the planar
bounded domain with a crack inside is considered. Using indirect integral equation ap-
proach this problem can be reduced to the system of boundary integral equations of the
�rst kind with unknown densities. These densities are vector values and de�ned on the
domain boundary and the crack. Method incorporates the usage of a matrix of the funda-
mental solution to the elastostatic equation as a kernel of the single layer elastic potential.
Further, having a parametric representation of the boundary curve and the crack, we
parametrize system of integral equations. Parametric representation of the crack can be
extended to be de�ned on the same segment as the boundary curve. Some kernels contain
logarithmic singularities. It is straightforward to verify that they can be allocated explic-
itly in an additive way employing certain weight functions. The density over the crack
has square root singularity that also can be handled within so-called cosine substitution.
The well-posedness of the system in corresponding H�older spaces is shown. The partial
discretization is performed by the quadrature method based on trigonometrical quadrature
rules. In order to obtain completely discrete system, we collocate the partially discrete sys-
tem at equidistant nodal points that are used in the quadrature formulas. One of the main
advantage of this approach is that it has spectral properties. The convergence analysis and
error estimate are completed. We presented numerical examples for two di�erent con�g-
urations of domain and input data with known and unknown exact solution, respectively.
Numerical experiments show the applicability of the method, its e�ectiveness and con�rm
the obtained theoretical results regarding the error estimation.

Key words: elastostatics, Dirichlet problem, integral equation approach, trigonometrical
quadratures, domain with crack.

1. Introduction

Elastostatic boundary value problems can be considered as mathematical model for
various physical process, which are important in di�erent applications [9, 12]. For the
theoretical investigation of such kind of problems usually the integral equation method
is involved. This approach can be used also for the numerical solution of elastostatic
problems. In the case of solution domains with a crack the integral equation techniques
have some additional speci�c di�culties. Various researches of the scattering problems
are presented for time-harmonic elastic waves with a Neumann boundary condition on
the two-dimensional crack [5] and mixed boundary value problems for Laplace equation
in a planar domain contained a cut [2]. In all cases the theoretical investigation and
the numerical solution are based on boundary integral equations of the �rst kind. These
equations are well posed in corresponding spaces (see f.e. [8]).

In this paper we extent these methods to the case of elastostatic equation in a bounded
domain contained a crack with Dirichlet boundary value condition. We describe the
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numerical solution of integral equations arising from an indirect potential approach by
a trigonometrical quadrature method and show its convergence and error analysis. The
main advantage of proposed approach is that it belongs to spectral methods and in the
case of analytical input data we have the exponential convergence. The similar approach
was used for a number of elastostatic problems in [1, 3, 6].

Let D ⊂ IR2 be a simply connected bounded domain with an orientable simply closed
boundary Γ2 ∈ C1, that has the regular parametric representation and Γ1 ∈ C1 be a
regular non-intersecting C1-smooth open arc with �xed endpoints x∗

−1 and x∗
1, that is

located in D (see Fig. 1).

Fig. 1. Example of a planar domain D with a crack Γ1

We consider a boundary value problem for the elastostatic equation

µ∆u+ (λ+ µ)graddivu = 0 in D \ Γ1 (1)

with Dirichlet boundary value conditions

u = f1 on Γ1, u = f2 on Γ2. (2)

Here µ and λ are Lam�e constants with λ > −µ and µ > 0 characterizing physical
properties of the body and fℓ, ℓ = 1, 2 are given smooth functions. For regularity, we
require u ∈ C2(D \Γ1), where u : D \Γ1 → IR2 and fℓ : Γℓ → IR2 and the corresponding
function spaces have to be understood as vector valued. According to [10] the following
uniqueness result holds.
Proposition 1. The boundary value problem (1), (2) has at most one solution.

