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We study the problem of finding an approximate solution of a nonlinear equation with
a decomposition of the operator. In particular, we consider a class of problems with a
differentiable and nondifferentiable part in the nonlinear operator. Typically, difference or
differential-difference methods are used for the numerical solving of these equations. We
develop new one-step and two-step differential-difference methods, which contain the sum
of the derivative of the differentiable part and the divided difference of the nondifferen-
tiable part of the nonlinear operator. The one-step method is constructed on the basis of
the Newton method and the Steffensen type method, and the two-step method is devel-
oped on the basis of the method with derivatives and the difference method, which have
the third order of convergence. The proposed iterative processes do not require finding
the inverse operator. Instead of inverting the operator, its approximations are used. For
each method, a type of successive approximation of the inverse operator, which provides
the convergence order as in the basis methods, is chosen. The study of local convergence
of the methods under the Lipschitz condition for the divided differences of the first order
and the restriction of the second derivative is carried out. Error estimates are obtained,
which indicate the second and third convergence orders for one-step and two-step methods,
respectively. It is shown that it is possible to obtain tighter error estimates and a wider
convergence domain by introducing additional but weaker conditions. A practical study
of the methods is conducted. These methods are applied for solving a large scale nonlin-
ear system and a system with a nondifferentiable operator. A comparison with the basic
methods by the number of iterations is done. The values of absolute errors are also given
at each iteration. The results of numerical experiments are consistent with the theoretical
results and confirm the effectiveness of the proposed methods.

Key words: nonlinear equation, differential-difference method, equation with a decomposi-
tion of operator, approximation of inverse operator, local convergence, convergence order,
Lipschitz conditions.

1. INTRODUCTION
To find the approximate solution x, of the nonlinear equation

F(z) =0, (1)

where the operator F'is defined on the convex set D of a Banach space X with values in
a Banach space Y, Newton’s method is often used [1,4, 8] for zo € D

Tk+1 :fk;—F/(l'k)_lF(.Tk), k:O7 1. (2)

© Argyrosl., ShakhnoS., Yarmola H., 2020



Argyros I., Shakhno S., Yarmola H.
4 ISSN 2078-5097. Bicu. JIbsis. yu-ty. Cep. npuksa. marem. ta ind. 2020. Bun. 28

where F’(x) is a Fréchet derivative. If the derivative does not exist or it is difficult to
calculate, one can use methods that do not use derivatives [1,4]. For example, Steffensen
type method is described by the formula

Tht1 :xk—F(xk,uk)_lF(mk), k=0,1,..., (3)

where F(z,y) is a first-order divided difference, uy = xx — B F(xk), and B is a real
parameter.

The main goal of building new methods for solving (1) is to reduce the number
of calculations or simplify them, increase the order of convergence and expand their
applicability. Such iterative processes include methods of third-order convergence

Yk ::Z?k—F'(l‘k)ilF(LEk), (4)
Trp1 =Yk — F'(zi) " F(yr), k=0,1,...

and
Yk = — F(op, up) " F(x), (5)
Th41 :yk—F(xk,uk)_lF(yk), k=0,1,....

They are two-step modifications of methods (2) and (3). The number of calculations
increases insignificantly compared to one-step methods, since the inverse operator in (4)
and (5) is calculated once on two steps. The two-step modification (4) was investigated
in [6].

It is necessary to find one or more inverse operators at each iteration of most methods
for numerical solution (1). This is not always easy to achieve. Therefore, methods can be
used to approximate the inverse operator. Iterative formulas of these methods consist of
several branches. Some branches intend to construct approximations to the solution of
the nonlinear equation, and others to construct approximations of the inverse operator.
There are two approaches to the inverse operator approximation: successive and par-
allel. In methods with successive approximation, calculations in separate branches are
performed alternately. In methods with a parallel approximation of the inverse operator,
the calculations in the separate branches of the method are performed in parallel.

