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The Dirichlet boundary value problem for the elastostatic equation in the planar
bounded domain with a crack inside is considered. Using indirect integral equation ap-
proach this problem can be reduced to the system of boundary integral equations of the
first kind with unknown densities. These densities are vector values and defined on the
domain boundary and the crack. Method incorporates the usage of a matrix of the funda-
mental solution to the elastostatic equation as a kernel of the single layer elastic potential.
Further, having a parametric representation of the boundary curve and the crack, we
parametrize system of integral equations. Parametric representation of the crack can be
extended to be defined on the same segment as the boundary curve. Some kernels contain
logarithmic singularities. It is straightforward to verify that they can be allocated explic-
itly in an additive way employing certain weight functions. The density over the crack
has square root singularity that also can be handled within so-called cosine substitution.
The well-posedness of the system in corresponding Hdolder spaces is shown. The partial
discretization is performed by the quadrature method based on trigonometrical quadrature
rules. In order to obtain completely discrete system, we collocate the partially discrete sys-
tem at equidistant nodal points that are used in the quadrature formulas. One of the main
advantage of this approach is that it has spectral properties. The convergence analysis and
error estimate are completed. We presented numerical examples for two different config-
urations of domain and input data with known and unknown exact solution, respectively.
Numerical experiments show the applicability of the method, its effectiveness and confirm
the obtained theoretical results regarding the error estimation.

Key words: elastostatics, Dirichlet problem, integral equation approach, trigonometrical
quadratures, domain with crack.

1. INTRODUCTION

Elastostatic boundary value problems can be considered as mathematical model for
various physical process, which are important in different applications [9,12]. For the
theoretical investigation of such kind of problems usually the integral equation method
is involved. This approach can be used also for the numerical solution of elastostatic
problems. In the case of solution domains with a crack the integral equation techniques
have some additional specific difficulties. Various researches of the scattering problems
are presented for time-harmonic elastic waves with a Neumann boundary condition on
the two-dimensional crack [5] and mixed boundary value problems for Laplace equation
in a planar domain contained a cut [2]. In all cases the theoretical investigation and
the numerical solution are based on boundary integral equations of the first kind. These
equations are well posed in corresponding spaces (see f.e. [8]).

In this paper we extent these methods to the case of elastostatic equation in a bounded
domain contained a crack with Dirichlet boundary value condition. We describe the
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numerical solution of integral equations arising from an indirect potential approach by
a trigonometrical quadrature method and show its convergence and error analysis. The
main advantage of proposed approach is that it belongs to spectral methods and in the
case of analytical input data we have the exponential convergence. The similar approach
was used for a number of elastostatic problems in [1,3,6].

Let D C IR? be a simply connected bounded domain with an orientable simply closed
boundary I'y € C', that has the regular parametric representation and I'y € C! be a
regular non-intersecting C'-smooth open arc with fixed endpoints z* ; and z7, that is
located in D (see Fig. 1).

T2

Fig. 1. Example of a planar domain D with a crack I'y

We consider a boundary value problem for the elastostatic equation
uAu+ (A + p)graddive =0 in D\ T (1)
with Dirichlet boundary value conditions
u=f1 onljy, u=fo onls. (2)

Here ;1 and A are Lamé constants with A > —p and g > 0 characterizing physical
properties of the body and fy, £ = 1,2 are given smooth functions. For regularity, we
require u € C?(D\T'), where . : D\T'; — IR? and f; : T'y — IR? and the corresponding
function spaces have to be understood as vector valued. According to [10] the following
uniqueness result holds.

Proposition 1. The boundary value problem (1), (2) has at most one solution.

2. INDIRECT INTEGRAL EQUATION METHOD

We present the solution of (1), (2) as a sum of elastostatic single layer potentials with
vector densities ¢y on I'y for £ = 1,2

2

uw) =Y [ ew)on)asty). weD\TL. ®
k=1"Tk
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Here ® is the fundamental solution of the equation (1) [12]

C C
Ba,y) = 5 Ve y) I+ 5> T(x—y),

2
where
o A+ 3p o At p
1= /N & 2 = T /N a1\
(A + 2p) (A + 2p)
and .
V(ay) =ln——01, z#y,
|z =yl

matrix J denotes dyadic product

wa

J(w) =

w?

