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A noncooperative two-person game is a model of an economic interaction process con-
sidered on a short interval. A whole process, which is a stack of a multitude of the short
intervals, is modeled as a series of such noncooperative games. The series of the games is
required to be solved without delay, so a method of the finite approximation of continuous
noncooperative two-person games is presented. The method is based on sampling the func-
tional spaces, which serve as the sets of pure strategies of the players. The pure strategy is
a sinusoidal function of time, in which the phase lag is variable. The spaces of the players’
pure strategies are sampled uniformly so that the resulting finite game is a bimatrix game
whose payoff matrices are square. The approximation procedure starts with not a great
number of intervals. Then this number is gradually increased, and new, bigger, bimatrix
games are solved until an acceptable solution of the bimatrix game becomes sufficiently
close to the same-type solutions at the preceding iterations. The closeness is expressed in
terms of the respective functional spaces, in which the player’s strategies at the succeeding
iterations should be not farther from each other than at the preceding iterations. These
requirements are transformed into the relaxed conditions which allow sampling the players’
sets of pure strategies: the respective distance polylines are required to be decreasing on
average once they are smoothed with respective polynomials of degree 2, where the parabo-
las must be having positive coefficients at the squared variable. The acceptable solution
is not only a situation, but rather a sub-rectangle of situations, associated with just the
phase lags, defined by its center, which is the most attractive situation for the players.

Key words: game theory, payoff functional, sinusoidal strategy, continuous game, finite
approximation, attractive situation.

1. INTRODUCTION

Mathematical modeling by the game-theory approach is a powerful method to sim-
ulate and predict redistribution of resources under conditions of predominant demands
or queries. Continuous noncooperative two-person games model interactions of a pair
of subjects (players or persons) possessing continuums of their pure strategies [1, 2].
Such games are typical for economic interaction processes, where the player may use
short-term time-varying strategies [3, 4]. Continuous noncooperative two-person games
are specific due to that finding and practicing a solution in mixed strategies is almost
intractable even for the case when the players act within finite-dimensional Euclidean
subspaces [3, 5, 6]. Moreover, a continuous game may have multiple solutions in pure
strategies, so the problem of the single solution selection (or the problem of uniqueness)
arises. Furthermore, the solution of a game-theory problem can be defined in several
ways using various criteria of equilibrium, profitability, payoff symmetry, stability, etc.
Thus, even if the solution is unique, it is not guaranteed to be simultaneously profitable
and symmetric [3, 6, 7]. Eventually, an exact solution in pure strategies is not always
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determinable as a rigorous search of analytic solutions is possible only in special classes
[2, 6, 8]. All these issues can be troubleshot by converting continuity into finiteness:
finite two-person games (i.e., bimatrix games) are always easily solvable.

2. MOTIVATION

When the player’s pure strategy is a time-varying function, its set of pure strategies
is functional. As of 2020, games defined on functional spaces are studied weakly, indeed.
Besides, peculiarities of finite approximation of such games are not studied and reported
at all.

As a simplification, the strategy can be a sinusoidal function of time describing a
short-term trend of economic activity [3, 4, 6, 9]. In more real circumstances, due to that
some economic processes have distinct features of seasonality, the strategy has a sinusoidal
component [10]. As the strategy is defined on a short time interval, the length of this
interval is usually not longer than the sinusoidal component period. So, a noncooperative
game is a model of an economic interaction process considered on just that short interval.
A whole process, which is a stack of a multitude of the short intervals, is modeled as a
series of such noncooperative games.

The series of the games is required to be solved without delay. Then, every single
game is needed to be solved fast, without ambiguity in the solution. This can be provided
by finite approximation of continuous noncooperative two-person games, wherein the
players’ sets of pure strategies are sampled. Obviously, the sampling cannot be arbitrary
and should be additionally substantiated.

3. GOALS AND TASKS TO BE FULFILLED

In the case when the set of the player’s pure strategies consists of sinusoidal func-
tions, the pure strategy is determined at least by one parameter (coefficient) which varies
through some interval. Usually, this parameter is the phase lag. Without losing gener-
ality, the amplitudes of the players’ sinusoidal functions can be equal. Their periods
(frequencies) can be equal as well. Due to above reasons, the goal is to develop a method
of finite approximation of continuous noncooperative two-person games whose players’
payoff functionals are defined on a product of sinusoidal strategy functional spaces. For
achieving the described goal, the three following tasks are to be fulfilled:

1. To formalize a continuous noncooperative two-person game, in which the player’s
payoff functional is defined on a product of sinusoidal strategy functional spaces. In such
a game, the set of the player’s pure strategies is a continuum of sinusoidal functions of
time. Pure strategies of the players differ only in the phase lag. The payoff functional is
integral.