Methods with approximation of the inverse operator have been studied by many
authors [2,3,5,10,11,13,16-21]. Ulm [17] constructed methods with successive approxi-
mation based on Newton’s method

Yk = Tk — AkF(ﬂ?k), (6)
Ak—i—l ZAk(2E—F/(JCk+1)Ak), kZO,l,...

and based on Steffensen’s method

Yk = Tk — AkF(xk)7 (7)
Ak+1 :Ak(QEfF($k+1,@($k+1))Ak), k:(),].,...

and established a quadratic order of their convergence. Here F'(z) = . — ®(z) for method
(7). The third-order methods with successive approximation of the inverse operator are
investigated in the works [3,20]. Their iterative formulas have the form

yk =z — AF(z1),

Trp1 = Yu — Al (yr), (8)
Bk = Ak(QE — F’(iL’]H_l)Ak),

Ak+1 :Bk(2E—F/($k+1)Bk)7 k:(),].,...
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and
Yk = Tk — AkF(Ik),
Try1 = Yk — A F (yr), 9)
By = Ay (2E — F(xjy1, Upg1)Ar),
Ak+1 :Bk(QE_F(xk+1,uk+1)Bk)7 k= 0,1,...

where FE is the identity operator, ugt+1 = g1 — Br+1F (xg+1), and Biy1 is a real para-
meter.

The paper is organized as follows: in Section 2, we develop combined methods for
solving nonlinear equations with decomposition of operator; in Section 3 and 4, we give
local convergence theorems for the proposed methods; in Section 5, we present numerical
experiments.

2. METHODS FOR SOLVING NONLINEAR EQUATIONS WITH
DECOMPOSITION OF OPERATOR

Consider a nonlinear equation with decomposition operator
H(z)=F(z)+ G(z)=0. (10)

Here F' and G are defined on a convex set D of a Banach space X with values in a
Banach space Y, and F' is a continuously differentiable operator, G is a continuous
operator. Many iterative processes [1,7,12,14,15] have been proposed and investigated
for solving (10). Among them, the best are the combined differential-difference methods,
which use the sum of the derivative of the differentiable part and the divided difference
of the nondifferentiable part of the nonlinear operator.

In this paper, to solve (10) we propose the following combined methods with successive
approximation of the inverse operator

LT+l = Tk — AkH(xk),

11
At = A(2E — [F'(@g41) + Glansn, ups )l Ar), kb =0,1,... (1)
and
Yk = Tk — AkH(l‘k),
Trp+1 = Yx — AH (ys), (12)

By = Ay (2E — [F'(xp41) + G(@hy1, unt1))Ar),
Ak+1 = Bk(ZE - [F/(aijrl) + G(mk+17uk+1)]Bk)7 k=0,1,...,

where ug41 = Tr41 — Br+1H (xg41), and Biy1 is a real parameter.

In this paper, we investigate the local convergence and the convergence order of the
proposed iterative processes (11) and (12). It is assumed that G is differentiable at the
point z, and we use the notation H'(x,) = F'(x.) + G(x4, x4).

3. LOCAL CONVERGENCE AND CONVERGENCE ORDER OF THE
METHOD (11)

Theorem 1. Let F' and G be nonlinear operators defined on a convex set D of a
Banach space X with values in a Banach space Y, F' be a continuously differentiable
operator, and G be a continuous operator. Assume that:

1) equation (10) has a solution x, € D, operator A, = [H'(z.)]™! exists and

ALl < B; (13)
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2)inset U={x € D: ||z — x| < Ro}, the following conditions are satisfied

IF'(z) + Gz, y)ll < C, (14)

IF" @)l < L, [G(z,y) = G(v,2)|| < M(||lz = vl + [ly = 2I)), (15)

where Ry = max{rg,a1(8C + 1)r3}, ro = max{||zo — z.|, |40 — All}, 18x] < B,
a;=0C+ (gL + M) (B +10);

3) initial approximations o, Ay are such that

qro <1, (16)

where ¢ = max{ai, as}, ag = C + (L + M(BC + 2))(B + r9)%a1. Then, sequences
{zi}, {Ar}, k > 0, generated by method (11), converge to x., A, respectively, and the
following estimate is satisfied

ri, = max{]|Ax — A, o — 2.} < (gr0)* “'ro, k>0, (17)

Proof. The proof is performed by mathematical induction. It follows from

o_
o — 2]l < 70 = (qr0)* 7o,

that zo € U, and (17) is true for k£ = 0. Suppose that z; € U and the estimate (17) is
true k > 0. It follows that r, < rg, since gro < 1 by (16). Taking into account (13) and
the definition of 7y, we get

[Ak]] < [|AL]l + 1Ak — Aull < B+ 711 < B+ 1o. (18)
We obtain from the first equality of (11) and Taylor’s formula
Ty — Tpr1 = Tw— Tk + Ap(H(zg) — H(2x)) = 2o — 2 + ApF' (z1) (21, — 24) —
1
fAk/ F'"(xp, + t(zy — x1)) (e — ) 2(1 — t)dt +
0