I is the identity matrix. The density ¢2 is continuous and the density ¢; is assumed to
be of the form B
¢1(x)

Ve =t e — 2]

¢1(x)

;e D\ {aly, 27}

with ¢; € C(T'y).
Then according to the properties of the elastostatic single layer potential we receive the
following result.

Theorem 2. The combination of elastostatic single layer potentials (3) solves the
boundary value problem (1), (2), if the densities ¢y, £ = 1,2 satisfy the integral equations
system

2
> [ o dsty) = o). weln =12 ()
k=17Tk

The proof of this theorem is gained by matching the representation against the given
boundary data involving classical jump relations for elastic single-layer potentials (for
formulas, see [9,12]). To investigate the solvability of the system (4) and for the further
numerical solution we parametrize the system (4) with the separation of the singularities
in the kernels as some weight functions. The density singularity is handled by employing
the cosine-substitution.

Assume that the boundaries I'y, £ = 1,2 have parametric representations

Fe = {xg(t) = (33571(1*,),.%@72(75)) 1t e Ig}, ! = 1,2

with Iy = [-1,1] and I = [0,27]. Then the system (4) leads to the system of
parametrized integral equations

1 27
%/_1 Hyy(t, m)pa(1)dr + %/He}g(t,T)ﬂz(T)dT = fo(t), (5)
0

where

pr(t) = gu(@r ()25 ()], fia(t) = da(ea(t) |20, fe(t) = fe(we(t)), t € L, £=1,2
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and the kernels have form
Hg,k(t,’r) ZQW(D(xg(t),Zk(T)), g,k:].,?.

We manage the square root singularity in the density pq by using the cosine-substitution
in the corresponding integrals. To handle the logarithmic singularities in the kernels Hy g,
we make suitable transformations and apply special quadrature rules. For that reason,
after substitution ¢ = coss in the first integral equation and 7 = coso in the integrals
containing function p1 (for more details see [2,4,13]) the system (5) can be reduced to
the equivalent system

27

1 4 — -
—/ [fcl In - sin? > 5 JI+€HM(5,J) fe(o)do
e

2T
0

27
1 [ - . .
—|—% /Hg73_g(5,0')/1,3_g(0')d0' = fu(s), s€l £=1,2,
0

where

Fn(s) = 31 (81(5)I7, ()], F1(5) = 21 (cos s), fis) = 2a(coss), falt) = 2/ (s)
and obtained kernels are given as
Hi 2(s,0) = 2H) »(cos s,0),
Hy1(s,0) = Ha(s,co80),
Hi1(s,0) = %1 In i(cos s —cosa)*I + Hy 1(cos s, cos o),

e2

and
98—0

~ 4
Hjo(s,0) = %lngsin I+ Hy(s,0),

with diagonal terms

=/
Hi(s,8) = —c1ln @I + o J1(s, 8)

and ~ ‘ R
Hyo(s,s) = —51 Ine|zh(s) 2T + codo(s, s).

Here we used the notations

. F1(8)71(s)T . xo(8)xa(s) T
Ji(s,8) = 7( )71(5) , Ja(s,s) = (1’2(8)(|2)

After these transformations we get that jii(—s) = fi1(s), Hi1(—s,—0) = Hy1(s,0),
Hi2(—s,0) = Hy2(s,0) and Ha1(s,—0) = Ha1(s,0).

To establish the solvability of the system (6) we consider the standard Holder spaces
C™[0,27] with m € INU {0} and 0 < o < 1 and CI™?[0, 27] the subspaces of even

functions from C™%[0, 27].
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From the uniqueness Proposition 1 and the properties of integral operators in the
system (6) holds the following result.
_ Theorem 3. Let I'y € C?, £ = 1,2, p € IN. For m < p, fi e Ccmelo,2n],
fa € C™[0,27], the system of integral equations (6) is uniquely solvable with fi; €
cm=bal0,2n], iz € C™~12[0,27].  The well-posedness of system (6) can be carried
out also in a Sobolev space setting. Note that as compared with previous investigations
(see [8]) the cosine transformation makes the existence analysis more simple and clear.

