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Bi-Hamiltonian systems play an important role in the study of completely integrable
nonlinear dynamical systems. In the present work, we find the bi-Hamiltonian represen-
tation as well as three classes of exact solutions for one Burgers’ type three-component
nonlinear dynamical system, which arises in the context of a dispersionful version of the
so-called universal Whitham hierarchy. We begin with some important definitions from
the theory of completely integrable nonlinear dynamical systems, namely those of conser-
vation law and its gradient and bi-Hamiltonian representation of a system. After that, for
the above-mentioned dynamical system, we construct the infinite hierarchy of functionally
independent conservation laws utilizing the gradient holonomic method. Moreover, based
on that hierarchy we find the implectic pair of Noetherian operators and corresponding
Hamiltonian functionals applying the differential-algebraic algorithm. Furthermore, we
construct three classes of exact traveling wave solutions, in particular, solitary wave and
periodic ones, using the (G’/G)—expansion method. It is shown that for the case of the
dynamical system under consideration, the degrees of polynomials in (G’/G) cannot be
uniquely determined from the system of algebraic equations of the homogeneous balance.
Nevertheless, utilizing a more detailed analysis, a general form of the solution is found
uniquely. Further, we analyze the obtained results, in particular, the analytical solution is
verified by putting it back into the original equations. Finally, we anticipate future research
objectives, especially finding the standard Lax type representation of the above-mentioned

dynamical system.

Key words: nonlinear dynamical system, conservation law, implectic operator, Hamiltonian
functional, exact solution, solitary wave, gradient holonomic method, (G’/G)-expansion

method.

1. INTRODUCTION

Since the middle of the 20th century, nonlinear dynamical systems (NDS) have been
the object of intensive research. This is, on the one hand, due to their crucial importance
in physics, biology, and other natural sciences and, on the other hand, due to the discovery
of soliton by N.Zabusky and M. Kruskal [20] which completely changed the perception

of nonlinear dynamics.

One of the key theoretical notions in the context of nonlinear dynamical systems is
that of complete integrability. There is a number of formal definitions of the integrable
dynamical system. For instance, in the case of Hamiltonian systems, there is a concept
of complete integrability in the Liouville sense [3,12] which is formalized in the Liouville-
Arnold theorem [1]. In any case, three generally recognizable features [5] of completely

integrable systems are the following:
— existence of many conserved quantities;
— presence of algebraic geometry;
— ability to give explicit solutions.
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The above-mentioned features of integrable dynamical systems have been extensively
investigated in the literature since the 1960s. The modern theory dates back to the arti-
cles by Lax [9], Gardner et al. [11], and others, in which the inverse scattering transform
method for the Korteweg — de Vries equation was introduced. This method, which is
used to solve initial and /or boundary value problems for completely integrable nonlinear
dynamical systems, was further extended by Zakharov, Shabat and other to a new class
of dynamical systems (see [16] and references therein). On the other hand, Magri [10]
introduced a very important notion of bi-Hamiltonian systems which gave rise to the
concept of the complete integrability in the Liouville sense [1,12].

Later on, Ablowitz et al. [15] introduced a regular procedure for the construction
of new completely integrable in the Lax sense nonlinear evolution equations as well as
their explicit soliton solutions. Besides that, M. Bogoliubov (Jr.), A. Prykarpatskyi and
their students (see [3] and references therein) developed an efficient method of obtaining
integrability criteria for nonlinear dynamical systems on functional manifolds called the
gradient holonomic method.

On the other hand, a lot of attention has been paid to the problem of finding exact
solutions of nonlinear dynamical systems. The above-mentioned inverse scattering trans-
form method is undoubtedly the most important discovery in this area of research [16].
When applicable, it leads to wide classes of solutions for completely integrable sys-
tems [14]. Nevertheless, in practice, the calculations are very complicated.

Alternatively, one can utilize a partial method (ansatz) to find the solution of a nonlin-
ear evolution equation (NEE) of some particular shape. Over the last decades, numerous
techniques to construct abundant classes of solutions, in particular, the traveling wave
ones, have been developed. Some of the well-known methods include the Painlevé expan-
sion method [19], the Hirota bilinear method [4], the homogeneous balance method [17],

the tanh method [2], the Jacobi elliptic function method [7], and the (%’)7 expansion

method [18].
Nowadays, the most important problems of the theory of completely integrable dy-
namical systems, among others, are the following [3]:
1. classification of nonlinear dynamical systems, i.e. the construction of integrability
criteria;
2. extension of the class of completely integrable systems;
3. construction of exact solutions (in particular, the soliton ones);

4. study of differential-geometric, algebraic and Hamiltonian properties of nonlinear
dynamical systems, etc.