2. Indirect integral equation method

We present the solution of (1), (2) as a sum of elastostatic single layer potentials with
vector densities ϕℓ on Γℓ for ℓ = 1, 2

u(x) =

2∑
k=1

∫
Γk

Φ(x, y)ϕk(y) ds(y), x ∈ D \ Γ1. (3)
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Here Φ is the fundamental solution of the equation (1) [12]

Φ(x, y) =
c1
2π

Ψ(x, y) I +
c2
2π

J(x− y),

where

c1 =
λ+ 3µ

µ(λ+ 2µ)
, c2 =

λ+ µ

µ(λ+ 2µ)

and

Ψ(x, y) = ln
1

|x− y|
, x ̸= y,

matrix J denotes dyadic product

J(w) =
ww⊤

|w|2
,

I is the identity matrix. The density ϕ2 is continuous and the density ϕ1 is assumed to
be of the form

ϕ1(x) =
ϕ̃1(x)√

|x− x∗
−1||x− x∗

1|
, x ∈ Γ1 \ {x∗

−1, x
∗
1}

with ϕ̃1 ∈ C(Γ1).
Then according to the properties of the elastostatic single layer potential we receive the
following result.
Theorem 2. The combination of elastostatic single layer potentials (3) solves the

boundary value problem (1), (2), if the densities ϕℓ, ℓ = 1, 2 satisfy the integral equations
system

2∑
k=1

∫
Γk

Φ(x, y)ϕk(y) ds(y) = fℓ(x), x ∈ Γℓ, ℓ = 1, 2. (4)

The proof of this theorem is gained by matching the representation against the given
boundary data involving classical jump relations for elastic single-layer potentials (for
formulas, see [9,12]). To investigate the solvability of the system (4) and for the further
numerical solution we parametrize the system (4) with the separation of the singularities
in the kernels as some weight functions. The density singularity is handled by employing
the cosine-substitution.

Assume that the boundaries Γℓ, ℓ = 1, 2 have parametric representations

Γℓ = {xℓ(t) = (xℓ,1(t), xℓ,2(t)) : t ∈ Iℓ}, ℓ = 1, 2

with I1 = [−1, 1] and I2 = [0, 2π]. Then the system (4) leads to the system of
parametrized integral equations

1

2π

∫ 1

−1

Hℓ,1(t, τ)µ1(τ)dτ +
1

2π

2π∫
0

Hℓ,2(t, τ)µ̃2(τ)dτ = f̂ℓ(t), (5)

where

µ1(t) = ϕ1(x1(t))|x′
1(t)|, µ̃2(t) = ϕ2(x2(t))|x′

2(t)|, f̂ℓ(t) = fℓ(xℓ(t)), t ∈ Iℓ, ℓ = 1, 2
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and the kernels have form

Hℓ,k(t, τ) = 2πΦ(xℓ(t), xk(τ)), ℓ, k = 1, 2.

We manage the square root singularity in the density µ1 by using the cosine-substitution
in the corresponding integrals. To handle the logarithmic singularities in the kernels Hℓ,ℓ,
we make suitable transformations and apply special quadrature rules. For that reason,
after substitution t = cos s in the �rst integral equation and τ = cosσ in the integrals
containing function µ1 (for more details see [2, 4, 13]) the system (5) can be reduced to
the equivalent system

1

2π

2π∫
0

[
− c1 ln

4

e
sin2

s− σ

2
I + ℓH̃ℓ,ℓ(s, σ)

]
µ̃ℓ(σ)dσ

+
1

2π

2π∫
0

H̃ℓ,3−ℓ(s, σ)µ̃3−ℓ(σ)dσ = f̃ℓ(s), s ∈ I2, ℓ = 1, 2,

(6)

where

µ̃1(s) = ϕ̃1(x̃1(s))|x̃′
1(s)|, x̃1(s) = x1(cos s), f̃1(s) = 2f̂1(cos s), f̃2(t) = 2f̂2(s)

and obtained kernels are given as

H̃1,2(s, σ) = 2H1,2(cos s, σ),

H̃2,1(s, σ) = H2,1(s, cosσ),

H̃1,1(s, σ) =
c1
2
ln

4

e2
(cos s− cosσ)2I +H1,1(cos s, cosσ),

and

H̃2,2(s, σ) =
c1
2
ln

4

e
sin2

s− σ

2
I +H2,2(s, σ),

with diagonal terms

H̃1,1(s, s) = −c1 ln
e|x̃′

1(s)|
2

I + c2J̃1(s, s)

and
H̃2,2(s, s) = −c1

2
ln e|x′

2(s)|2I + c2J̃2(s, s).

