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A noncooperative two-person game is a model of an economic interaction process con-

sidered on a short interval. A whole process, which is a stack of a multitude of the short

intervals, is modeled as a series of such noncooperative games. The series of the games is

required to be solved without delay, so a method of the �nite approximation of continuous

noncooperative two-person games is presented. The method is based on sampling the func-

tional spaces, which serve as the sets of pure strategies of the players. The pure strategy is

a sinusoidal function of time, in which the phase lag is variable. The spaces of the players'

pure strategies are sampled uniformly so that the resulting �nite game is a bimatrix game

whose payo� matrices are square. The approximation procedure starts with not a great

number of intervals. Then this number is gradually increased, and new, bigger, bimatrix

games are solved until an acceptable solution of the bimatrix game becomes su�ciently

close to the same-type solutions at the preceding iterations. The closeness is expressed in

terms of the respective functional spaces, in which the player's strategies at the succeeding

iterations should be not farther from each other than at the preceding iterations. These

requirements are transformed into the relaxed conditions which allow sampling the players'

sets of pure strategies: the respective distance polylines are required to be decreasing on

average once they are smoothed with respective polynomials of degree 2, where the parabo-

las must be having positive coe�cients at the squared variable. The acceptable solution

is not only a situation, but rather a sub-rectangle of situations, associated with just the

phase lags, de�ned by its center, which is the most attractive situation for the players.

Key words: game theory, payo� functional, sinusoidal strategy, continuous game, �nite

approximation, attractive situation.

1. Introduction

Mathematical modeling by the game-theory approach is a powerful method to sim-
ulate and predict redistribution of resources under conditions of predominant demands
or queries. Continuous noncooperative two-person games model interactions of a pair
of subjects (players or persons) possessing continuums of their pure strategies [1, 2].
Such games are typical for economic interaction processes, where the player may use
short-term time-varying strategies [3, 4]. Continuous noncooperative two-person games
are speci�c due to that �nding and practicing a solution in mixed strategies is almost
intractable even for the case when the players act within �nite-dimensional Euclidean
subspaces [3, 5, 6]. Moreover, a continuous game may have multiple solutions in pure
strategies, so the problem of the single solution selection (or the problem of uniqueness)
arises. Furthermore, the solution of a game-theory problem can be de�ned in several
ways using various criteria of equilibrium, pro�tability, payo� symmetry, stability, etc.
Thus, even if the solution is unique, it is not guaranteed to be simultaneously pro�table
and symmetric [3, 6, 7]. Eventually, an exact solution in pure strategies is not always
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determinable as a rigorous search of analytic solutions is possible only in special classes
[2, 6, 8]. All these issues can be troubleshot by converting continuity into �niteness:
�nite two-person games (i. e., bimatrix games) are always easily solvable.

2. Motivation

When the player's pure strategy is a time-varying function, its set of pure strategies
is functional. As of 2020, games de�ned on functional spaces are studied weakly, indeed.
Besides, peculiarities of �nite approximation of such games are not studied and reported
at all.

As a simpli�cation, the strategy can be a sinusoidal function of time describing a
short-term trend of economic activity [3, 4, 6, 9]. In more real circumstances, due to that
some economic processes have distinct features of seasonality, the strategy has a sinusoidal
component [10]. As the strategy is de�ned on a short time interval, the length of this
interval is usually not longer than the sinusoidal component period. So, a noncooperative
game is a model of an economic interaction process considered on just that short interval.
A whole process, which is a stack of a multitude of the short intervals, is modeled as a
series of such noncooperative games.

The series of the games is required to be solved without delay. Then, every single
game is needed to be solved fast, without ambiguity in the solution. This can be provided
by �nite approximation of continuous noncooperative two-person games, wherein the
players' sets of pure strategies are sampled. Obviously, the sampling cannot be arbitrary
and should be additionally substantiated.

3. Goals and tasks to be fulfilled

In the case when the set of the player's pure strategies consists of sinusoidal func-
tions, the pure strategy is determined at least by one parameter (coe�cient) which varies
through some interval. Usually, this parameter is the phase lag. Without losing gener-
ality, the amplitudes of the players' sinusoidal functions can be equal. Their periods
(frequencies) can be equal as well. Due to above reasons, the goal is to develop a method
of �nite approximation of continuous noncooperative two-person games whose players'
payo� functionals are de�ned on a product of sinusoidal strategy functional spaces. For
achieving the described goal, the three following tasks are to be ful�lled:

1. To formalize a continuous noncooperative two-person game, in which the player's
payo� functional is de�ned on a product of sinusoidal strategy functional spaces. In such
a game, the set of the player's pure strategies is a continuum of sinusoidal functions of
time. Pure strategies of the players di�er only in the phase lag. The payo� functional is
integral.

2. To formalize a method of �nite approximation. The conditions which allow sam-
pling the players' sets of pure strategies should be explicitly stated.

3. To discuss applicability and signi�cance of the method, wherein the importance of
this contribution and an outlook for a further research should be described.