In the present work, we address the second and the third problems in the list above

in application to the following dispersionful (Burgers’ type) nonlinear dynamical system:

U = 20y
ar = (ay + 2aq), . (1)
4 = (~az +4° +u),

Egs. (1) were introduced by Szablikowski et al. [13] as the authors constructed a
dispersionful version of the so-called universal Whitham hierarchies by means of moduli
spaces of Riemann surfaces of all genera.

The remainder of this article is organized as follows. In Section 2 we give some
basic theoretical notions related to the bi-Hamiltonian analysis of nonlinear dynamical
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systems. Furthermore, based on the gradient holonomic method [3] and differential-
algebraic algorithm [8,12] we construct the infinite hierarchy of conservation laws and
find the implectic pair of Noetherian operators for Egs. (1). In Section 3 we find three
classes of exact solutions of Egs. (1) utilizing the (%’)7 expansion method [18]. Finally,

in Section 4 we summarize our findings and outline prospects for future research.

2. BI-HAMILTONIAN STRUCTURE

Based on [3,6,8,12] let us give some basic theoretical foundation for our further
analysis.
Assume that a generic nonlinear dynamical system is locally written as a partial
differential equation (PDE)
up = K[u), u e M, (2)

where M is an infinite-dimensional smooth functional manifold, 7'(M) is the tangent
bundle over M, K : M — T(M) is a Frechét smooth local functional which, in general,
is represented as K[u] = K (u, Uz, Uz, - - -, Ung), Where ty,, = %'
Definition 5. A functional
xo+l
U] = / o [u] dz € D (M) (3)

Zo

is called a conservation law for system (2) if it does not change along the trajectory of
the vector field, i.e.

|k =0, (4)

where u € M, o [u] is a local functional, D (M) is a space of Fréchet smooth functionals
on M.

The standard bilinear form on the domain U = {x € R: xg < & < ¢ + {} is defined
as

(a,b) = /U {a, by dz, (5)

where a,b € C§° (U,R™). Eq. (5) defines the structure of the Hilbert space on the tangent
space T (M) = T* (M).
Definition 6. The gradient of the conservation law v [u] € D (M) is defined as

grad o] = T2 = (o))" 1, ©)

where ”*” denotes the adjoint operator w.r.t. the standard bilinear form (5).
Definition 7. Dynamical system (2) is bi-Hamiltonian if it can be represented as

w, = —vgrad Hy = —ngrad H, = K [u], (7)

where Hy, H, are Hamiltonian functionals; 9,1 : T* (M) — T (M) is the pair of implectic
operators.

To find the implectic pair of Noetherian operators for Eq. (2) we apply the differential-
algebraic algorithm which consists of the following steps.
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If the conservation law - [u] can be represented as

o+l o+l
o[y = / 5lu] dz = / (o], ug) dx, (8)

then the functional o[u] is used to construct the symplectic operator
61 =o' — o' (9)

Further, if the inverse of 07! exists, then 6 is the implectic operator.
For a general n-component dynamical system, we have

zo+l1

vl = [ (il e+ + (ol ) d, (10
o
95y 05,
ouq Oun,
o= : C (11)
félery el
ouq Oun,

Finally, to facilitate our further analysis let us rewrite Eqs. (1) in the following way:

U 2a
wy = | a = agz + 2aq =K [w] =K [u7 a, Q] ) (12)
q

t _QI+q2+uac

where K : M — T (M) is a Fréchet smooth polynomial vector field which is defined on
the infinite dimensional functional manifold M = C?* (Rl; RS), IR{_l|r 51 < o0 is a period,
and t € R! is the evolution parameter.

2.1. CONSERVATION LAWS

In order to find the infinite hierarchy of conservation laws for Eq. (12), consider the
asymptotic solution of the linear Lax equation

¢+ K¢ =0, (13)

where ¢ € T* (M), the prime symbol, “”, denotes the Fréchet derivative of the nonlinear
local functional K [u, a, q], and the asterisk symbol, “*”, denotes the adjunction w.r.t. the
standard bilinear form (5).