2. To formalize a method of finite approximation. The conditions which allow sam-
pling the players’ sets of pure strategies should be explicitly stated.

3. To discuss applicability and significance of the method, wherein the importance of
this contribution and an outlook for a further research should be described.

4. A CONTINUOUS NONCOOPERATIVE TWO-PERSON GAME

In this game, each of the players uses short-term time-varying sinusoidal strategies
determined by the phase lag. The pure strategy is valid on interval [t1; t2] by ta > 1, so
pure strategies of the player belong to a functional space of sinusoidal functions of time:
S [t1; t2] C La[t1; t2]. Denote the phase lag of the first and second players by « and
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B, respectively. The range of the phase lag in the sinusoidal function cannot be greater
than 27, so
ac [amirﬂ CYmax] C [07 27T] by Omax > Omin (]-)

and
5 € [Bmin; /Bmax] - [07 277] by Bmax > /Bmin~ (2)
Thus, the set of pure strategies of the first player is

X={z(t)=sin(t+a), t € [t1; to] : @ € [Amin; Mmax] C [0; 27|} C
C S [tl; tg] C ]]_42 [tl; tQ] (3)

and the set of pure strategies of the second player is

V={y(t)=sin(t+p8), t € [tr; t2] : B € [Bmin; Bmax] C [0; 27]} C
cS [tl; tg] C ]LQ [tl; tg} . (4)

The players’ payoffs in situation {x (t), y (¢)} are

Ky (2(t), y (1) and Ky (2 (t), y (1)),

respectively. These payoffs are integral functionals:

K, (z(t), y(t) = / fat), y(o)dt (5)
and ,
K, (e (1), y(t) = / gz (t), y(t))d, (6)

where f(x(t), y(t)) and g (z(t), y(t)) are algebraic continuous functions of z (t) and
y (t). Surely, these functions are defined everywhere on [t1; t2]. Therefore, the continuous
noncooperative two-person game

{X, Y}, K, (2 (1), y (1), Ky (x(), y()}) (7)
is defined on product
X xY C S[tl; tz] X S[tl; Ifg] C Lo [tl; tz] X Lo [tl; tg} (8)

of sinusoidal strategy functional spaces (3) and (4).

5. ACCEPTABLE SOLUTIONS

Since a series of games (7) on product (8) is to be solved without delay, the only
acceptable solutions are equilibrium or/and efficient situations in pure strategies. Such
situations are defined similarly to those in games on finite-dimensional Euclidean sub-
spaces [1, 2].

Definition 1. In game (7) defined on product (8) by conditions (1)—(6), situation
{z*(t), y* (t)} is an equilibrium situation in pure strategies if inequalities

Ko (z(t), y" (1) < Ko (27 (1), " () V& (t) € X



Romanuke V.
48 ISSN 2078-5097. Bicu. JIbsis. yu-ty. Cep. npuksa. marem. ta ind. 2020. Bun. 28

and
Ky (a2 (), y(t) < Ky (@ (t), y" (1)) Vy () €Y

are simultaneously true.
Definition 2. In game (7) defined on product (8) by conditions (1)—(6), situation
{z** (t), y** (t)} is an efficient situation in pure strategies if both a pair of inequalities

Ko (27 (1), ™ (1) S Ko (2(1), y (1) and Ky (27 (1), y™* (1)) < Ky (x(t), y (1))
and a pair of inequalities
Ko (27 (1), y™ (1) < Kz (x (1), y (1) and Ky (7 (1), y™* (1)) < Ky (z (t), y (1))

are impossible for any x (t) € X and y (t) € Y.

It is well known that the continuous noncooperative two-person game can have the
empty set of equilibria in pure strategies [2]. Moreover, an efficient situation can be too
asymmetric, when it is profitable for one player and unprofitable for the other player.
In such cases, the game does not have an acceptable solution because one of the players
cannot accept it, although the pooled payoff (the sum of players’ payoffs) is maximal or
close to a maximum (in an efficient situation). Then the concepts of e-equilibrium and
e-efficiency [2, 3] can be applied to equilibrate a situation and smooth payoff asymmetries.

Definition 3. In game (7) defined on product (8) by conditions (1)—(6), situation
{x*(f) (t), y* (t)} is an e-equilibrium situation in pure strategies for some ¢ > 0 if
inequalities

K, (33 t), y*© (t)) <K, (m*@ (t), y*© (t)) teVa(t) e X 9)

and
Ky (+°@ 1), y(0) <Ky (a0 (0), g () +evy @) e ¥ (10)

are simultaneously true.