4. A continuous noncooperative two-person game

In this game, each of the players uses short-term time-varying sinusoidal strategies
determined by the phase lag. The pure strategy is valid on interval [t1; t2] by t2 > t1, so
pure strategies of the player belong to a functional space of sinusoidal functions of time:
S [t1; t2] ⊂ L2 [t1; t2] . Denote the phase lag of the �rst and second players by α and
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β, respectively. The range of the phase lag in the sinusoidal function cannot be greater
than 2π, so

α ∈ [αmin; αmax] ⊂ [0; 2π] byαmax > αmin (1)

and
β ∈ [βmin; βmax] ⊂ [0; 2π] byβmax > βmin. (2)

Thus, the set of pure strategies of the �rst player is

X = {x (t) = sin (t+ α) , t ∈ [t1; t2] : α ∈ [αmin; αmax] ⊂ [0; 2π]} ⊂
⊂ S [t1; t2] ⊂ L2 [t1; t2] (3)

and the set of pure strategies of the second player is

Y = {y (t) = sin (t+ β) , t ∈ [t1; t2] : β ∈ [βmin; βmax] ⊂ [0; 2π]} ⊂
⊂ S [t1; t2] ⊂ L2 [t1; t2] . (4)

The players' payo�s in situation {x (t) , y (t)} are

Kx (x (t) , y (t)) andKy (x (t) , y (t)) ,

respectively. These payo�s are integral functionals:

Kx (x (t) , y (t)) =

t2∫
t1

f (x (t) , y (t)) dt (5)

and

Ky (x (t) , y (t)) =

t2∫
t1

g (x (t) , y (t)) dt, (6)

where f (x (t) , y (t)) and g (x (t) , y (t)) are algebraic continuous functions of x (t) and
y (t). Surely, these functions are de�ned everywhere on [t1; t2]. Therefore, the continuous
noncooperative two-person game

⟨{X, Y } , {Kx (x (t) , y (t)) , Ky (x (t) , y (t))}⟩ (7)

is de�ned on product

X × Y ⊂ S [t1; t2]× S [t1; t2] ⊂ L2 [t1; t2]× L2 [t1; t2] (8)

of sinusoidal strategy functional spaces (3) and (4).

5. Acceptable solutions

Since a series of games (7) on product (8) is to be solved without delay, the only
acceptable solutions are equilibrium or/and e�cient situations in pure strategies. Such
situations are de�ned similarly to those in games on �nite-dimensional Euclidean sub-
spaces [1, 2].
De�nition 1. In game (7) de�ned on product (8) by conditions (1) � (6), situation

{x∗ (t) , y∗ (t)} is an equilibrium situation in pure strategies if inequalities

Kx (x (t) , y
∗ (t)) 6 Kx (x

∗ (t) , y∗ (t)) ∀x (t) ∈ X
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and
Ky (x

∗ (t) , y (t)) 6 Ky (x
∗ (t) , y∗ (t)) ∀ y (t) ∈ Y

are simultaneously true.
De�nition 2. In game (7) de�ned on product (8) by conditions (1) � (6), situation

{x∗∗ (t) , y∗∗ (t)} is an e�cient situation in pure strategies if both a pair of inequalities

Kx (x
∗∗ (t) , y∗∗ (t)) 6 Kx (x (t) , y (t)) andKy (x

∗∗ (t) , y∗∗ (t)) < Ky (x (t) , y (t))

and a pair of inequalities

Kx (x
∗∗ (t) , y∗∗ (t)) < Kx (x (t) , y (t)) andKy (x

∗∗ (t) , y∗∗ (t)) 6 Ky (x (t) , y (t))

are impossible for any x (t) ∈ X and y (t) ∈ Y .
It is well known that the continuous noncooperative two-person game can have the

empty set of equilibria in pure strategies [2]. Moreover, an e�cient situation can be too
asymmetric, when it is pro�table for one player and unpro�table for the other player.
In such cases, the game does not have an acceptable solution because one of the players
cannot accept it, although the pooled payo� (the sum of players' payo�s) is maximal or
close to a maximum (in an e�cient situation). Then the concepts of ε-equilibrium and
ε-e�ciency [2, 3] can be applied to equilibrate a situation and smooth payo� asymmetries.
De�nition 3. In game (7) de�ned on product (8) by conditions (1) � (6), situation{

x∗(ε) (t) , y∗(ε) (t)
}

is an ε-equilibrium situation in pure strategies for some ε > 0 if
inequalities

Kx

(
x (t) , y∗(ε) (t)

)
6 Kx

(
x∗(ε) (t) , y∗(ε) (t)

)
+ ε ∀x (t) ∈ X (9)

and
Ky

(
x∗(ε) (t) , y (t)

)
6 Ky

(
x∗(ε) (t) , y∗(ε) (t)

)
+ ε ∀ y (t) ∈ Y (10)

are simultaneously true.
De�nition 4. In game (7) de�ned on product (8) by conditions (1) � (6), situation{

x∗∗(ε) (t) , y∗∗(ε) (t)
}
is an ε-e�cient situation in pure strategies for some ε > 0 if both

a pair of inequalities

Kx

(
x∗∗(ε) (t) , y∗∗(ε) (t)