Here we used the notations

J̃1(s, s) =
x̃1(s)x̃1(s)

⊤

|x̃′
1(s)|2

, J̃2(s, s) =
x2(s)x2(s)

⊤

|x′
2(s)|2

.

After these transformations we get that µ̃1(−s) = µ̃1(s), H̃1,1(−s,−σ) = H̃1,1(s, σ),

H̃1,2(−s, σ) = H̃1,2(s, σ) and H̃2,1(s,−σ) = H̃2,1(s, σ).
To establish the solvability of the system (6) we consider the standard H�older spaces

Cm,α[0, 2π] with m ∈ IN ∪ {0} and 0 < α < 1 and Cm,α
e [0, 2π] the subspaces of even

functions from Cm,α[0, 2π].
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From the uniqueness Proposition 1 and the properties of integral operators in the
system (6) holds the following result.
Theorem 3. Let Γℓ ∈ Cp, ℓ = 1, 2, p ∈ IN. For m < p, f̃1 ∈ Cm,α

e [0, 2π],
f̃2 ∈ Cm,α[0, 2π], the system of integral equations (6) is uniquely solvable with µ̃1 ∈
Cm−1,α

e [0, 2π], µ̃2 ∈ Cm−1,α[0, 2π]. The well-posedness of system (6) can be carried
out also in a Sobolev space setting. Note that as compared with previous investigations
(see [8]) the cosine transformation makes the existence analysis more simple and clear.

3. Full discretization

In order to obtain completely discrete system we apply the quadrature method based
on trigonometrical quadrature rules [4, 11] with 2n equidistant nodal points

sj =
jπ

n
, j = 0, 2n− 1. (7)

They are constructed via interpolation in the 2n-dimensional space Tn of trigonometric
polynomials of the form

v(s) =

n∑
m=0

am cosms+

n−1∑
m=1

bm sinms, am, bm ∈ IR

For the integrals in (6) we use the following interpolatory quadratures

1

2π

∫ 2π

0

f(σ) dσ ≈ 1

2n

2n−1∑
k=0

f(sk),

1

2π

∫ 2π

0

f(σ) ln
4

e
sin2

s− σ

2
dσ ≈

2n−1∑
k=0

Rk(s) f(sk),

with weight functions

Rk(s) = − 1

n

n−1∑
m=1

1

m
cosm(s− sk)−

1

2n2
cosn(s− sk).

Thus, applying these quadratures to approximate the integrals in the system (6) and
collocating the received approximate equations at the same points we get the (6n+2)×
(6n+ 2) linear system

n∑
j=0

A11
ij µ̃1j +

2n−1∑
j=0

A12
ij µ̃2j = f̃1i, i = 0, n,

n∑
j=0

A21
ij µ̃1j +

2n−1∑
j=0

A22
ij µ̃2j = f̃2i, i = 0, 2n− 1,

(8)

where
µ̃1k ≈ µ̃1(sk), f̃1k = f̃1(sk), k = 0, n,

µ̃2k ≈ µ̃2(sk), f̃2k = f̃2(sk), k = 0, 2n− 1,
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and the matrix coe�cients are denoted as

A11
iℓ = −c1

2
RiI +

1

2n
H̃11(si, sℓ), ℓ = 0, n

for i = 0, n,

A11
ij = −c1

2
(R|i−j| +Ri+j)I +

1

n
H̃11(si, sj)

for i = 0, n, j = 1, n− 1,

A12
ij =

1

2n
H̃12(si, sj), i = 0, n, j = 0, 2n− 1,

A21
iℓ =

1

2n
H̃21(si, sℓ), ℓ = 0, n, i = 0, 2n− 1,

A21
ij =

1

n
H̃21(si, sj), i = 0, 2n− 1, j = 1, n− 1,

A22
ij = −c1R|i−j|I +

1

2n
H̃22(si, sj), i, j = 0, 2n− 1.