Definition 4. In game (7) defined on product (8) by conditions (1)—(6), situation
{2 (1), y** () (t)} is an e-efficient situation in pure strategies for some € > 0 if both
a pair of inequalities

K, (@) (1), y™© (1) + & < K, (¢ (1), y (1)) and
K, (@@ (1), y*© (1)) +¢ < K, (2 (1), y (1)) (11)

and a pair of inequalities

K, (x**(s) (t), y*© (t) +e < Ky (z(t), y(t)) and
Ky (29 (1), g™ (1) +e < Ky (x (1), y (1)) (12)

are impossible for any x (t) € X and y (t) € Y.

The best case is when a situation is simultaneously equilibrium (by Definition 1)
and efficient (by Definition 2). If this is impossible, then the most preferable is an
efficient situation in which the pooled payoff is maximal. However, if the payoffs are
unacceptably asymmetric, then the best consequent is to find such ¢ for which a situation
is simultaneously equilibrium (by Definition 3) and efficient (by Definition 4). This
approach relates to the method of solving games approximately by providing concessions
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[11]. Eventually, a payoff asymmetry may be smoothed by a compensation from the
player whose payoff is unacceptably greater [6]. Hence, the acceptability of the game
solution is determined by following properties (sorted in priority descending order):

1. Simultaneous equilibrium (by Definition 1) and efficiency (by Definition 2).

2. Closeness to efficiency (by Definition 4), which is close to equilibrium (by Defini-
tion 3).

3. Closeness to efficiency (by Definition 4), if the exact efficient situation (by Definition
2) either does not exist or is too asymmetric.

4. Closeness to equilibrium (by Definition 3), if the exact equilibrium situation (by
Definition 1) either does not exist or is unprofitable (for either a player or both players).

In the list above, property #3 implies that there are no equilibria, and e-equilibria are
either unprofitable or unacceptably asymmetric. Property #4 implies that every efficient
situation is unacceptably asymmetric and e-efficient situations are unprofitable as well.

6. THE FINITE APPROXIMATION AS A MAPPING INTO A BIMATRIX
GAME
In game (7) on product (8) by conditions (1)—(6), the pure strategy of the player is
factually determined by the phase lag. Therefore, this game can be thought of as it is
defined, instead of product (8) of sinusoidal strategy functional spaces (3) and (4), on
rectangle
[Cmin; Cmax] X [Bmin; Bmasx] C [0; 27] x [0; 27] C R?. (13)

This rectangle is easily sampled by using a number of equal intervals along each dimen-
sion. Denote this number by N, N € N\ {1}. Then

N+1

A= {amm +(n—1)- O‘J;a} = {0} C [omin; amax] € [0; 27]  (14)
n=1
and
Bumax — Banin | N1
B = {6111111 + (m - 1) : Inaxjvmn} = {Bm}mil - [ﬁmin? 6max] C [0; 277] . (15)
m=1

So, rectangle (13) is mapped into grid A x B. Set (14) leads to a finite set
Xa={z@)=sin(t+a), t €[t1; ta] : & € A C [Mmin; Omax] C [0; 27|} =
= {x, (£) = sin (t + )} C X C St; ta] C Ly [ty; to] (16)
of pure strategies (sinusoidal functions of time) of the first player, where
21 (t) = sin (t + amin) , Ty41 (£) = sin (E + amax)
and set (15) leads to a finite set

Yp={yt)=sin(t+p), t€lti; t2] : BE€ B C [Bumin; Bmax| C[0; 27|} =
= {Ym (1) = sin (t + B) )01 C Y C S[tr; ta] CLg[tr; o) (17)

m

of pure strategies (sinusoidal functions of time) of the second player, where

U1 (t) = sin (t + 6min) s YN+1 (t) = sin (t + 5max) .
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Hence, product (8) of sinusoidal strategy functional spaces (3) and (4) is mapped into
product

XaxYpC X xY C S[tl; tg} X S[tl; t2] C Lo [tl; tz] X Lo [tl; tg]. (18)

Subsequently, game (7) on product (8) by conditions (1) —(6) is mapped into a bimatrix
(N+1) x (N +1)-game

<{XA7 YB}’ {Kw (Z‘ (t)7 y(t))7 Ky (l‘ (t)’ y(t))}>
byz (t) € Xqandy (t) € Yp. (19)

To perform an appropriate approximation via the sampling, number N is selected so
that none of N? rectangles

[ai; Oéi+1} X [ﬁj; /Bj+1] byi = 1, Nandj = 1, N (20)

would contain significant specificities of payoff functionals (5) and (6). In fact, such
specificities are extremals of these functionals.