)
+ ε 6 Kx (x (t) , y (t)) and

Ky

(
x∗∗(ε) (t) , y∗∗(ε) (t)

)
+ ε < Ky (x (t) , y (t)) (11)

and a pair of inequalities

Kx

(
x∗∗(ε) (t) , y∗∗(ε) (t)

)
+ ε < Kx (x (t) , y (t)) and

Ky

(
x∗∗(ε) (t) , y∗∗(ε) (t)

)
+ ε 6 Ky (x (t) , y (t)) (12)

are impossible for any x (t) ∈ X and y (t) ∈ Y .
The best case is when a situation is simultaneously equilibrium (by De�nition 1)

and e�cient (by De�nition 2). If this is impossible, then the most preferable is an
e�cient situation in which the pooled payo� is maximal. However, if the payo�s are
unacceptably asymmetric, then the best consequent is to �nd such ε for which a situation
is simultaneously equilibrium (by De�nition 3) and e�cient (by De�nition 4). This
approach relates to the method of solving games approximately by providing concessions
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[11]. Eventually, a payo� asymmetry may be smoothed by a compensation from the
player whose payo� is unacceptably greater [6]. Hence, the acceptability of the game
solution is determined by following properties (sorted in priority descending order):

1. Simultaneous equilibrium (by De�nition 1) and e�ciency (by De�nition 2).
2. Closeness to e�ciency (by De�nition 4), which is close to equilibrium (by De�ni-

tion 3).
3. Closeness to e�ciency (by De�nition 4), if the exact e�cient situation (by De�nition

2) either does not exist or is too asymmetric.
4. Closeness to equilibrium (by De�nition 3), if the exact equilibrium situation (by

De�nition 1) either does not exist or is unpro�table (for either a player or both players).
In the list above, property #3 implies that there are no equilibria, and ε-equilibria are

either unpro�table or unacceptably asymmetric. Property #4 implies that every e�cient
situation is unacceptably asymmetric and ε-e�cient situations are unpro�table as well.

6. The finite approximation as a mapping into a bimatrix

game

In game (7) on product (8) by conditions (1) � (6), the pure strategy of the player is
factually determined by the phase lag. Therefore, this game can be thought of as it is
de�ned, instead of product (8) of sinusoidal strategy functional spaces (3) and (4), on
rectangle

[αmin; αmax]× [βmin; βmax] ⊂ [0; 2π]× [0; 2π] ⊂ R2. (13)

This rectangle is easily sampled by using a number of equal intervals along each dimen-
sion. Denote this number by N , N ∈ N\ {1}. Then

A =

{
αmin + (n− 1) · αmax − αmin

N

}N+1

n=1

= {αn}N+1
n=1 ⊂ [αmin; αmax] ⊂ [0; 2π] (14)

and

B =

{
βmin + (m− 1) · βmax − βmin

N

}N+1

m=1

= {βm}N+1
m=1 ⊂ [βmin; βmax] ⊂ [0; 2π] . (15)

So, rectangle (13) is mapped into grid A×B. Set (14) leads to a �nite set

XA = {x (t) = sin (t+ α) , t ∈ [t1; t2] : α ∈ A ⊂ [αmin; αmax] ⊂ [0; 2π]} =

= {xn (t) = sin (t+ αn)}N+1
n=1 ⊂ X ⊂ S [t1; t2] ⊂ L2 [t1; t2] (16)

of pure strategies (sinusoidal functions of time) of the �rst player, where

x1 (t) = sin (t+ αmin) , xN+1 (t) = sin (t+ αmax) ,

and set (15) leads to a �nite set

YB = {y (t) = sin (t+ β) , t ∈ [t1; t2] : β ∈ B ⊂ [βmin; βmax] ⊂ [0; 2π]} =

= {ym (t) = sin (t+ βm)}N+1
m=1 ⊂ Y ⊂ S [t1; t2] ⊂ L2 [t1; t2] (17)

of pure strategies (sinusoidal functions of time) of the second player, where

y1 (t) = sin (t+ βmin) , yN+1 (t) = sin (t+ βmax) .
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Hence, product (8) of sinusoidal strategy functional spaces (3) and (4) is mapped into
product

XA × YB ⊂ X × Y ⊂ S [t1; t2]× S [t1; t2] ⊂ L2 [t1; t2]× L2 [t1; t2] . (18)

Subsequently, game (7) on product (8) by conditions (1) � (6) is mapped into a bimatrix
(N + 1)× (N + 1)-game

⟨{XA, YB} , {Kx (x (t) , y (t)) , Ky (x (t) , y (t))}⟩
byx (t) ∈ XA and y (t) ∈ YB . (19)

To perform an appropriate approximation via the sampling, number N is selected so
that none of N2 rectangles

[αi; αi+1]× [βj ; βj+1] by i = 1, N and j = 1, N (20)

would contain signi�cant speci�cities of payo� functionals (5) and (6). In fact, such
speci�cities are extremals of these functionals.
Theorem 1. In game (7) de�ned on product (8) by conditions (1) � (6), the player's

payo� functional achieves its maximal and minimal values on any closed subset (sub-
rectangle) of rectangle (13).