Firstly, from the representation (12) we obtain the explicit formula for the operator
K’ as follows:

0 20 0
K' =0 0?%+20q 20a : (14)
0 0 —0? +20q

Hence, the operator K™ : T* (M) — T* (M) has the following form:

0 0 -0
K™= —20 9240 0 . (15)
0 —2a0  —0% —2¢0
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Furthermore, Eq. (13) admits a vector solution of the form

1
b(z,t;A) | exp [Az+w(A\)t+0 o (23 N)], (16)

¢z, A) =
clx, t; \)

where A € C! is a parameter, 07! (-) = % Ujo (-)dx — f;OH () dx} is the inverse differ-
entiation operator (i.e. 9-9~1 = 1), and ¢ is an arbitrary fixed point.
In order to find the dispersion relation w () in Eq. (16), we need to solve Eq. (13) at

the point u =0,a=0,q=0, i.e.

0 0 -0
bt |—20 > 0 |o=0. (17)
0 0 -2

Taking into account the representation (16) and solving Eq. (17) we obtain b = A71, ¢ =
A, w= 2.
Going back to Eq. (13) and its solution (16), we have that the following asymptotic

expansions as A — oo hold:

Substituting the sought-after solution (16), taking into account relations (18), into

Eq. (13) we obtain the infinite system of recurrence equations of the form

8j—2 + 07050 = ¢ — Ci1 — Y ¢joon =0, (19)
k
bjyt + Z bj,kck’m + Z bj+1,kck + Z bj,kck,sas — 25]",1 — 20j-|-
& 2 ks
+ bjaa + 205410 +2 Z bj—ka0k + Z bj—kOk,z +2 Z bj+1-koK+ (20)
& & k
+bjr2+ Z bj kOk—s0s —2qbj o — 2qbj11 — QQZ bj—kor =0,
k,s k
cjt+ Z Cj—kChyz + Z Cij+1—kCk + Z Cj—kCh—s0s — 2abj o — 2abj 1+
k & ks
(21)

—2a E bj_kOk — Cjoz — 2Cj41,0 — 2 5 Cj—k,aOk — E Cj—kOk,z — Cjt2+
& k k

- 2ZCj+1—kUk - Z Cj—kOk—s0s — 2qCjz — 2qCjy1 — QQZCj—kUk- = 0.
k ks %

In the equations above, j € Z, § is the Kronecker delta.
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Successively solving Eqgs. (19)—(21) we can find explicit formulae for local functionals
o (z,t; \). In particular, first six of them have the following form:

b_1 = 0, bo = O7 bl = ]-7
c_1=1, c)=4q, C1 = _%uv
o_1=0; 0o = —¢; 01:—%%
bo =g, bs = —qa +¢° + 3,
co = %a —2qqs + Quz — %uz, c3 = iag; - %aq - éux:r - %uza
0y = =30+ 2qqs — Gae + FUa; 03 = 1as — 504 — gUss — gu*;
b4:%a—?)qqz-f—qm—i—qu-i-qg—%um
c4 == fasq+ §00r — §00s + 3007 + 3qatte — 29gzu+

+ Goatt — 242¢° + 562y + 10¢2q + tau — 4qqup0+
= 9 oa + Qo — Ca + 2qUaz — SUUy — 12 Usga,
04 =302 — 300 + 2ags — 2a¢° — 3quus + 2ququt
— ot +2424° — 54224% — 10459 — Sau + 49quaa+
+ 90 lzz — Qo + Uz — 2qUagy + SUtly + TeUags-
Thus, taking into account representation (16) we conclude that all the functionals

xo+l
v = 6(_1)1 (ojlu,a,q]) = / ojlu,a,q] de, j=0,1,.. (22)
zo

are conservation laws for the dynamical system (12), and due to the construction process,
they are functionally independent.