Theorem 1. In game (7) defined on product (8) by conditions (1) —(6), the player’s
payoff functional achieves its maximal and minimal values on any closed subset (sub-
rectangle) of rectangle (13).

Proof. Both f(z(t), y(t)) and g (x (t), y(t)) are algebraic continuous functions of
sinusoidal functions z (t) and y (¢) defined everywhere on [t1; t2]. Therefore, both inte-
grals in functionals (5) and (6) achieve some maximal and minimal values on any closed
sub-rectangle of rectangle (13). O

It is obvious that Theorem 1 is easily expanded on closed rectangles (20) for any
number N. Thus, Theorem 1 allows controlling extremals of payoff functionals (5) and
(6) by the phase lags. Consequently, if inequalities

max Ky (z(t), y(t)— min K, (z(t), y(t) =
a€lag; o], a€lag; aiyt],
BE[B;; ﬁj+1] BE[Bj; Bj+1]

max /f #)dt— min /f () dt <

a [ois aigr], a€lag; aiqa],

5175J+1] t1 Be[ﬂ_]vﬂj+1 t1
Vi=1, NandVj=1 N (21)
and
max K, (z(t), y(t)— min Ky(z(), y))=
a€log; aipa], a€log; oyl
BE[Bj; Bj+1] BE[Bj; Bj+1]
t2 t2

= ax [, y@yi- _min [, y@)d<p

a€log; aital, a€lag; aita],

BE[B); Bj+1] ta BE[B); Bij+1] ta
Vi=1, NandVj=1, N (22)

are simultaneously true for some sufficiently small p > 0, then those p-variations can be
ignored. Thus, for the properly selected N and p, game (7) defined on product (8) by
conditions (1) - (6) can be mapped into and approximated by bimatrix game (19). The
quality of the approximation can be comprehended by the following assertions.
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Theorem 2. If {z* (t), y* (t)} is an equilibrium in game (7) defined on product (8)
by conditions (1) - (6), where conditions (21) and (22) hold for some N and p,

x* (t) =sin (t + o*) bya* € [ap; apt1] and
y* (t) = sin (t + %) by B* € [Bi; Bry1] forh € {1, N}, ke {1, N}, (23)

then every situation {z*©) (t), y*©) (¢)} for which

2*©) (t) = sin (t + a*©) bya*© € [ap; apy1) and
y*©) (t) = sin (t + %) by 57 € [By; Br1]
forhe {1, N} , ke {1, N}, (24)

is an e-equilibrium for some € > 0. As number N is increased, the value of ¢ can be
made smaller.

Proof. Inasmuch as f (z(t), y(¢)) and g (x (t), y(t)) are algebraic continuous func-
tions of x (t) and y (¢) defined everywhere on [t1; t2], functionals (5) and (6) are contin-
uous. Therefore, whichever integer N and the corresponding p are, the value of € always
can be chosen such that inequalities (9) and (10) be true for every situation composed
of strategies (24) by (23). Owing to the continuity of the functionals, increasing num-
ber N allows decreasing the value of p, which provides e-equilibria to be closer to the
equilibrium composed of strategies (23). O

Theorem 3. If {z**(t), y** (t)} is an efficient situation in game (7) defined on
product (8) by conditions (1) —(6), where conditions (21) and (22) hold for some N and
,

x** (t) =sin (t + o**) by o™ € [an; apt1] and
y** (t) = sin (t + 8**) by 8** € [Bk; Br+1] forh € {1, N}, ke {1, N}, (25)

then every situation {z**() (t), y**) ()} for which

zE) () = sin (t + a**)) bya™© € [an; anp1] and
y ) () = sin (t+ 5C)) by 57 € [Brs Bra]
forh € {T, N}, ke {I, N}, (26)

is an e-efficient situation for some € > 0. As number N is increased, the value of € can
be made smaller.

Proof. Owing to the continuity of functionals (5) and (6), whichever integer N and
the corresponding p are, value € always can be chosen such that inequalities (11) and (12)
be true for every situation composed of strategies (26) by (25). It is obvious that, owing
to the continuity of the functionals, increasing number N allows decreasing the value of
1, which provides e-efficient situations to be closer to the efficient situation composed of
strategies (25). O

Hence, starting with some integer N, the finite approximation routine is as follows:

1.Build and solve a bimatrix (N + 1) x (N + 1)-game (19).