Proof. Both f (x (t) , y (t)) and g (x (t) , y (t)) are algebraic continuous functions of
sinusoidal functions x (t) and y (t) de�ned everywhere on [t1; t2]. Therefore, both inte-
grals in functionals (5) and (6) achieve some maximal and minimal values on any closed
sub-rectangle of rectangle (13). �

It is obvious that Theorem 1 is easily expanded on closed rectangles (20) for any
number N . Thus, Theorem 1 allows controlling extremals of payo� functionals (5) and
(6) by the phase lags. Consequently, if inequalities

max
α∈[αi; αi+1],
β∈[βj ; βj+1]

Kx (x (t) , y (t))− min
α∈[αi; αi+1],
β∈[βj ; βj+1]

Kx (x (t) , y (t)) =

= max
α∈[αi; αi+1],
β∈[βj ; βj+1]

t2∫
t1

f (x (t) , y (t)) dt− min
α∈[αi; αi+1],
β∈[βj ; βj+1]

t2∫
t1

f (x (t) , y (t)) dt 6 µ

∀ i = 1, N and ∀ j = 1, N (21)

and

max
α∈[αi; αi+1],
β∈[βj ; βj+1]

Ky (x (t) , y (t))− min
α∈[αi; αi+1],
β∈[βj ; βj+1]

Ky (x (t) , y (t)) =

= max
α∈[αi; αi+1],
β∈[βj ; βj+1]

t2∫
t1

g (x (t) , y (t)) dt− min
α∈[αi; αi+1],
β∈[βj ; βj+1]

t2∫
t1

g (x (t) , y (t)) dt 6 µ

∀ i = 1, N and ∀ j = 1, N (22)

are simultaneously true for some su�ciently small µ > 0, then those µ-variations can be
ignored. Thus, for the properly selected N and µ, game (7) de�ned on product (8) by
conditions (1) � (6) can be mapped into and approximated by bimatrix game (19). The
quality of the approximation can be comprehended by the following assertions.
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Theorem 2. If {x∗ (t) , y∗ (t)} is an equilibrium in game (7) de�ned on product (8)
by conditions (1) � (6), where conditions (21) and (22) hold for some N and µ,

x∗ (t) = sin (t+ α∗) byα∗ ∈ [αh; αh+1] and

y∗ (t) = sin (t+ β∗) byβ∗ ∈ [βk; βk+1] forh ∈
{
1, N

}
, k ∈

{
1, N

}
, (23)

then every situation
{
x∗(ε) (t) , y∗(ε) (t)

}
for which

x∗(ε) (t) = sin
(
t+ α∗(ε)) byα∗(ε) ∈ [αh; αh+1] and

y∗(ε) (t) = sin
(
t+ β∗(ε)) byβ∗(ε) ∈ [βk; βk+1]

forh ∈
{
1, N

}
, k ∈

{
1, N

}
, (24)

is an ε-equilibrium for some ε > 0. As number N is increased, the value of ε can be
made smaller.

Proof. Inasmuch as f (x (t) , y (t)) and g (x (t) , y (t)) are algebraic continuous func-
tions of x (t) and y (t) de�ned everywhere on [t1; t2], functionals (5) and (6) are contin-
uous. Therefore, whichever integer N and the corresponding µ are, the value of ε always
can be chosen such that inequalities (9) and (10) be true for every situation composed
of strategies (24) by (23). Owing to the continuity of the functionals, increasing num-
ber N allows decreasing the value of µ, which provides ε-equilibria to be closer to the
equilibrium composed of strategies (23). �
Theorem 3. If {x∗∗ (t) , y∗∗ (t)} is an e�cient situation in game (7) de�ned on

product (8) by conditions (1) � (6), where conditions (21) and (22) hold for some N and
µ,

x∗∗ (t) = sin (t+ α∗∗) byα∗∗ ∈ [αh; αh+1] and

y∗∗ (t) = sin (t+ β∗∗) byβ∗∗ ∈ [βk; βk+1] forh ∈
{
1, N

}
, k ∈

{
1, N

}
, (25)

then every situation
{
x∗∗(ε) (t) , y∗∗(ε) (t)

}
for which

x∗∗(ε) (t) = sin
(
t+ α∗∗(ε)) byα∗∗(ε) ∈ [αh; αh+1] and

y∗∗(ε) (t) = sin
(
t+ β∗∗(ε)) byβ∗∗(ε) ∈ [βk; βk+1]

forh ∈
{
1, N

}
, k ∈

{
1, N

}
, (26)

is an ε-e�cient situation for some ε > 0. As number N is increased, the value of ε can
be made smaller.