Hence, first five nontrivial conservation laws for Eqs. (12) have the following form:

xo+l1 zo+l zo+l
70:/(16135; M= u d; 72=/ad:c;
xo To To
zo+l zo+l (23)
vy = / (daq + v?) da; Y= / a(—gqz +¢* +u)dz.
o o

Now let us compute the gradients of the conservation laws (23) which would be useful
further on for the Hamiltonian analysis.

grad~o = (0; 0; 1)T;
grady = (1; 0; 0)7;
gradye = (0; 1; 0)7;
gradvys = (2u; 4q; 4a);
gradys = (¢; —¢z +¢* +u; a, +2aq)" .
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2.2. IMPLECTIC OPERATORS

Having found the infinite hierarchy of conservation laws for the dynamical system
(12), we can use it in order to find the implectic pair of Noetherian operators utilizing
the differential-algebraic algorithm.

Choose the Hamiltonian functional

xo+l
Hy = Hy [u,a,q] = —v3 [u,a,q] = — / (4aq + u2) dx. (24)

Zo

Firstly, we find the representation of the functional (24) in the form

xo+l
((61 [’U,, a, Q] 7ua:> + <62 [’U,, a, q] 7aa:> + <63 [’LL, a, Q] a%)) d.’l?, (25)
o
ie.
l()-’rl £0+l
Hy = — / (4aq + u2) dr = — / (u(‘?_lux +2¢0 ta, + 2a8_1qz) dx =
xo xo
_ (26)
= [ (@ )+ (207 g.00) + (207 0, do
zo
Hence, we obtain
a7 7 W C
o = Z;f Z(,;;z Za(; =10 0 ) 2071 |, (27)
o %) \o w0
and
—01 0 0
c*=1 0 0 —2071 (28)
0 —2071 0
Thus,
2071 0 0
07 =o' - =| 0 0 407']. (29)

0 4071 0

Since the inverse of 67 ! exists, we obtain the first sought-after implectic operator

19 0 0
n=6=10 0 o). (30)
0 10 0

Furthermore, from the hamiltonicity condition

u
al| =-ngrad H, (31)
q

t
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we can find the functional H,, namely
§H,

1o 0 o 2a
2 ) T
[0 o 1o 65" = (az+2aq), |, (32)
0 10 0 S (2 +¢* +u),
which yields
0H,
20—y
Su @
0H
6—@" = —4(ay + 2aq), (33)
0H
an = 74(fqm+q2+u).

Hence, grad H,, = —4 grad 74 which means that
zo+1
H, = —4y, = —4 / a(—qz + ¢ +u) du. (34)
Zo
Again, let us represent (34) in the form (25), namely
zo+l
H,=—4 / a(—qm—i—qz—i—u)dm:
o
zo+l
S / (4a8_1um +4¢%0  ay, — 4aq1;) dx = (35)
o
zo+l
((48*1a,u:,3> + (407! (qz) ,ag) + (4a,qy)) da.

Similarly,
0 407! 0
od=10 0 89q]|, (36)
0 4 0
0 0 0
o = —4071! 0 41, (37)
0 —8¢g0~ 0
and
0 401 0
;' =o' —o" = 407! 0 807 1q—4|. (38)
0 4+8g0 ! 0

Finally, the second sought-after implectic operator ¥ can be obtained from the equality
¥ =165 'n as follows:
0 10
0 107+ 54 + 390 | . (39)
0

IS
Q
N
L
Q
[
[l
(S5
[
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With the direct computation we make sure that the operators ¢ and 7 are Noetherian,
ie. Lk = Lgn=0. It can be also shown [12] that the pair (,7) is compatible.

Thus, we have just proven the following

Theorem 1. Dynamical system (12) is bi-Hamiltonian, i.e. it can be represented as

wy = —¥ grad Hy = —ngrad H, = K [w],

where Hy, H, € D (M) are Hamiltonian functionals given by Eqs. (24), (34), and 9,7 :
T* (M) — T (M) is the compatible pair of implectic and Noetherian operators given by
Egs. (39), (30).

3. EXACT SOLUTIONS
In this section, we apply the (%’)7 expansion method to find some classes of partic-

ular solutions of Eq. (1).
Step 1. Introducing traveling wave variable £ = x — V¢, we reduce the dynamical
system (1) to a system of ODEs for u =4 (§), a=a(§) and ¢ = ¢ (§) :

V' =2d
—Vad =d" +2d'q+ 2aq . (40)
—Vq' _ 7q// + 2qql +

At this point, we can integrate all the equations of the system (40) once w.r.t. £ in order
to simplify our further computations:

01*VU720,:O
Cy—Va—da —2ag=0 , (41)
C3=Vqg+qd —¢>—u=0

where C1, Co, Cs are all arbitrary integration constants.
Suppose that the solution of Eq. (41) can be expressed in terms of polynomials in