2.Find an acceptable solution in this game.

3. Stop if the acceptable solution (whether it is an equilibrium, efficient, e-equilibrium,
or c-efficient situation) by the last iteration does not differ much from the acceptable
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solutions (of the same type) by a few preceding iterations; otherwise, go to the next
item.

4.Increase integer N by some increment and go to item #1.

At the very start of the routine, the increment is not necessary to be 1. Moreover, the
number of equal intervals along each dimension can be increased intensely if the difference
between the acceptable solutions decreases slowly. The difference can be considered via
the functional closeness. Thus, if

{a<>* (), y<"* (1)} = {sin (t+a="*), sin (t+ B<*)} e XaxYp C X xY (27)

is an acceptable solution at the I-th iteration, then the conditions of the sufficient close-
ness to the solutions at the preceding and succeeding iterations are as follows:

tz t2
/ (2<l=1>* (£) — p<I>* (£))2 dt > /(x<l>* (t) — z<1+1>* (¢))? dt and

tl tl

to to

/(y<l—1>* (t) — y<t>* (t))Q dt > /(y<l>* (t) — y<i+1>* (ﬁ))2 dt (28)

t1 t1
and

max |z<I71>* (¢) — <> (t)| > max |¢<I>* (¢) — <!> (¢)] and

tEft1; ta] tE(t1; to]
max |y<t1> (8) —y=Pr ()] > max [y (E) -y ()] (29)
tefty; ta] te(ty; ta]

by I =2, 3, 4, ... So, if inequalities

ta
\l / (sin (t + a<I=1>%) —sin (t + a<t>*))* dt >

to
- \l / (sin (t + a<!>*) —sin (t + a<!+1>*))? dt and

to
\l / (sin (t + B<I=1>*) —sin (t + B<I>*))* dt >

[2)
> /(sin (t + B<I>%) — sin (¢ + B<IH1>2))? gt (30)

t1

and
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max |sin (t+ a<t=1>*) —sin (¢t + a<l>*)| >
tefty; to]

> max }sin (t + oz<l>*) — sin (t + a<l+1>*)| and
te(ty; ta]

max | |sin (t + B<l_1>*) — sin (t + B<l>*)| >

te(ty; to
> max [sin (¢t + B<>*) —sin (t + g<T1>%) (31)
tE€[ty; ta]
by [ =2, 3, 4, ... hold for at least three iterations, the approximation procedure can

be stopped. Clearly, the closeness strengthens if inequalities (30) and (31) hold strictly.
However, inequalities (30) and (31) may not hold for a wide range of iterations, so it is
better to require that polylines

ta
Ao (1) = /(sin (t + a<t>*) —sin (t + a<!+1>%))? dt, (32)
ty
Ne () = max [sin (¢ +a<">*) —sin (t + a<'T1>%)] (33)
te(ty; ta]
2
Ay (1) = /(sin (t + B<t>*) —sin (¢ + B<+1>%))? dt, (34)
t1
ny (1) = max [sin (t+ B>*) —sin (t + p=t1>7) | (35)
te(ty; to]
by Il =1, 2, 3, ... be decreasing on average. Herein, term “on average” implies that, in

the case when inequalities (30) and (31) do not hold, polylines (32) —(35) are smoothed
(approximated) with the respective polynomials of degree 2 (the parabolas must be hav-
ing positive coefficients at the squared variable). These conditions allow sampling the
players’ sets of pure strategies without missing better situations.

7. PRACTICAL ISSUES OF THE FINITE APPROXIMATION

In practice, the finite approximation may bring a great many of possible solutions.
To select the best one (which would be acceptable according to the abovementioned
list of properties of the game solution acceptability), a good way, apart from operating
on (28)—(35), is to visualize all possible solutions through all iterations. Consider an
example in which the seasonality develops through time ¢ € [1; 30] (in economics, this is
a really short time interval measured in days or weeks). The set of pure strategies of the
first player is

X={z({t)=sin(t+a), t€l; 30): a€[0; 1.57]} C
C S[1; 30] € Lo [1; 30], (36)

and the set of pure strategies of the second player is

Y={y{)=sin(t+p8), tell; 30]: B€0; 1.5n]} C
C S1; 30] c Ly [1; 30]. (37)

The payoff functionals are
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30
K, (z(t), y(t) = / ( (1) — 2y (1)) dt (33)
1

and
30

Ky (z(t), y(t) = / (2 () +2 () —2 (O y (1) -y (1)) dt. (39)