Proof. Owing to the continuity of functionals (5) and (6), whichever integer N and
the corresponding µ are, value ε always can be chosen such that inequalities (11) and (12)
be true for every situation composed of strategies (26) by (25). It is obvious that, owing
to the continuity of the functionals, increasing number N allows decreasing the value of
µ, which provides ε-e�cient situations to be closer to the e�cient situation composed of
strategies (25). �

Hence, starting with some integer N , the �nite approximation routine is as follows:
1. Build and solve a bimatrix (N + 1)× (N + 1)-game (19).
2. Find an acceptable solution in this game.
3. Stop if the acceptable solution (whether it is an equilibrium, e�cient, ε-equilibrium,

or ε-e�cient situation) by the last iteration does not di�er much from the acceptable
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solutions (of the same type) by a few preceding iterations; otherwise, go to the next
item.

4. Increase integer N by some increment and go to item #1.

At the very start of the routine, the increment is not necessary to be 1. Moreover, the
number of equal intervals along each dimension can be increased intensely if the di�erence
between the acceptable solutions decreases slowly. The di�erence can be considered via
the functional closeness. Thus, if{

x<l>∗ (t) , y<l>∗ (t)
}
=

{
sin

(
t+ α<l>∗) , sin (t+ β<l>∗)} ∈ XA × YB ⊂ X × Y (27)

is an acceptable solution at the l-th iteration, then the conditions of the su�cient close-
ness to the solutions at the preceding and succeeding iterations are as follows:√√√√√ t2∫

t1

(x<l−1>∗ (t)− x<l>∗ (t))
2
dt >

√√√√√ t2∫
t1

(x<l>∗ (t)− x<l+1>∗ (t))
2
dt and

√√√√√ t2∫
t1

(y<l−1>∗ (t)− y<l>∗ (t))
2
dt >

√√√√√ t2∫
t1

(y<l>∗ (t)− y<l+1>∗ (t))
2
dt (28)

and

max
t∈[t1; t2]

∣∣x<l−1>∗ (t)− x<l>∗ (t)
∣∣ > max

t∈[t1; t2]

∣∣x<l>∗ (t)− x<l+1>∗ (t)
∣∣ and

max
t∈[t1; t2]

∣∣y<l−1>∗ (t)− y<l>∗ (t)
∣∣ > max

t∈[t1; t2]

∣∣y<l>∗ (t)− y<l+1>∗ (t)
∣∣ (29)

by l = 2, 3, 4, ... So, if inequalities√√√√√ t2∫
t1

(sin (t+ α<l−1>∗)− sin (t+ α<l>∗))
2
dt >

>

√√√√√ t2∫
t1

(sin (t+ α<l>∗)− sin (t+ α<l+1>∗))
2
dt and

√√√√√ t2∫
t1

(sin (t+ β<l−1>∗)− sin (t+ β<l>∗))
2
dt >

>

√√√√√ t2∫
t1

(sin (t+ β<l>∗)− sin (t+ β<l+1>∗))
2
dt (30)

and
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max
t∈[t1; t2]

∣∣sin (t+ α<l−1>∗)− sin
(
t+ α<l>∗)∣∣ >

> max
t∈[t1; t2]

∣∣sin (t+ α<l>∗)− sin
(
t+ α<l+1>∗)∣∣ and

max
t∈[t1; t2]

∣∣sin (t+ β<l−1>∗)− sin
(
t+ β<l>∗)∣∣ >

> max
t∈[t1; t2]

∣∣sin (t+ β<l>∗)− sin
(
t+ β<l+1>∗)∣∣ (31)

by l = 2, 3, 4, ... hold for at least three iterations, the approximation procedure can
be stopped. Clearly, the closeness strengthens if inequalities (30) and (31) hold strictly.
However, inequalities (30) and (31) may not hold for a wide range of iterations, so it is
better to require that polylines

λx (l) =

√√√√√ t2∫
t1

(sin (t+ α<l>∗)− sin (t+ α<l+1>∗))
2
dt, (32)

ηx (l) = max
t∈[t1; t2]

∣∣sin (t+ α<l>∗)− sin
(
t+ α<l+1>∗)∣∣ , (33)

λy (l) =

√√√√√ t2∫
t1

(sin (t+ β<l>∗)− sin (t+ β<l+1>∗))
2
dt, (34)

ηy (l) = max
t∈[t1; t2]

∣∣sin (t+ β<l>∗)− sin
(
t+ β<l+1>∗)∣∣ (35)

by l = 1, 2, 3, ... be decreasing on average. Herein, term �on average� implies that, in
the case when inequalities (30) and (31) do not hold, polylines (32) � (35) are smoothed
(approximated) with the respective polynomials of degree 2 (the parabolas must be hav-
ing positive coe�cients at the squared variable). These conditions allow sampling the
players' sets of pure strategies without missing better situations.