Here we have used notation Rk = Rk(0).
The convergence analysis and error estimate of this method can be carried out via a

collective compact operators theory (see [4]) or relied on some estimate for trigonometric
interpolation in H�older spaces (as it shown in [5]).
Lemma 4. For f̃1 ∈ Cm,α

e [0, 2π], f̃2 ∈ Cm,α[0, 2π] and a su�ciently large n the
system (8) is uniquely solvable for µ̃kn ∈ Tn. For exact solutions µ̃k of (6), k = 1, 2 the
following error estimates are holds

∥µ̃k − µ̃kn∥m,α ≤ Ck
lnn

nq−m+β−α
∥µ̃k∥q,β ,

where 0 ≤ m ≤ q, 0 < α ≤ β < 1 and Ck > 0 are some constants that depend on
α, β,m, q.

Note that for analytic boundaries and cracks and for analytic boundary functions we
receive the error estimate

∥µ̃k − µ̃kn∥m,α ≤ Cke
−ckn, k = 1, 2

for some constants ck > 0 (see [11]). We also remark that the error analysis for this nu-
merical method can also be carried out in a Sobolev space setting (see [11, Section 13.4]).

The numerical solution of the boundary value problem (1), (2) can be calculated as

un(x) =
π

n

[
n−1∑
j=1

Φ(x, x̃1(sj))µ̃1j+

1

2

∑
j=0,n

Φ(x, x̃1(sj))µ̃1j +

2n−1∑
j=0

Φ(x, x2(sj))µ̃2j

]

for x ∈ D \ Γ1.
The proposed approach can be applied with some modi�cation to the case with the

boundary conditions on the crack:

u± = f±
1 on Γ±

1 ,
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where Γ−
1 and Γ+

1 mean the left-hand and right-hand sides of Γ1, respectively. Based on
the results in [7] the solution of the elastostatics problem can be presented as follows

u(x) =

2∑
ℓ=1

∫
Γℓ

Φ(x, y)ϕℓ(y)ds(y) +

∫
Γ1

[
TyΦ(x, y)

]⊤
[f1](y)ds(y),

where x ∈ D \ Γ±
1 and [f1] = f+

1 − f−
1 . By ν we denote the unit normal vector to Γ1

directed towards Γ+
1 and T is the stress tensor acting on vector function ω as

Tω = λdivω ν + 2µ(ν · grad)ω + µdiv(Qω)Qν,

where Q is a known rotational matrix Q =

(
0 1

−1 0

)
. As a result we reduce the corre-

sponding elastostatics boundary value problem to the system

2∑
ℓ=1

∫
Γℓ

Φ(x, y)ϕℓ(y) ds(y) = (ℓ− 1)f2(x)+

2− ℓ

2
(f+

1 (x) + f−
1 (x))−

∫
Γ1

[
TyΦ(x, y)

]⊤
[f1](y) ds(y)

(9)

for x ∈ Γℓ, ℓ = 1, 2.
Here we received the integral equations with singularities analogously to the above con-
sidered case. Note that the system (9) is equivalent to (4) in the case f+

1 = f−
1 .

The numerical solution of (9) can be obtained by the considered quadrature method.
The convergence analysis and error estimate are analogously to Lemma 4. We need to
take into account the integrals contained in the right-hand side of the system (9).