+ ARGz, w0 ) (Th — T4) =

_ —Ak/ F (e + Hwe — 20)) (e — 2)2(1 — £)dt +

0
+(E — Ag[F'(zr) + G2k, x0)]) (2 — k). (19)
By the conditions (14), (15), the estimate (18) and since
E — AL[F'(zk) + G(zg, 7)) = Ap(F'(z4) — F'(zx)) + Ap(G(24, 7.) — G(28, 74)) +

+(Aw = Ag)H' (2.),

we have that

1B — Ag[F'(zx) + Gag, )]l < [ ARlI(I1F' (22) — F'(2p) || +
+|G (24, 24) — Gk, 24)||) +
I H (z) || As — Ag]l <
< CllAs = Agll + (B +ro)(L + M)z — 2| <
< 1r(C+ (L+ M)(B+rg)) = arg, (20)
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where a = C' + (L + M)(B + o).

It follows from

[ —zl] - <

IN

IN

(19) and (20) that

1
[ Al / F (g + t(we — 2p)) (@ — 22)* (1 = t)dt]| +
0
HIE — A[F'(zr) + G (n, z:)]ll2 — i <
L
(B+10)5 |2 = 2kl|* + (C + (L + M)(B + ro))ryl|z — x| <
L
(B + 7’0)57",3 +(C+ (L + M)(B +710))ri =
3

(c+(5L+M)(B+m))r,§ =ari. (21)

Thus, |2+ — Try1|| < @17 < Rg and 7141 € U.
We obtain from the second equality ( 11)

Ay = A1 = (A = A H' (2.) (A = Ay) = Ap(H' (20) = F'(2p41) — G(@k41, Uk+1)) Ap.

From this relationship, based on the conditions (14), (15), (21) and

|7+ — w1
| Ber1H (zg11) |l
|2+ — upt1]]

we get in turn

[As = Aga]

A

< s = zrga |l + 1701 — wpga ]l =
2 — Tpgall + |ops1 — Tegr + Bepr H(xrg) || =
= |l2e = zpprl| + 1 Berr H(@rg1) [,

1
< ﬂll[/0 F'(@y + 0(wpi1 — 24))d0 + G(whi1, 2)| (241 — 24)]| <

< BC||zs — pal;
< (BC+ Dz — zptall, (22)
< NARIPIF (22) = F'(zep )| + 1G24, 24) — Gy, uns) ] +
L H (@) || A = Ax]l? <
< Cri + [ AlPI(L + M) ||zpg1 — 2l + M|2w — upsa[]] <
< (CH(L+M(BC +2)(B+r0)%a1)r; = agry. (23)

By induction assumptions, estimates (21) and (23), we obtain

Tk+1

= max{|[zrr1 — 2|, [ A1 — A} = maX{al»az}ﬁ% =

E_ k1
= qri = q((qro)® ~'ro)® = (qro)> ~'ro.

That is, (17) is fulfilled for & + 1.
The convergence of sequences {xp} and {Aj} follows from the estimate (17)

for k — oo.

O

Remark 1. It turns out that the results of Theorem 1 can be extended, and under

weaker conditions.

weaker ones

Indeed, let us consider instead of the second assumption in (15) the

1G (@, 24) = G, 2.) || < Mol|x — ]|,
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|G, .) — Gla,y)|| < My(le — @ + ly — 2.])

as well as
[F'(xx) — F'(x)|| < Lollz — .||

(implied by the first assumption in (15)).
Then, we have
Mo <M <M

and
Lo < L.

Examples where the preceding two inequalities are strict can be found in [1-3].
If the proof of Theorem 1 is followed carefully we see that My, M, can replace M in
the definition of a, a1, as, q as

a = C+(L0+Mg)(3+7’0),
3
a; = C’+(§L0+Mo)(3+7”0)7
as = C+ (Lo+ M(BC +2))(B +ro)%ay,

max{dl, C_LQ}.

Notice also that

a < a,
ap < ai,
az < ag,

< q,
Ty < Tk

and qrg < 1 implies gry < 1 but not necessarily vice versa.

Hence, the bar parameters can be used to provide a wider convergence domain (i.e.
more Initial points become available) and tighter error bounds (i.e. fewer iterates are
needed to obtain a desired error tolerance).