7. Practical issues of the finite approximation

In practice, the �nite approximation may bring a great many of possible solutions.
To select the best one (which would be acceptable according to the abovementioned
list of properties of the game solution acceptability), a good way, apart from operating
on (28) � (35), is to visualize all possible solutions through all iterations. Consider an
example in which the seasonality develops through time t ∈ [1; 30] (in economics, this is
a really short time interval measured in days or weeks). The set of pure strategies of the
�rst player is

X = {x (t) = sin (t+ α) , t ∈ [1; 30] : α ∈ [0; 1.5π]} ⊂
⊂ S [1; 30] ⊂ L2 [1; 30] , (36)

and the set of pure strategies of the second player is

Y = {y (t) = sin (t+ β) , t ∈ [1; 30] : β ∈ [0; 1.5π]} ⊂
⊂ S [1; 30] ⊂ L2 [1; 30] . (37)

The payo� functionals are
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Kx (x (t) , y (t)) =

30∫
1

(x (t)− 2y (t))
2
dt (38)

and

Ky (x (t) , y (t)) =

30∫
1

(
x2 (t) + x (t)− x (t) y (t)− y2 (t)

)
dt. (39)

Consequently, this game can be thought of as it is de�ned on rectangle (13):

[0; 1.5π]× [0; 1.5π] ⊂ [0; 2π]× [0; 2π] ⊂ R2. (40)

The continuity of functionals (38) and (39) is quite clear. Therefore, Theorem 2 and
Theorem 3 ensure �nding an acceptable solution by relatively fast �nite approximation,
i. e., mapping the game given by (36) � (40) into a sequence of bimatrix games. The �rst
player's payo� functional (38) shown in Figure 1 resembles the second player's payo�
functional (39) shown in Figure 2. Nevertheless, this is just the shape resemblance, and
there is no strict symmetry in equilibrium or e�cient situations. Figure 3 shows the
aggregate of all equilibrium situations (associated with just the phase lags) found by
N = 5, 100 (96 bimatrix games altogether) along with all the best e�cient situations (at
which the pooled payo� is maximal). It is seen that there are two bunches of the best
e�cient situations. One bunch is on the left upper side of the rectangle of situations,
where the phase lag of the �rst player either is 0 or lies between 0.0471 and 0.1473
(Figure 4). The other bunch is on the right lower side of the rectangle of situations,
where the phase lag of the �rst player lies between 3.366 and 3.5343 (Figure 5).

Fig. 1. The �rst player's payo� functional (38) shown on rectangle (40)

When the approximation procedure is run from N = 5 to N = 100, and thus bimatrix
6×6, 7×7, ..., 100×100, 101×101 games are solved, the best e�cient situation bounces
between the bunches. Equilibrium situations bounce similarly between the left upper side
and the right lower side. Then, obviously, the conditions of the su�cient closeness to
the solutions at the preceding and succeeding iterations given by inequalities (28) � (31)
are irrelevant for this case. Polylines (32) � (35) cannot be considered as well, unless only



RomanukeV.

ISSN 2078�5097. Âiñí. Ëüâiâ. óí-òó. Ñåð. ïðèêë. ìàòåì. òà iíô. 2020. Âèï. 28 55

Fig. 2. The second player's payo� functional (39) shown on rectangle (40)

Fig. 3. All equilibria found by N = 5, 100 (circles) along with the best e�cient situations (*)

Fig. 4. The zoom-in on the left upper side of the rectangle of situations in Figure 3



RomanukeV.

56 ISSN 2078�5097. Âiñí. Ëüâiâ. óí-òó. Ñåð. ïðèêë. ìàòåì. òà iíô. 2020. Âèï. 28

Fig. 5. The zoom-in on the right lower side of the rectangle of situations in Figure 3

Fig. 6. Polylines (32) � (35) for the left upper side (on the left) and the right lower
side (on the right)

one bunch is considered. But which bunch should be preferred? Certainly, each bunch
should be considered separately.

First, it is worth to notice that there are 50 best e�cient situations in the bunch on
the left upper side, whereas the bunch on the right lower side consists of 46 best e�cient
situations. Polylines (32) � (35) for the 50 best e�cient situations in the bunch on the
left upper side and polylines (32) � (35) for the 46 best e�cient situations in the bunch
on the right lower side are shown in Figure 6. As it is easy to see, the polylines in both
bunches are decreasing on average. Each side has its peaks in the polylines, though. The
left upper side bunch (the left plot in Figure 6) appears to be more attractive for the
players to select it by reason of a better density (values along the ordinate axis are less
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than those in the right plot, for the right lower side bunch). Meanwhile, the maximal
pooled payo� in those best e�cient situations seems to be converging to the same point
(Figure 7). However, the average pooled payo� in the right lower side bunch is 148.3429,
whereas the average pooled payo� in the left upper side bunch is 148.2832.

Fig. 7. The maximal pooled payo� in the best e�cient situations on the left upper side (*) and
on the right lower side (squares)

Although the di�erence between the average pooled payo�s is only 0.04%, there is
another factor which switches the seeming bunch preference from the left upper side to
the right lower side. The matter is that the variance of the maximal pooled payo�s on
the right lower side is 0.0899, whereas the variance of the maximal pooled payo�s on the
left upper side is 0.4189, which is 366% greater (or 4.66 times greater). Consequently,
the right lower side bunch of the best e�cient situations will attract the players more,
and they eventually are expected to select an acceptable solution in the vicinity of the
squared point which is seen in Figure 3 and Figure 5. This point,[

α<95>∗ β<95>∗ ]
=

[
3.4748 0.3332

]
(41)

which could be alternatively called an attractable solution, is the best e�cient situation
in bimatrix 100 × 100-game (at N = 99, which is the 95-th iteration; at N = 100, as it
is seen from Figure 7, the best e�cient situation bounces back into the left upper side
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bunch). This vicinity is shown in Figure 8 as a zoom-in along with those equilibria which
are the closest to the squared point (square-marked situations).