3. FULL DISCRETIZATION

In order to obtain completely discrete system we apply the quadrature method based
on trigonometrical quadrature rules [4,11] with 2n equidistant nodal points
T e
§; = —, =0,2n—1. 7
J n J (7)

They are constructed via interpolation in the 2n-dimensional space T, of trigonometric
polynomials of the form

n n—1
= E Ay, COSMS + g bm sinms, a,;,, b, € IR

For the integrals in (6) we use the following interpolatory quadratures

1 2 1 2n—1
[ H@)dr = o3 fls).
k=0
1 27 2n—1

4 _
o flo )lngsin2s

with weight functions

! 51: ! )= L cosn(s — =)
— fCOSm S— S CcCosNnis — s .
—m k m2 k

3

Thus, applying these quadratures to approximate the integrals in the system (6) and
collocating the received approximate equations at the same points we get the (6n + 2) x
(6n + 2) linear system

n 2n—1 B
S A+ > Aigy = fu, i=0n,
=0 =0
(8)
2n—1

ZAgjlﬂU + Z A?g?ﬁzj = fai, i=02n—1,

where ~ ~ o
ﬁlk%ﬂl(sk)a flk::fl(sk)7 k:O7n7

fiok = fia(sk),  for = fa(sk), k=0,2n—1,
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and the matrix coefficients are denoted as

1
Al} = f—R I+ Hll(sl,Sg) {=0,n

fori=0,n

C 1~
Al = =5 Biicjy + Rigj)T + —Hi(si.55)

fori=0,n,j=1,n-1,

1 - . o
Allf = %ng(si,sj), 1=0,n, 7=0,2n—1,

1 - -
A% = %Hm(suse), {=0,n i=0,2n—1,

1 ~
A} = —Hy (sis5), i=0,2n—1,j=1n—1,
n

1 - R
A?J-Q =—c1Rj_; 1 + %HQQ(Si,Sj), 1,7 =0,2n— 1.

Here we have used notation Ry = Rj(0).

The convergence analysis and error estimate of this method can be carried out via a
collective compact operators theory (see [4]) or relied on some estimate for trigonometric
interpolation in Holder spaces (as it shown in [5]).

Lemma 4. For fi € CI*[0,2n], f» € C™%[0,27] and a sufficiently large n the
system (8) is uniquely solvable for [iy, € T,,. For exact solutions fi;, of (6), k = 1,2 the
following error estimates are holds

Inn
Ak = Arnllm,a < Cr =g klla.6,

where 0 < m < ¢, 0 < a < 8 <1 and C; > 0 are some constants that depend on
a, B,m,q.

Note that for analytic boundaries and cracks and for analytic boundary functions we
receive the error estimate

H[Lk - ﬂkn”m,a < Ckeickn, k= 1,2

for some constants ¢ > 0 (see [11]). We also remark that the error analysis for this nu-
merical method can also be carried out in a Sobolev space setting (see [11, Section 13.4]).
The numerical solution of the boundary value problem (1), (2) can be calculated as

n—1
vis
un@) = T | 3 @, 4 +
i—1
1 ! 2n—1
7 O(z, %1(s5)) fnj + Z x, T2(s;))fi2;

for x € D\ T.
The proposed approach can be applied with some modification to the case with the
boundary conditions on the crack:

+ +
=fi onl7y,
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where I'] and I'] mean the left-hand and right-hand sides of I';, respectively. Based on
the results in [7] the solution of the elastostatics problem can be presented as follows

2 T
u(e) =3 / B(z, y)bely)ds(y) + / 7,8, 9)] 1] (v)ds (),

é:ll—\é I

where 2 € D\ TT and [fi] = f{7 — f;. By v we denote the unit normal vector to I';
directed towards T'{” and T is the stress tensor acting on vector function w as

Tw = Mivwv + 2u(v - grad)w + pdiv(Qw)Qu,

. . . 1
where () is a known rotational matrix Q = (_(1) O>' As a result we reduce the corre-

sponding elastostatics boundary value problem to the system

Z/‘I)(x,y)qbg(y) ds(y) = (0 — 1) fa(z)+

Zzlrz

2@+ @) - [ 1) T ds

'

forxely, £=1,2.
Here we received the integral equations with singularities analogously to the above con-
sidered case. Note that the system (9) is equivalent to (4) in the case f;" = f; .