4. LOCAL CONVERGENCE AND CONVERGENCE ORDER OF THE
METHOD (12)

Theorem 2. Let F' and G be nonlinear operators defined on a convex set D of a
Banach space X with values in a Banach space Y, F be a continuously differentiable
operator, and G be a continuous operator. Assume that:

1) equation (10) has a solution x, € D, operator A, = [H'(z,)]™! exists and

[ Al < B; (24)

2)inset U ={x € D: ||z —z.| < Ro}, the following conditions are satisfied
1F'(z) + G(z, 9)| < C, (25)

IF" @) < L, [|G(e.y) — G(o,2)]| < Ml — oll + 1y — =])), (26)
where Ro = max{ro, 13, as(8C + 1)ri}, ro = max{|lzo — .|, |40 — A.lI}, 8] < 5,
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ar = C+ (5L +M)(B +10);

3 3
as = (C + (§L + M)Bayro + (iL + M)ayrd)ay;

3) initial approximations o, Ay are such that
qro < 1, (27)

where ¢ = (max{as, as})z, as = C~%rg + (L + M(BC + 2))(B + vr2)2as,
v = C + (L+ M(BC + 2))(B + r9)%asrg. Then, sequences {x1}, {Ar}, k > 0, gen-
erated by method (12), converge to x., A, respectively, and the following estimate is
satisfied .

re = max{[[Ax — Al zx — 2.} < (gro)* ~ro, k> 0. (28)

Proof. The proof is carried out in the similar way as for Theorem 1 but with some
differences. It follows from

20
[xo — 2|l <70 = (qro)* ~'ro,

that ¢ € U, and (28) cs true for kK = 0. Suppose that z; € U and the estimate (28) is
true k > 0. Hence, we have that r, < rg, since gro < 1 by (27).
We obtain from the first equality of (12) and Taylor’s formula

Ty —Yp = Ty —xp+ Ap(H(zp) — H(zy)) =
1
= —Ak/o F'(xp 4 t(zy — xp)) (@0 — 2)%(1 — t)dt +
+(E — Ag[F'(z1) + G2k, x.)]) (20 — 25). (29)

It follows from (29), the conditions (25), (26) and the estimates (18) and (20) that

L
7 =yl < (B4 7o) gl = @l® + (C+ (L4 M)(B +ro))relle. — ax]| <

< (B+ro)§r,% +(C+ (L4 M)(B+1o))ry =

(C+ (gL—i—M)(B—i—ro))ri = a7y, (30)

Thus, we get ||z, — yk| < a173 < Ro and yy, € U.
We obtain from the second equality of (12) and Taylor’s formula

Th+1 — Tx — Yk — Tx — Ak(H(yk) - H(x*)) =
1
_— / F' (g + H(n — ) (e — )2 (1 — t)dt +
+(E — Ax[F () + Gy )] — 2.4). (31)

Hence, we have, given

E — Ap[F'(yr) + Gy, x4)] = Ap(F'(z4) — F'(y)) +
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the conditions (24)—(26) and the estimate (30),

L
e =2l < (B+ A = Axl) o — il +
+H(CI A = Apll + (B + [ As = Ap)(L + M)l|l2s — yll) loe — ]l <
3
< CllAc = Aglllee = yill + 5 BLlze — yell® +

3
+5 Lllwe = yalllAs — Akl +
+BM ||z, — yel|* + M. — yil*[| A — Arll <

3 3
< flow =l + Lt M)l — el + CL+ My — el <
3 3
< (C+ (§L + M)Bayro + (§L + M)ayrd)arry = asry. (32)

Thus, we derive z;11 € U, since ||xp11 — 24| < azrd < Ry.
On the other hand, based on the third formula of (12)
Ay — By = (As — Ap)H' (2.)(As — Ap) — Ap(H'(24) = F'(2141) — G(@py1, Urg1)) Ag

Hence, we have, given (18), (22), (25), (26) and (32),

4w = Bell < [ARIPIF (22) = F' (@) || + |G, 20) = G@pgr, ung)||] +
HH (@)l Ae = Ag? <
< Crp + | AIPI(L + M) ek — 2|l + M|ze — ugia|l] <
< (C+ (L+ M(BC +2))(B +r¢)agro)ri = yri. (33)

Given (24) and the estimate (33), we have
IBell < [[Aull + | Ax = Byl < B + 7.
In accordance with the fourth equality of (12)
A= A1 = =By(H'(24) = F'(v341) — G(Tp41, un+1)) B + (Ax — Bi) H' (2.) (Ax — By).