Fig. 8. The zoom-in on the square-marked situations (along with the best e�cient situation in
bimatrix 100× 100-game) in the right lower side of the rectangle of situations in Figure 5

Point (41) corresponds to the acceptable-and-attractable situation{
x<95>∗ (t) , y<95>∗ (t)

}
= {sin (t+ 3.4748) , sin (t+ 0.3332)} (42)

which is simultaneously equilibrium and e�cient (in the respective bimatrix 100 × 100-
game). The players receive payo�s

Kx

(
x<95>∗ (t) , y<95>∗ (t)

)
= 133.4009

and
Ky

(
x<95>∗ (t) , y<95>∗ (t)

)
= 15.0558

in situation (42), where the pooled payo� is 148.4568 (the regular round-o� is applied
herein). Another point[

α<38>∗ β<38>∗ ]
=

[
3.4782 0.3366

]
(43)
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is very close to point (41), and it is an equilibrium-and-e�cient situation also, where

Kx

(
x<38>∗ (t) , y<38>∗ (t)

)
= 133.3958

and

Ky

(
x<38>∗ (t) , y<38>∗ (t)

)
= 15.0616,

so the pooled payo� is 148.4574. Although the remaining four square-marked situations
(see Figure 8) are not e�cient, their payo�s are still close to the payo�s in situation (42):
the �rst player's payo� varies between 133.3883 and 133.4127, and the second player's
payo� varies between 15.0419 and 15.0698 (the pooled payo� varies between 148.4546 and
148.458). This con�rms that, in the game given by (36) � (40), the (rationally thinking)
players will try to �hit� on situation (42) de�ned by point (41) or on situations de�ned by
points in the vicinity of points (41), (43), and related ones (see square-marked situations
in Figure 8). An inaccurate �hit� will not worsen the player's payo� much, and that is
the main attractiveness (along with the acceptability) of the square-marked situations in
Figure 8.

Therefore, the acceptable solution in the considered example is not just a situation,
but rather a sub-rectangle of situations (associated with just the phase lags) de�ned
by its center (the most attractive situation). In this case, the center has been assigned
to point (41), although it depends on how many iterations are made. In general, the
�nite approximation may have practical issues caused by multiplicity of acceptable solu-
tions and solution bounces (instability), which subsequently may lead to new selection
problems.

8. Discussion

The �nite approximation makes game solutions tractable so that they can be eas-
ily implemented and practiced. In practice, the tractable �nite solution approximating
the initial continuous game solutions becomes literally attractable, whereupon it can
evolve into an attractive situation. This justi�es the applicability of the presented �nite
approximation method.

Of course, the �nite approximation does not remove or solve the single situation
selection problem. However, it simpli�es not needing operations over continuums (e. g.,
of equilibria) anymore. The essential drawback may arise in the case when, for instance,
there are multiple bunches of equilibria (not like just the two bunches in the above-
considered example). The only discharge is to solve new, bigger, bimatrix games to
accumulate su�cient statistics of approximate solutions, whereupon to decide on which
one attracts the players. Surely, the players are presumed to be rationally thinking ones.

The presented method is quite signi�cant for avoiding too complicated solutions
resulting from game continuities and, moreover, functional spaces of pure strategies.
Mainly, it concerns modeling economic interaction processes, where the player can use a
continuum of short-term time-varying strategies in�uenced by seasonality. It is a kind
of unavoidable simpli�cation, which �deeinstellungizes� the continuous noncooperative
two-person game by mapping it into a bimatrix game.

9. Conclusion

For solving continuous noncooperative two-person games on a product of sinusoidal
strategy functional spaces, a method of their �nite approximation is presented, which is
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based on sampling the sinusoidal strategy functional spaces. The sets of the players' pure
strategies (i. e., the spaces of pure strategies) are sampled uniformly so that the resulting
�nite game is a bimatrix game whose payo� matrices are square. The approximation
procedure starts with not a great number of intervals along the player's phase lag. Then
this number is gradually increased, and new, bigger, bimatrix games are solved until
an acceptable solution of the bimatrix game becomes su�ciently close to the same-type
solutions at the preceding iterations. The closeness is expressed in terms of the respective
functional spaces, in which the player's strategies at the succeeding iterations should be
not farther from each other than at the preceding iterations. These requirements are
transformed into the relaxed conditions which allow sampling the players' sets of pure
strategies: the respective distance polylines are required to be decreasing on average once
they are smoothed (approximated) with respective polynomials of degree 2, where the
parabolas must be having positive coe�cients at the squared variable.