1

Consequently, this game can be thought of as it is defined on rectangle (13):
[0; 1.57] x [0; 1.571] C [0; 27] x [0; 27] C R?. (40)

The continuity of functionals (38) and (39) is quite clear. Therefore, Theorem 2 and
Theorem 3 ensure finding an acceptable solution by relatively fast finite approximation,
i.e., mapping the game given by (36)— (40) into a sequence of bimatrix games. The first
player’s payoff functional (38) shown in Figure 1 resembles the second player’s payoff
functional (39) shown in Figure 2. Nevertheless, this is just the shape resemblance, and
there is no strict symmetry in equilibrium or efficient situations. Figure 3 shows the
aggregate of all equilibrium situations (associated with just the phase lags) found by
N =5, 100 (96 bimatrix games altogether) along with all the best efficient situations (at
which the pooled payoff is maximal). It is seen that there are two bunches of the best
efficient situations. One bunch is on the left upper side of the rectangle of situations,
where the phase lag of the first player either is 0 or lies between 0.0471 and 0.1473
(Figure4). The other bunch is on the right lower side of the rectangle of situations,
where the phase lag of the first player lies between 3.366 and 3.5343 (Figure 5).

ARRERERANEeSmeee SSIIVIZ
SRSRSFERE:

ABRSH

RSFSASRE

Fig. 1. The first player’s payoff functional (38) shown on rectangle (40)

When the approximation procedure is run from N = 5 to N = 100, and thus bimatrix
6x6,7x7,...,100x 100, 101 x 101 games are solved, the best efficient situation bounces
between the bunches. Equilibrium situations bounce similarly between the left upper side
and the right lower side. Then, obviously, the conditions of the sufficient closeness to
the solutions at the preceding and succeeding iterations given by inequalities (28)—(31)
are irrelevant for this case. Polylines (32) —(35) cannot be considered as well, unless only
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Fig. 4. The zoom-in on the left upper side of the rectangle of situations in Figure 3
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Fig. 5. The zoom-in on the right lower side of the rectangle of situations in Figure 3
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Fig. 6. Polylines (32) - (35) for the left upper side (on the left) and the right lower
side (on theright)

one bunch is considered. But which bunch should be preferred? Certainly, each bunch
should be considered separately.

First, it is worth to notice that there are 50 best efficient situations in the bunch on
the left upper side, whereas the bunch on the right lower side consists of 46 best efficient
situations. Polylines (32)—(35) for the 50 best efficient situations in the bunch on the
left upper side and polylines (32) —(35) for the 46 best efficient situations in the bunch
on the right lower side are shown in Figure 6. As it is easy to see, the polylines in both
bunches are decreasing on average. Each side has its peaks in the polylines, though. The
left upper side bunch (the left plot in Figure 6) appears to be more attractive for the
players to select it by reason of a better density (values along the ordinate axis are less
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than those in the right plot, for the right lower side bunch). Meanwhile, the maximal
pooled payoff in those best efficient situations seems to be converging to the same point
(Figure 7). However, the average pooled payoff in the right lower side bunch is 148.3429,
whereas the average pooled payoff in the left upper side bunch is 148.2832.
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Fig. 7. The maximal pooled payoff in the best efficient situations on the left upper side (*) and
on the right lower side (squares)

Although the difference between the average pooled payoffs is only 0.04 %, there is
another factor which switches the seeming bunch preference from the left upper side to
the right lower side. The matter is that the variance of the maximal pooled payoffs on
the right lower side is 0.0899, whereas the variance of the maximal pooled payoffs on the
left upper side is 0.4189, which is 366 % greater (or 4.66 times greater). Consequently,
the right lower side bunch of the best efficient situations will attract the players more,
and they eventually are expected to select an acceptable solution in the vicinity of the
squared point which is seen in Figure 3 and Figure 5. This point,

[ @<9>* g<95>+ | — [ 3.4748 0.3332 | (41)

which could be alternatively called an attractable solution, is the best efficient situation
in bimatrix 100 x 100-game (at N = 99, which is the 95-th iteration; at N = 100, as it
is seen from Figure 7, the best efficient situation bounces back into the left upper side
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bunch). This vicinity is shown in Figure 8 as a zoom-in along with those equilibria which
are the closest to the squared point (square-marked situations).
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Fig. 8. The zoom-in on the square-marked situations (along with the best efficient situation in
bimatrix 100 x 100-game) in the right lower side of the rectangle of situations in Figure 5