We get in turn from this relationship, based on the conditions (25), (26) and estimates
(32), (33),

[As = Al < IBRlPIIF (24) = F'(@rg) | + |G (@, 24) = G(@rr, urga) 1] +
I H (@) | A = Bi|I* <
< CPri+IBRlPI(L + M) |[aggr — 2l + M| ze —upia ] < (34)
< (C¥*r + (L + M(BC + 2))(B 4 yrd)2az)ry = asry.

Given induction assumptions, based on the estimates (32) and (34), we obtain

repr = max{|eppr — 2, [ Aerr — As|l} = max{az, az}ri; =
k_ k41 _
= ¢*ri = ¢*((qro)” ~'ro)’ = (qr0)® " 1o,
That is, (28) is fulfilled for k£ + 1. It follows from the estimate (28) for & — oo the
convergence of sequences {zy} and {Ax}. O

Comments similar to the ones for method (11) can follow but holding for method
(12).
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5. NUMERICAL EXPERIMENTS

We present here the results obtained by differential-difference methods (11) and (12).
First of all, we compare these iterative processes with Newton’s method. For this, let us
consider a system of nonlinear equations from [9], where

Sx:{’ + 229 — 5,
F(z) =X 3z} +4x; +2w,41 —8, 1<i<n,
4z, — 3,

sin (x1 — x2) sin (1 + x2) ,
G(z) =] sin(x; — xi41)8in (z; + ip1) — @i—1exp (-1 —x;), 1<i<n,
—Zp—1 €XP (Tp—1 — Tp) -
Since H is differentiable, Newton’s method can be applied. The iterative processes were
stopped when the conditions are verified

lekes — ] 10770 and [ H(weer)| < 1077,

We will compare the methods by the number of iterations required to obtain an approx-
imate solution and the error values. The initial approximations were calculated by the
formulas z¢ = 2s, s € R, Ag = [F'(z0) + G (20,70 — BoH (70))] L.

Tables 1 and 2 show the results for n = 20 and ; = 0.0001.

Table 1
The number of iterations
S 0.45 1 2 5 10
Newton’s method 5 7 8 11 12
Steffensen’s method 5 7 8 11 12
Method (11) 5 8 11 15 18
Method (12) 4 5 7 9 10
Table 2

The value of error ||z — .| at each iteration for s = 0.53

k Newton’s Steffensen’s | (11) (12)

1 2.8317e-03 2.8285e-03 2.8316e-03 2.5960e-04
2 6.7350e-06 6.7129e-06 2.9429¢-05 4.0289¢-11
3 3.8629e-11 3.8261e-11 5.5721e-09 0

4 0 1.1102e-16 1.1546e-14

5 3.3307e-15

Next, consider the problem with a nondifferentiable operator. Let

3 |a:271\
— T — T2 + 1, — 19 )
F(z) —{ nth aw —{ oEs
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Initial approximations were calculated by formulas zy = (1,2.5)7s,s € IR,
Ag = [F'(x0) + G(wo, 20 — BoH (20))]~*. Table 3 gives the results for 8, = 0.01.

Table 3

The number of iterations

S 1 2 5 10 20
Steffensen’s method | 5 7 8 8 10
Method (11) 6 8 12 15 18
Method (12) 4 5 7 9 10

We see that the two-step methods converge faster than the corresponding one-step
iterative processes and Newton’s method. In addition, the errors ||x; — x.|| decrease
faster, which is consistent with the theoretical results. The methods with a successive
approximation of the inverse operator are somewhat inferior to the basic methods, but
their advantage is the simplicity of calculations in iterative formulas.

6. CONCLUSIONS

In this paper, we propose two methods with successive approximation of the inverse
operator for solving nonlinear operator equations. The local convergence of methods is
investigated, the convergence orders are determined and numerical results are given.
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ITPO METOAN 3 ITOCJITJOBHOIO ATIIPOKCUMAIIIEIO
OBEPHEHOT O OITEPATOPA OJI4d HEJITHIMHNX PIBHAHD
3 JEKOMIIO3UIIIE€IO OITEPATOPA

I.K. Aprupoc!, C.IIIaxuo?, I. Ipmoaa’