4. Numerical experiments

We shall present numerical results for two di�erent con�gurations.
Example 1. As the exact solution to compare our numerical approximation with, we

take uex(x) = Φ1(x, y
∗), x ∈ D, where Φ1 is the �rst column of the matrix constituting

the fundamental solution, and y∗ is an arbitrary point which does not belong to the
domain D. Let coe�cients be λ = 2, µ = 3 and y∗ = (5, 4).
Consider the domain of Fig. 2 having boundaries

Γ1 = {x1(t) = (t,− sin(0.5π(t+ 1)) + 0.5) : t ∈ [−1, 1]} ,

Γ2 = {x2(t) = (2.5 sin t, 2.5 cos t− cos 2t+ 1) : t ∈ [0, 2π]} .

In Table 1 and Table 2 presented results of numerical approximation for vector function
u = (u1, u2) at point x = (1,−1). Calculations are done for di�erent discretization
parameter n.
Example 2. For second example take a domain of Fig. 3 with boundary curves

Γ1 = {x1(t) = (t, 0) : t ∈ [−1, 1]} ,

Γ2 = {x2(t) = (3 cos t, r(t) sin t) : t ∈ [0, 2π]} ,
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Fig. 2. Domain in Example 1

Table 1

Results for u1(x) at x = (1,−1)

n Exact u1(x) Approximated u1(x)
8 -0.122846939155
16 -0.122610186785
32 -0.122505716657 -0.122505933896
64 -0.122505716676
128 -0.122505716657

Table 2

Results for u2(x) at x = (1,−1)

n Exact u2(x) Approximated u2(x)
8 0.017280992360
16 0.016138037202
32 0.016174282834 0.016175069648
64 0.016174282791
128 0.016174282834

where

r(t) = 4
√
0.4 sin2 t+ cos2 t.
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Let fl(x) = (x1 + x2, x2)
⊤ for x = (x1, x2) ∈ Γl, l = 1, 2. Results of approximation at

x = (1, 2) are shown in Table 3.

Fig. 3. Domain in Example 2

Table 3

Results for u1(x) and u2(x) at x = (1, 2)

n Approximated u1(x) Approximated u2(x)
8 2.791083688820 -0.087320441270
16 2.785901332784 -0.089108848765
32 2.785759500615 -0.088740333728
64 2.785759884313 -0.088740602493
128 2.785759884314 -0.088740602492

The suggested approach performs well as veri�ed by both numerical examples.