(%) as follows:

1=0 )
a(é) = 12)61’ (%) : (42)
q(§) = 72”: Vi (%)

1=0

In order to find the degrees k,! and m in Egs. (42), consider the homogeneous balance
between u and @, @’ and aq, and ¢’ and ¢? in the first, the second, and the third equations
of (41), respectively. Hence, we obtain the system of algebraic equations

k=1
l+1=1+m , (43)
m+1=2m

from which we obtain that m = 1 and £ = [ = v — an arbitrary non-negative integer.
Note that the classical (%/>7 expansion method does not tackle this kind of peculiarity
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(all the degrees in Eqs. (42) are assumed to be uniquely determinable from Eqs. (43)).
However, we will show further on that in the case of Eq. (40) the solution in the powers

of (%) is still unique.
Step 2. Considering (42) and (43), we find the solution of Egs. (41) in the following
form:

Y (2)
u© =2 ai(%)
a©) =6 (%) (44)
i=0
q(§) =n+m (%)
where the function G = G (&) satisfies the second order linear ODE
G+ \G' + uG = 0, (45)

and X, i1, V, oy, B; (i =0,v), v; (j = 0,1) are all constants to be determined later, o, #

0, By #0, 71 #0.

Step 3. Substituting (44) into the system (41) and collecting all the terms with the
same power of (%) together, left-hand sides of equations (41) are converted into other
polynomials in (%) Equating each coefficient of these polynomials to zero yields a set

of simultaneous algebraic equations for A\, u, V, oy, B; (z = 0,71/) ) Vi (j = m)

Now let us prove that the only value of v for which the above-mentioned system of
algebraic equations has a solution is ¥ = 2. Indeed, for v = 0 we get the following set of
simultaneous equations:

—2B80+C1—apV =0

—2Bov0 + Co — BV =0

—20p11 =0

—ap —y1p =5 +Cs =V =0
—7NA = 2771 +71(=V) =0
- =m=0

, (46)

and also restrictions ag # 0, By # 0,71 # 0; obviously, the third equation in (46)
contradicts the restrictions, and hence Eqgs. (46) have no solution.
Furthermore, for v = 1 we obtain the following system of algebraic equations:

2By +C1 —apgV =0

a1(=V) =28, =0

—2B070 + i+ Ca — SV =0
—2B170 = 2B0m1 + LA+ 1 (=V) =0
B1 =281 =0

—ag =yt =3+ C3 =5V =0
—o1 —7A =277 —nV =0

- =mn=0
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and also restrictions o1 # 0, 51 # 0, v1 # 0; again, equations 57 — 261y1 = 0 and
—% — 1 = 0 in Eqs. (47) contradict the restrictions, and therefore Eqs. (47) have no
solution.

Now let us show that for the general case v > 3 the above-mentioned system of
algebraic equations has no solutions, either. Substituting (44) into the third equation in
Egs. (41), using the identity

(5) -G (&) (@) () o

we obtain:
C3 -V g + + ——A g — g/ i +
3 ga! IE Yo ga! Hw el Iel
G, 2 v G, 7 (49)
- {’)’1 (G) +W’o} _;ai (G) =0,
or
G’ G &\’
v (§) ) n [r-2(8)-(8)]-
(50)

G’ 2 v-1 Ied i a'\"
(&) ] -5 lE) - (E)
Since v > 3, the left-hand side of Eq. (50) contains only the terms with deg (%) <

’ v ’
v — 1, therefore, «a, (%) is the only term with deg (%) = v which means that the

equation o, = 0 will necessarily be in the above-mentioned system of algebraic equations,
and this contradicts the restriction «,, # 0.