Point (41) corresponds to the acceptable-and-attractable situation
{2=9>* (t), y=P>* (t)} = {sin (t + 3.4748) , sin (¢ + 0.3332)} (42)

which is simultaneously equilibrium and efficient (in the respective bimatrix 100 x 100-
game). The players receive payoffs

K, (2927 (1), y=?°>* (t)) = 133.4009

and
Ky (x<97% (t), y=P°>* (t)) = 15.0558

in situation (42), where the pooled payoff is 148.4568 (the regular round-off is applied
herein). Another point

[ @<88>+ g<38>« | _ [ 34782 0.3366 | (43)
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is very close to point (41), and it is an equilibrium-and-efficient situation also, where
K, (29927 (1), y=?%>* (t)) = 133.3958

and
K, (<% (t), y=°%* (t)) = 15.0616,

so the pooled payoff is 148.4574. Although the remaining four square-marked situations
(see Figure 8) are not efficient, their payoffs are still close to the payoffs in situation (42):
the first player’s payoff varies between 133.3883 and 133.4127, and the second player’s
payoff varies between 15.0419 and 15.0698 (the pooled payoff varies between 148.4546 and
148.458). This confirms that, in the game given by (36)—(40), the (rationally thinking)
players will try to “hit” on situation (42) defined by point (41) or on situations defined by
points in the vicinity of points (41), (43), and related ones (see square-marked situations
in Figure 8). An inaccurate “hit” will not worsen the player’s payoff much, and that is
the main attractiveness (along with the acceptability) of the square-marked situations in
Figure 8.

Therefore, the acceptable solution in the considered example is not just a situation,
but rather a sub-rectangle of situations (associated with just the phase lags) defined
by its center (the most attractive situation). In this case, the center has been assigned
to point (41), although it depends on how many iterations are made. In general, the
finite approximation may have practical issues caused by multiplicity of acceptable solu-
tions and solution bounces (instability), which subsequently may lead to new selection
problems.

8. DISCUSSION

The finite approximation makes game solutions tractable so that they can be eas-
ily implemented and practiced. In practice, the tractable finite solution approximating
the initial continuous game solutions becomes literally attractable, whereupon it can
evolve into an attractive situation. This justifies the applicability of the presented finite
approximation method.

Of course, the finite approximation does not remove or solve the single situation
selection problem. However, it simplifies not needing operations over continuums (e. g.,
of equilibria) anymore. The essential drawback may arise in the case when, for instance,
there are multiple bunches of equilibria (not like just the two bunches in the above-
considered example). The only discharge is to solve new, bigger, bimatrix games to
accumulate sufficient statistics of approximate solutions, whereupon to decide on which
one attracts the players. Surely, the players are presumed to be rationally thinking ones.

The presented method is quite significant for avoiding too complicated solutions
resulting from game continuities and, moreover, functional spaces of pure strategies.
Mainly, it concerns modeling economic interaction processes, where the player can use a
continuum of short-term time-varying strategies influenced by seasonality. It is a kind
of unavoidable simplification, which “deeinstellungizes” the continuous noncooperative
two-person game by mapping it into a bimatrix game.

9. CONCLUSION

For solving continuous noncooperative two-person games on a product of sinusoidal
strategy functional spaces, a method of their finite approximation is presented, which is
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based on sampling the sinusoidal strategy functional spaces. The sets of the players’ pure
strategies (i.e., the spaces of pure strategies) are sampled uniformly so that the resulting
finite game is a bimatrix game whose payoff matrices are square. The approximation
procedure starts with not a great number of intervals along the player’s phase lag. Then
this number is gradually increased, and new, bigger, bimatrix games are solved until
an acceptable solution of the bimatrix game becomes sufficiently close to the same-type
solutions at the preceding iterations. The closeness is expressed in terms of the respective
functional spaces, in which the player’s strategies at the succeeding iterations should be
not farther from each other than at the preceding iterations. These requirements are
transformed into the relaxed conditions which allow sampling the players’ sets of pure
strategies: the respective distance polylines are required to be decreasing on average once
they are smoothed (approximated) with respective polynomials of degree 2, where the
parabolas must be having positive coefficients at the squared variable.