The numerical solution of (9) can be obtained by the considered quadrature method.
The convergence analysis and error estimate are analogously to Lemma 4. We need to
take into account the integrals contained in the right-hand side of the system (9).

4. NUMERICAL EXPERIMENTS

We shall present numerical results for two different configurations.

Example 1. As the exact solution to compare our numerical approximation with, we
take ey () = P1(z,y*), € D, where @4 is the first column of the matrix constituting
the fundamental solution, and y* is an arbitrary point which does not belong to the
domain D. Let coefficients be A = 2, u = 3 and y* = (5,4).

Consider the domain of Fig. 2 having boundaries

I'y = {z1(t) = (t, —sin(0.57(t + 1)) + 0.5) : t € [-1,1]},

Ty = {x2(t) = (2.5sint,2.5cost —cos2t + 1) : ¢ € [0,27]}.

In Table 1 and Table 2 presented results of numerical approximation for vector function
u = (ug,u2) at point z = (1,—1). Calculations are done for different discretization
parameter n.

Example 2. For second example take a domain of Fig. 3 with boundary curves

I = {xl(t) = (t,O) HRAS [_1’ 1]},

Iy = {z2(t) = (Beost,r(t)sint) : t € [0,27]},
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Iy
2
0
-2
—2 0 2

Fig. 2. Domain in Example 1

Results for uy () at z = (1, —1)

Exact u;(z)

Approximated u; (z)

16
32
64
128

-0.122505716657

-0.122846939155
-0.122610186785
-0.122505933896
-0.122505716676
-0.122505716657

Results for us(x)

at x = (1,-1)

Exact ug(z)

Approximated us(z)

16
32
64

128

0.016174282834

0.017280992360
0.016138037202
0.016175069648
0.016174282791
0.016174282834

where

r(t) = 41/0.4sin® t + cos? t.

Table 1

Table 2
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Let fi(z) = (21 + @9, 22) " for © = (x1,15) € Ty, | = 1,2. Results of approximation at
x = (1,2) are shown in Table 3.

-2 0 2

Fig. 3. Domain in Example 2

Table 3

Results for uy(x) and ug(z) at = = (1,2)

n | Approximated ui(x) | Approximated us(z)
8 2.791083688820 -0.087320441270
16 2.785901332784 -0.089108848765
32 2.785759500615 -0.088740333728
64 2.785759884313 -0.088740602493
128 2.785759884314 -0.088740602492

The suggested approach performs well as verified by both numerical examples.

5. CONCLUSSION

An integral equation method based on the elastostatic single layer potential was pre-
sented for the Dirichlet problem for the case of bounded domain with a crack inside. As
result, a system of boundary integral equations to be solve for two unknown vector valued
densities is obtained by matching against the input data. The system has unique solu-
tion in corresponding Holder spaces. Special care was taken to handle the singularities
in the kernels and in the density. The full discretization is realized by a trigonometrical
quadrature method, which belong to the methods with spectral properties. Numerical
examples for two different solution domains confirmed the theoretical convergence re-
sult. The outlined method is a lightweight and flexible approach for planar elastostatic
problems with a crack.
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YU CEJIBHE PO3B’sI3YBAHHZ{ 3AJAYI AIPIXJIE JJIA
PIBHSIHHS EJIACTOCTATUKU B OBMEXKEHIN OBJIACTI
3 TPIIIIMHOIO METOAJO0OM IHTETPAJIbHUX PIBHAHD

M. Baacrok

JIveiscvrull Hayionasvrull ynisepcumem imens Isana Ppanka,
eya. Yuisepcumemcevka, 1, Jlveis, 79000, e-mail: mariia.vlasiuk@Inu.edu.ua