! Kagedpa mamemamuru, Yrisepcumem Kemepona, Jloymon,
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23 [Tvsiecorut HOUIOHAALHUT YHieepcumem iment Ieana Ppanka,
eys. Ymuiseepcumemcoka, 1, JIveis, 79000,
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PosrasimyTo 3amady 3HAXO[KeHHS HADIMKEHOIO PO3B’s3Ky HeJiHiffHOrO piBHSHHS 3
JIeKOMIIO3HUIIi€I0 omepaTopa. J30KpeMa, PO3IVIAZAEMO 33aJadi, IS SKUX B HeJiHIHHOMY
OmepaTopi MOXKHA BHUAIMUTH AMGEpPeHIiNOBHY Ta HeaudepeHIiioBHY YaCTHHUA. 3a3BUYail
JIJIsl 9UCEJIBHOTO PO3B’si3yBaHHS IIMX PIBHsSIHb 3aCTOCOBYIOTH pi3HUIEB] a00 audepeHiiaib-
HO-pi3HuNeBi Merogu. Ilo6ymoBaHO HOBI OJHOKPOKOBHM i TBOKPOKOBHiI IudepeHIiaIbHO-
pi3HuIEBi MeToau, sKi MicTATH CyMy mOXimHOT Bij gudepeHIiHoBHOT YaCTUHHU Ta MO/iJIeHO0T
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pisHuni Bijg HemmdepeHIiHOBHOT YacTUHM HeJIiHIAHOTO omeparopa. OJHOKPOKOBHII MeTO
po3pobsieno Ha migctaBi merony Hpiorona ta Meronmy tumy CreddeHceHna, a JTBOKPOKO-
BHUil — Ha migcTaBi MeTOAy 3 HOXigHHMHE Ta PI3HUIEBOrO METOAY, SKi MAIOTh TpeTi# mops-
oK 30ixkHOCTI. TakoXK 3ampornoHOBaHi iTepaliiiHi IpoIecu He NOTPeOYIOTH 3HAXOI2KEHHS
00epHEHOro omeparopa. 3aMicTb 0O0€pPTAHHS OLIEPATOPA BHKOPHUCTOBYETHCS HOr0O AMPOK-
cumarnig. Jlaa KoXHOro meromy obpaHO TaKWil THI IIOCJiOBHOI ampokKcuMaIlil obepHe-
HOTO OIEepaTopa, SAKuil 3abe3medye MopsaoK 30iKHOCTI gK y 6a30Bux Meroxis. IIpoBese-
HO JIOCJIIJIPKeHHsI JIOKAJILHOI 30i>KHOCTI MeToiB 3a yMoBu JIimmwuist ajsi mofijieHux pi3-
HUIb NIEePIIOro HOPAAKY ¥ 00MeKeHOCTI Apyrol moxigHoi. OTpUMAaHO OIiHKH IMOXUOOK, SAKi
BKa3yHOTh Ha Apyruil i Tperiii mopsiaku 3612KHOCTI /Jjisi OJHOKPOKOBOI'O Ta JBOKPOKOBO-
ro MeToAiB, BigmoBiguo. JloBemeHO, IO MOXKHA OTPHUMATH TOYHIINI OIIHKH IIOXHOOK Ta
6inpmy obsacTs 36ixkHOCTI, BBiBIIM 40AATKOBI, ase ciaadmi ymosu. IIpoBemeno mpaxkrmd-
HE JOCJIKEeHHS METOJIB. 1X 3aCTOCOBAHO 10 pO3B’s3yBaHHS HEJIHIWHOI CHUCTEMH BeJIH-
KOl po3mipHOCTI Ta cucremu 3 HeaudepeHHifOBHUM OmepaTopoM. BukoHAaHO nopiBHAHHS
3 6a30BUMM METOJAMHU 3a KiJIBKICTIO iTeparmiii. Takok HaBeIeHO 3HAYEHHSI aOCOJIOTHUX
moxubOK Ha KOXKHIiN iTepamnii. Pe3ynbTaTu 4YncenbHHUX €KCIEePUMEHTIB Y3TOMXKYIOThCS 3
TEOPETUIHUMH PE3YJIbTATAMH Ta MiATBEPIKYIOTh e(DeKTUBHICTH 3aIIPOITOHOBAHUX METOJIIB.

Knat0v06i cao6a: HesliHiliHe piBHsiHHS, AudepeHIliajJbHO-PISHUIEBUIl MeTO, DIBHSIHHS 3
MEKOMIIO3HITIEI0 OIepaTOpa, AMPOKCHMAIlisi 0DEPHEHOIO0 OIepaTopa, JIOKAJIbHA 30i12KHICTD,
nopsaok 30ixkHOCTi, ymoBu Jlimmurgs.