Theoretically, continuous noncooperative games of three and more players within
functional spaces are believed to be finitely approximated in the similar manner. How-
ever, practical aspects of determining the acceptable-and-attractive solution will have
deeper difficulties (there may be more bunches, irregular bounces, slow convergent pooled
payoffs, etc.). Nevertheless, the presented game finite approximation has a certain
promising impact on modeling economic interaction processes, where players use short-
term time-varying strategies influenced by seasonality.
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IIPUMHSITHA TA IIPUBABJINBA CKIHUYEHHA
ATIPOKCHUMAIIISI HENEPEPBHUX BE3KOAJIIITITHNUX
ITOP JIBOX OCIB HA JJOBYTKY ®YHKIIIOHAJJbLHUX

IIPOCTOPIB CUHYCOITHUX CTPATETIN

B. Pomanrok

Odecvra nayionasvha axademis 36’asxy im. O. C. Ilonosa,

eys. Kysueuna, 1, Odeca, Yxpaina, 65029, e-mail: romanukevadimv@gmail.com

BeskoaJiiniitHa rpa aBox 0Ci0 € MOJ€/UII0 HPOoIecy eKOHOMIYHOI B3aeMoO/il, 1m0 pos-
IIAJAE€THCA HA KOPOTKOMY IHTEpBasi. YBeCh HpOIEC, SKHH € MOETHAHHSAM MHOMKUHU
IIUX KOPOTKHUX IHTEPBAJIB, MOJETIOETHCS SK IMOCHIJOBHICTHL TAKUX OE3KOAIIMIHHUX irop.
TToTpi6HO, MO0 15T MOC/IZOBHICTH irop po3B’si3yBaJiacst 6€3 3aTPUMOK, TOMY IOJAETHCS
METO/I CKiHYeHHOI almpOKCUMAIlil HemepepBHUX Oe3Koaminifinux irop aBox oci6. Ileit meTos
I'DYHTYETbCS Ha AuCKperu3anii OyHKI[IOHAIBHAX OPOCTOPIB, SKi CIYIyIOTh MHOXHHAMUA
YUCTHX CTpaTeriii rpasmiB. Ymcra cTpaTeris € CHHYCOITHOKO (YHKIIE€I dYacy, B sKii
3ami3uenHs 3a ¢azor0 3mimme. IlpocTropm umcTmx crparerii rpaBHiB JUCKPETH3YIOTHCS
PiBHOMIpDHO Tak, IO OTPHUMYBaHA CKiHYeHHA rpa € OIMaTpUYHOIO I'DOI0, YHMi MAaTPHUILL
BUrpamriB KBagpatHi. IIpomeaypa ampokcumanii po3MOYMHAETHCS 3 HEBEJTUKOI KiTbKOCTi
inTepBasiB. /lami s KigbKICTH MOCTYIOBO 30ibHIyeThCsT 1 PO3B’SA3yIOTHCA HOBi, Gimbmi,
6iMaTpuYHi irpu HOTH, JOKU NPUUHATHUAN PO3B’SI30K 6IMATPUIHOI I'pU HE CTAHE JOCTATHHO
OIM3bKHM [0 PO3B’s3KiB TAKOrO K THIY HA momepenHix itepamisx. Taka 6Gim3bkicTs
BHPaKa€ThCA Yy BUPA3aX BiANOBIIHUX DYHKIIOHATIBHUX IPOCTOPIB, Y SKUX CTpATEril rpaBIs
Ha HACTYIIHUX iTepallisix MalTh OyTH He JaJi OjHa Bij OAHOT, Hi>K HA HONIEPeHIX iTepalisx.
Ili BUMOrm mnepeTBOPIOIOTHCA Yy NHOCIA0JIEHI YMOBH, IIO JAIOTh 3MOIY JIUCKPETH3YBaTU
MHOXKHHH 9HACTHX CTpareriii rpasnis: norpibmo, mob Bixmosinxi samani Bixcrameit Oyau
CMAJHUMHU Yy CepPeJHbOMY, sIK TIJIbKM BOHHU 3TJIAKYIOTHCS 33 JOMOMOTON BiATIOBIIHUX
MOJIIHOMIB JAPYroro cremeHs, Je mapaboiau MaOTh TOAATHI KoedilieHTH mpu KBaJpaTi
3minnol. IlpuitnsaTauil pO3B’s30K HE € JIHMIIe SIKOIOCh OJHICI0 CHTYAIi€0, a, CKOPIII, JesIKAM
Oig-IPSIMOKYTHUKOM CHUTYallilf, acomifioBaHUM TiJIbKH 3 3ami3HEHHSMHU 3a (Ha300, SKui
BU3HAYAETHCsI CBOIM LIEHTPOM, IO € Haibijbm npuBabBOIO CUTYALIE0 [Jisi IPABIIiB.

Karowosi caosa: teopis irop, dyHkIifionas Burpamis, CHHyCOigHA CTpaTerisi, HemepepBHA
rpa, CKiH4eHHa alpOKCHMallis, IpUBAOIUBA CHTYAaIlisd.