Theoretically, continuous noncooperative games of three and more players within
functional spaces are believed to be �nitely approximated in the similar manner. How-
ever, practical aspects of determining the acceptable-and-attractive solution will have
deeper di�culties (there may be more bunches, irregular bounces, slow convergent pooled
payo�s, etc.). Nevertheless, the presented game �nite approximation has a certain
promising impact on modeling economic interaction processes, where players use short-
term time-varying strategies in�uenced by seasonality.
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Áåçêîàëiöiéíà ãðà äâîõ îñiá ¹ ìîäåëëþ ïðîöåñó åêîíîìi÷íî¨ âçà¹ìîäi¨, ùî ðîç-

ãëÿäà¹òüñÿ íà êîðîòêîìó iíòåðâàëi. Óâåñü ïðîöåñ, ÿêèé ¹ ïî¹äíàííÿì ìíîæèíè

öèõ êîðîòêèõ iíòåðâàëiâ, ìîäåëþ¹òüñÿ ÿê ïîñëiäîâíiñòü òàêèõ áåçêîàëiöiéíèõ iãîð.

Ïîòðiáíî, ùîá öÿ ïîñëiäîâíiñòü iãîð ðîçâ'ÿçóâàëàñÿ áåç çàòðèìîê, òîìó ïîäà¹òüñÿ

ìåòîä ñêií÷åííî¨ àïðîêñèìàöi¨ íåïåðåðâíèõ áåçêîàëiöiéíèõ iãîð äâîõ îñiá. Öåé ìåòîä

 ðóíòó¹òüñÿ íà äèñêðåòèçàöi¨ ôóíêöiîíàëüíèõ ïðîñòîðiâ, ÿêi ñëóãóþòü ìíîæèíàìè

÷èñòèõ ñòðàòåãié ãðàâöiâ. ×èñòà ñòðàòåãiÿ ¹ ñèíóñî¨äíîþ ôóíêöi¹þ ÷àñó, â ÿêié

çàïiçíåííÿ çà ôàçîþ çìiííå. Ïðîñòîðè ÷èñòèõ ñòðàòåãié ãðàâöiâ äèñêðåòèçóþòüñÿ

ðiâíîìiðíî òàê, ùî îòðèìóâàíà ñêií÷åííà ãðà ¹ áiìàòðè÷íîþ ãðîþ, ÷è¨ ìàòðèöi

âèãðàøiâ êâàäðàòíi. Ïðîöåäóðà àïðîêñèìàöi¨ ðîçïî÷èíà¹òüñÿ ç íåâåëèêî¨ êiëüêîñòi

iíòåðâàëiâ. Äàëi öÿ êiëüêiñòü ïîñòóïîâî çáiëüøó¹òüñÿ i ðîçâ'ÿçóþòüñÿ íîâi, áiëüøi,

áiìàòðè÷íi iãðè äîòè, äîêè ïðèéíÿòíèé ðîçâ'ÿçîê áiìàòðè÷íî¨ ãðè íå ñòàíå äîñòàòíüî

áëèçüêèì äî ðîçâ'ÿçêiâ òàêîãî æ òèïó íà ïîïåðåäíiõ iòåðàöiÿõ. Òàêà áëèçüêiñòü

âèðàæà¹òüñÿ ó âèðàçàõ âiäïîâiäíèõ ôóíêöiîíàëüíèõ ïðîñòîðiâ, ó ÿêèõ ñòðàòåãi¨ ãðàâöÿ

íà íàñòóïíèõ iòåðàöiÿõ ìàþòü áóòè íå äàëi îäíà âiä îäíî¨, íiæ íà ïîïåðåäíiõ iòåðàöiÿõ.

Öi âèìîãè ïåðåòâîðþþòüñÿ ó ïîñëàáëåíi óìîâè, ùî äàþòü çìîãó äèñêðåòèçóâàòè

ìíîæèíè ÷èñòèõ ñòðàòåãié ãðàâöiâ: ïîòðiáíî, ùîá âiäïîâiäíi ëàìàíi âiäñòàíåé áóëè

ñïàäíèìè ó ñåðåäíüîìó, ÿê òiëüêè âîíè çãëàäæóþòüñÿ çà äîïîìîãîþ âiäïîâiäíèõ

ïîëiíîìiâ äðóãîãî ñòåïåíÿ, äå ïàðàáîëè ìàþòü äîäàòíi êîåôiöi¹íòè ïðè êâàäðàòi

çìiííî¨. Ïðèéíÿòíèé ðîçâ'ÿçîê íå ¹ ëèøå ÿêîþñü îäíi¹þ ñèòóàöi¹þ, à, ñêîðiø, äåÿêèì

ïiä-ïðÿìîêóòíèêîì ñèòóàöié, àñîöiéîâàíèì òiëüêè ç çàïiçíåííÿìè çà ôàçîþ, ÿêèé

âèçíà÷à¹òüñÿ ñâî¨ì öåíòðîì, ùî ¹ íàéáiëüø ïðèâàáëèâîþ ñèòóàöi¹þ äëÿ ãðàâöiâ.

Êëþ÷îâi ñëîâà: òåîðiÿ iãîð, ôóíêöiîíàë âèãðàøiâ, ñèíóñî¨äíà ñòðàòåãiÿ, íåïåðåðâíà

ãðà, ñêií÷åííà àïðîêñèìàöiÿ, ïðèâàáëèâà ñèòóàöiÿ.