Hence, the only candidate value of the degree v is v = 2. Indeed, in this case we
obtain the following set of algebraic equations:

=26y +C1 — agV =0,

a1(=V) =28, =0,

as(=V) =285 =0,

—2B070 + Bip+ C2 — BV =0,

—2617 — 28071 + B1A + 2Bop + B1(—V) =0,
=201 — 2B270 + 202X + B1 — B2V =0,

282 — 282711 =0,

—ap —mp =75 +Cs =V =0,

—ar —nmA—2y%n —nV =0,

_OZZ_,Y%_’yl:Oa

(51)
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which, along with the restrictions ag # 0, S # 0, 71 # 0 yields the solution

ap = =2,

g = —2,

Bo = uV,

pr= AV,

B2 =V,

70 = 5%,

M =1

Cy =V (o +2u),

Cy =0,

Cs =1 (4o + X2 +4p - V?),

where A, p, V, ap are all arbitrary parameters.
Finally, substituting the obtained solution (52) along with the solutions of the second-

order LODE (45) into (44) enables us to write down three classes of traveling wave
solutions of the original Eq. (1) explicitly.

3.1. HYPERBOLIC FUNCTION (SOLITARY WAVE) SOLUTIONS

If A2 —4p > 0, denoting 0 = A2 — 4, we get the family of hyperbolic function

solutions

where £ = x — Vi, and Ay, As, g, V are all arbitrary constants.

_ (A3-43)o
U(g) - 2(141 sinh %-&-Az cosh %)
. Va(Af—Ag)
“ (f) o 4(A1 sinh %-&-Az cosh 5\2/;)2 ’
/o Assinh £Y2 1 A, cosh &£
q (6) = ( - : ) - %a

2(A1 sinh g‘z,/;-i-Ag cosh #)

2+040+21u’

(53)

Fig. 1. Hyperbolic solutions (53) for A1 =1, Ao =2, A=2.5, u=0.5,00=0,V =-1

As we can see from Fig. 1, Egs. (53) under certain choice of arbitrary parameters
contain the solitary wave solution of Eq. (1) — localized waves for u and a and kink-like

wave for q.
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3.2. RATIONAL FUNCTION SOLUTIONS

If A2 — 4y = 0, denoting again o = A\? — 4, we get the family of rational function
solutions - )
A3 (w0255 —2) + A2 As€ (200+2%) +4% (a0 + %)

w (f) (A28+Aq)? ’
A3(£20-4)+24, 4160+ A0 54
a(é)=-V-—= A(AzE+A1)? = (34

A (2—EV)—AV
C](f) - 22(A2§+A1)1 ’

where £ =z — Vt, and Ay, As, ap, V are all arbitrary constants.

<3
e
S

&
LT
LTI
TN
o Sy S
Lot
LTl

e
TN
27

A TR
ng

Fig. 2. Rational solutions (54) for A1 =1, Ao =2, A=1, 41=0.25 0 =0,V =-1

3.3. TRIGONOMETRIC FUNCTION (PERIODIC) SOLUTIONS

Finally, if A2 — 4 < 0, denoting & = 4u — A2, we get the family of trigonometric
function solutions

—(A3+A3)5
= 2
u(f) 2(Alsin%+/i2cos¥)2 + 2 ao,
_ (A3+A3)Vve
a (5) o 4(A1 sin 5\2/;+A2 cos %)2 ’ (55)

\/cTT(Al cos ¥7A2 sin 5‘2/5)

_ _Vv
q (5) o 2(A1 sin %—FAQCOS %) 27

where £ =z — Vt, and Ay, As, ag, V are all arbitrary constants.
As we can see from Fig. 3, Egs. (55) correspond to the periodic solution of Eq. (1).
Finally, all the obtained solutions have been verified by putting them back into the
original Eq. (1).

4. CONCLUSION

For the dispersionful (Burgers’ type) nonlinear dynamical system (1) we have con-
structed the infinite hierarchy of functionally independent conserved densities (integrals
of motion) and found its bi-Hamiltonian representation. Essentially, it means that dy-
namical system (12) is completely integrable (in Liouville sense). However, one might
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Fig. 3. Trigonometric solutions (55) for Ay =1, Ao =2, A=1, p=1,a0=0,V =-1

also want to find the standard Lax type representation [3] of Eq. (12) which makes it
possible to actually integrate it by means of the inverse scattering transform method.
Apparently, the Lax type representation of Eq. (12) would be an objective of our further
research.

On the other hand, we have found three classes of particular exact solutions of
Eq. (12). It was shown that all these solutions feature a number of arbitrary param-
eters which might be of interest for modeling purposes. Moreover, the obtained solutions
were verified by putting them back into the original Eq. (1).