Posrnggaemo 3amagy /lipixie piBHSHHS €1aCTOCTATHKU B OOMeKeHi# objacTi 3 Tpi-
IIMHOK BCepenHi. BUKOPUCTOBYOYM HENPSIMUN METOJI iHTerpaJibHUX PiBHSIHB, IF0 33189y
MOXKHA 3BECTHU JI0 CUCTEMHU iHTErPAJIbHUX PIBHSHB MEPIIOrO POLY 3 HEBIJOMUMU I'YCTUHAMHE.
T'ycruHE € BEKTOPHMMM 3HAYEHHSIMU, 110 BU3HA4YEHI Ha rpaHuni obsacti ta Ha TPimuHi.
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Ileit crmocib rpyHTyE€THCS HA BUKOPHCTAHHI €1aCTOCTATHYHOIO IOTEHIIAJIY IPOCTOrO MIApY,
Jie AIPOM € MaTPHIld (pYHTAMEHTATIBHOrO PO3B’A3KYy PiBHAHHS. B mojgaapmioMy, BUKOPHUCTO-
BYIOYH IIAaPAMETPHUYHE IOJAHHS IPAHAYHOI KPUBOI Ta TPIN[WHMA, OTPUMAHY CHCTEMY iHTer-
PAJIbHAX PIBHSHBb MOXKHA IOJATH Y MapaMeTpu30BaHOMY BUrJsaai. [lapamMerpudne moganns
TPIIMHE MOXKHA HEIEePEPBHO IPOJOBXKUTHA Tak, miod o06sacTh Bu3HA4YeHHs 30irasaach i3
obsracTi0O BU3HAYEHHS I'paHuIli obsacti, 3agaHol mapamerpudHo. Jlesaki gaapa imrerpasis
cucTeMH MicaTh jorapudMivni ocobnmuBocTi. Ili CHHTYISpHOCTI MOXKHA BHUAITUTH $SIBHO,
y BHIJISIAI OKPEMHX JIOJAHKIB, 3aCTOCOBYIOUYM cremiajbHi Baroei ¢yskmiii. Hesigoma
T'YCTHHA, IO BU3HAYEHA HA TPINIWHI, T€XK MICTUTbL CHHIYJISAPHICTH, SKOI MOXKHA O30y TUCS
3a JIOIIOMOTOK0 TaK 3BAHOI KOCHMHYyC-3aMiHu. Bimomo, mo 3ajada KOpeKTHa y BiAnoBigHUX
mpocTopax I bosbaepa. YJacTKOBY AUCKPETH3AINI0 33Jadi MOXKHA BHUKOHATH METOJIOM
KBA/IPATypP 3 BUKOPUCTAHHSM TPUTOHOMETPHYHHUX KBagpaTypHuX dopmyn. 11106 orpumarn
NIOBHICTIO JUCKPETHY CHCTEMY, KOJOKYEMO OTPHMAaHi CHIiBBIJHOIIEHHs y By3JaX KBaJpa-
Typaux dopmyn. OnHi€I0 3 OCHOBHHX IepeBar IbOr0 METOAY AHCKpeTu3alil € Te, mo Bin
Mag€ CreKkTpaJibHi BjaacTuBocTi. IIpomemeHo aHaJji3 36i>KHOCTI i OIIHKY TOXMOKH METO.Y.
Hapeneno mpuksiagu peasizamil aaropuTmy A8 ABOX PI3HUX KOH(iryparmiit o6macti Ta
BXIJIHUX JAHWX, i3 BiZIOMUM i HEBiJJIOMHM TOYHHUM PO3B’sI3KOM, Bifgmosiguo. Ywucesbni
€KCIePUMEHTH JeMOHCTPYIOTH 3aCTOCOBHICTD i €(PeKTHBHICTH 3aMPOIOHOBAHOIO METOIY Ta

miATBEP/KYIOTH HaBeJeH] anpiopHi ominku moxuOKH.

Karowosi caosa: enacrocraTuka, 3ana4da /Jlipixie, meros inTerpasbHuX piBHSAHB, TPUTOHO-

MeTpHUYHI KBaJpaTypH, 001aCTh 3 TPIIIUHOIO.