5. Conclussion

An integral equation method based on the elastostatic single layer potential was pre-
sented for the Dirichlet problem for the case of bounded domain with a crack inside. As
result, a system of boundary integral equations to be solve for two unknown vector valued
densities is obtained by matching against the input data. The system has unique solu-
tion in corresponding H�older spaces. Special care was taken to handle the singularities
in the kernels and in the density. The full discretization is realized by a trigonometrical
quadrature method, which belong to the methods with spectral properties. Numerical
examples for two di�erent solution domains con�rmed the theoretical convergence re-
sult. The outlined method is a lightweight and �exible approach for planar elastostatic
problems with a crack.
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ÐIÂÍßÍÍß ÅËÀÑÒÎÑÒÀÒÈÊÈ Â ÎÁÌÅÆÅÍIÉ ÎÁËÀÑÒI
Ç ÒÐIÙÈÍÎÞ ÌÅÒÎÄÎÌ IÍÒÅÃÐÀËÜÍÈÕ ÐIÂÍßÍÜ
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ìîæíà çâåñòè äî ñèñòåìè iíòåãðàëüíèõ ðiâíÿíü ïåðøîãî ðîäó ç íåâiäîìèìè ãóñòèíàìè.
Ãóñòèíè ¹ âåêòîðíèìè çíà÷åííÿìè, ùî âèçíà÷åíi íà ãðàíèöi îáëàñòi òà íà òðiùèíi.
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Öåé ñïîñiá  ðóíòó¹òüñÿ íà âèêîðèñòàííi åëàñòîñòàòè÷íîãî ïîòåíöiàëó ïðîñòîãî øàðó,
äå ÿäðîì ¹ ìàòðèöÿ ôóíäàìåíòàëüíîãî ðîçâ'ÿçêó ðiâíÿííÿ. Â ïîäàëüøîìó, âèêîðèñòî-
âóþ÷è ïàðàìåòðè÷íå ïîäàííÿ ãðàíè÷íî¨ êðèâî¨ òà òðiùèíè, îòðèìàíó ñèñòåìó iíòåã-
ðàëüíèõ ðiâíÿíü ìîæíà ïîäàòè ó ïàðàìåòðèçîâàíîìó âèãëÿäi. Ïàðàìåòðè÷íå ïîäàííÿ
òðiùèíè ìîæíà íåïåðåðâíî ïðîäîâæèòè òàê, ùîá îáëàñòü âèçíà÷åííÿ çáiãàëàñü iç
îáëàñòþ âèçíà÷åííÿ ãðàíèöi îáëàñòi, çàäàíî¨ ïàðàìåòðè÷íî. Äåÿêi ÿäðà iíòåãðàëiâ
ñèñòåìè ìiñÿòü ëîãàðèôìi÷íi îñîáëèâîñòi. Öi ñèíãóëÿðíîñòi ìîæíà âèäiëèòè ÿâíî,
ó âèãëÿäi îêðåìèõ äîäàíêiâ, çàñòîñîâóþ÷è ñïåöiàëüíi âàãîâi ôóíêöié. Íåâiäîìà
ãóñòèíà, ùî âèçíà÷åíà íà òðiùèíi, òåæ ìiñòèòü ñèíãóëÿðíiñòü, ÿêî¨ ìîæíà ïîçáóòèñÿ
çà äîïîìîãîþ òàê çâàíî¨ êîñèíóñ-çàìiíè. Âiäîìî, ùî çàäà÷à êîðåêòíà ó âiäïîâiäíèõ
ïðîñòîðàõ �üîëüäåðà. ×àñòêîâó äèñêðåòèçàöiþ çàäà÷i ìîæíà âèêîíàòè ìåòîäîì
êâàäðàòóð ç âèêîðèñòàííÿì òðèãîíîìåòðè÷íèõ êâàäðàòóðíèõ ôîðìóë. Ùîá îòðèìàòè
ïîâíiñòþ äèñêðåòíó ñèñòåìó, êîëîêó¹ìî îòðèìàíi ñïiââiäíîøåííÿ ó âóçëàõ êâàäðà-
òóðíèõ ôîðìóë. Îäíi¹þ ç îñíîâíèõ ïåðåâàã öüîãî ìåòîäó äèñêðåòèçàöi¨ ¹ òå, ùî âií
ìà¹ ñïåêòðàëüíi âëàñòèâîñòi. Ïðîâåäåíî àíàëiç çáiæíîñòi é îöiíêó ïîõèáêè ìåòîäó.
Íàâåäåíî ïðèêëàäè ðåàëiçàöi¨ àëãîðèòìó äëÿ äâîõ ðiçíèõ êîíôiãóðàöié îáëàñòi òà
âõiäíèõ äàíèõ, iç âiäîìèì i íåâiäîìèì òî÷íèì ðîçâ'ÿçêîì, âiäïîâiäíî. ×èñåëüíi
åêñïåðèìåíòè äåìîíñòðóþòü çàñòîñîâíiñòü é åôåêòèâíiñòü çàïðîïîíîâàíîãî ìåòîäó òà
ïiäòâåðäæóþòü íàâåäåíi àïðiîðíi îöiíêè ïîõèáêè.

Êëþ÷îâi ñëîâà: åëàñòîñòàòèêà, çàäà÷à Äiðiõëå, ìåòîä iíòåãðàëüíèõ ðiâíÿíü, òðèãîíî-
ìåòðè÷íi êâàäðàòóðè, îáëàñòü ç òðiùèíîþ.