Finally, we have used Wolfram Mathematica software to implement the (%’)7 expan-

sion algorithm and facilitate certain steps of the conservation laws construction process.
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BITAMIJIBTOHOBICTB I TOYHI PO3B’SI3KN O/JTHIET
HEJIITHINHOI JTMHAMIYHOI CUCTEMMU TUIIY BIOPTEPCA

I. Muxaiinrox!, M. IIputysa?

Jveiecorutl Hayionarvrud yrisepcumem imens leana Ppanka,
eya. Ywuieepcumecvka, 1, Jlveis, 79000,
e-mail: Liv.mykh@gmail.com, 2mykola.prytula@gmail.com

BiraminbToHOBI cucTeMHU BifirparoTh BazKJIMBY POJIb Y BUBYEHHI IIOBHICTIO IHTEIDOBHUX
HeJIIHIAHUX AuHaMidHUX cucTeM. 3HaijeHO OiraMijibTOHOBE LIPEJCTABJIEHHS T4 TPU KJIACH
TOYHUX PO3B’SI3KIB [JIsI OfHIE€T TPUKOMIIOHEHTHOI HEJIHIHHOI JWHAMIYHOT CHUCTEMH THILY
Broprepca, ska moctae B KOHTEKCTI JUCIEPCiitHOT Bepcil Tak 3BAaHOI yHiBepCaJIbHOI ie€papxil
Vizema. Ha mowarky HaBezeHO JesKi BaXkyiuBi 03HAUEHHS 3 TeOPil MOBHICTIO iHTErpPOBHEX
HeJTiHIUHUX AUHAMIYHHX CHCTEM, a CaMe 3aKOHY 30eperkeHHd i HOro rpajieHra, a TaKOXK
GiraMiIbTOHOBOrO mpejcTaBieHHs cucremu. Jlasi, st 3ragaHol guHAMIYHOI cuCTEMH,
noby/TOBAaHO HECKIHYEHHY i€papXilo (PYHKI[IOHAJIBHO HE3aJIe2KHUX 3aKOHIB 30€peKeHHS 3a
JIOIIOMOI0I0 I'PAJi€HTHO-IOJIOHOMHOrO MeToxny. Ha migcrasi niel iepapxil 3HaiigeHo napy
IMIJIEKTUYHUX HBOTEPOBUX OIEPATOPIB 1 BiANOBigHI raMijbTOHIaHW 3 3aCTOCYBAaHHAM [TU-
depeHnianbHO-ANMreOPUIHOTO anroput™My. KpiMm Toro, mobymoBaHO TpU KJIACH TOUYHHX
pO3B’si3KiB y Burisigi 6iXKydux XBUJIb, 30KpeMa mepiogu<aHuil Ta y BUIVISAI ycamiTHEHOT
xBuUIi, 3 Bukopuctanuam Merony (G’/G)-possunenus. JoBeeHO, IO Il PO3IJISIYBAHOT
guHaMiunol cucremn y meroai (G’/G)—possunennsi creneni muorowrenis Big (G’/G) ne
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BU3HAYAIOTHCS OJHO3HATHO 3 CHCTEMH AJIreOpHYHUX DiBHSHL OgHOpimHOro Gasancy. Tum
He MeHIIe, 33 JOIOMOTON JEeTAJbHINIOr0 aHaJi3y 3arajJbHUM BUTJA PO3B’I3KiB 3HAIEHO
onuo3HauHO. OTpHMaHI PE3yIbTATH MPOAHAII30BAHO, 30KPEMa [IE€PEBIPEHO MPABUJILHICTD
AHAJITUIHUX PO3B’A3KIB MPAMOIO MiICTAHOBKOIO B IOYATKOBI piBHAHHA. Haperrri, po3ris-
HYTO MOXKJIMBI IJISIXM HOJAJIBIINX JOCJi2KEHb, 30KPEMa [OLUIyK CTaHIaPTHOIO [IPEICTAB-
nenHsa tuny Jlakca ajsa 3rajaHol fHHAMIYHOI CHCTEMH.

Knato4061 cao6a: HesliHiMiHA AUHAMIYHA CHCTEMA, 3aKOH 30€peyKeHHsI, IMIIJIEKTUIHUN Orepa-

TOp, TaMiJIbTOHIAH, TOYHUN PO3B’SI30K, YCAMiTHEHA XBUJIS, IPATi€CHTHO-TOJIOHOMHHUM MeTOI,
merog (G’/G)-po3BuHeHHS.



