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A direct method of Lie-algebraic discrete approximation for numerical solving the
Cauchy problem for heat transfer equation is proposed in this paper. The key idea of
direct method of Lie-algebraic discrete approximations is using analytical approaches, in
particular the method of small parameter or Taylor series expansion, to construct analyti-
cal approximation of the solution for the problem in the form of power series with respect
to the time variable.

The conditions for convergence of analytical series are studied in particular. By means
of small parameter method the recurrence relation for evaluation of each member of a se-
quence is provided. This approach enables fast computation and significant reduction of
computational cost in compare to Generalized method of Lie-algebraic discrete approxima-
tions which performs complete discretization by all variables.

Thereafter, the discrete match of recurrence relation is built using quasi-representations
of the Lie-algebra basis elements, which means, that each differential operator is replaced
by its analogue matrix which is quasi-representation of differential operator in finite dimen-
sional space. It is proved that computational scheme has a factorial rate of convergence.

The proposed approach is applied to model case and obtained results are compared
with finite difference method, classical method of Lie-algebraic discrete approximations and
Generalized method of Lie-algebraic discrete approximation. The convergence rates for all
of these methods are compared in different functional spaces. In addition, we study the
count of arithmetical operations for equal set of nodes.

Key words: direct method of Lie-algebraic discrete approximations, heat equation, finite
dimensional quasi representation, Lagrange polynomial, small parameter method, factorial
convergence.

1. INTRODUCTION

The heat equation is the partial differential equation that describes how the distribu-
tion of some quantity (such as heat) evolves over time in a solid medium, as it sponta-
neously flows from places where it is higher towards places where it is lower. It has many
applications in the diverse scientific fields: physics, engineering and earth sciences, prob-
ability theory, financial mathematics [18, 19, 27, 28]. Hence effective numerical solution
is an actual problem besides the existing of various approaches [1, 9, 19].

The Direct method of Lie-algebraic discrete approximations was firstly proposed for
advection equation in [24] and has been approbated on conference [25]. Further this
method was extended on nonlinear equation, namely Burger’s nonviscous equation and
was discussed on conference [5]. This method is one of the whole family of methods
which use Lie-algebraic discrete approximations [1-4, 7, 8, 10-18, 21-23, 26, 28].

The main prerequisite of these method is that differential operator should be the
element of universe enveloping Heisenberg-Weyl’s algebra with basis elements from the
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Lie algebra {1, z,d/dz}, i.e. differential operator for the problem must be superposition
and/or linear combination of these base elements of Lie algebra. As a next step we
introduce the finite dimensional discrete quasi representations of {1, z,d/dx} as matrices
{I,X,2}.

Further, if we reduce partial differential equation to system of ordinary differential
equations we get the (classic) Method of Lie-algebraic discrete approximations [1, 7,
8, 10, 12-17, 26, 28]; if reduce partial differential equation to the system of algebraic
equation (either linear or nonlinear) we get the (classic) Method of Lie-algebraic discrete
approximations [3, 4, 21-23].

Let us explain the idea of Direct method of Lie-algebraic discrete approximation on
the model problem investigated in [24]. Considering a bounded domain € := (a,b) C R,
time limit 7" < +o0, cylinder Qr = Q2 x (0, T] we take the Banach space V.= W (Qr)
and formulate the Cauchy problem

given advection coefficient ¢ € R,
distribution at initial moment of time ¢ = ¢(x);

find function v = u(z,t) € V such, that: (1)

ou 0
—“+ca—z —0,Y(z,t) € Or,

uli—o =, € W ((—|c|T, | T) U Q) ,

where space V. = W™ (@) denotes the functional space in which all functions and
its derivatives up to arbitrary order are bounded in the domain Qr, i.e.:

W (Qr) ={u: Qr - R: D% € L*(Qr),Va € N}.

The idea of a direct method of Lie-algebraic discrete approximations consists in the
use of analytical approaches, in particular the method of a small parameter, to construct
an approximate analytic solution of a problem (1) in the form of a power series:

= tk 5 b2 t"
~ / U
up(z,t) = Z (ukk'> =p—cp't+cyp 0 + ...+ (—1)"c"<p(”)m. (2)
k=0
After this, the corresponding discrete series was constructed for (2) using the finite di-
mensional quasi-representations of elements of the Lie algebra:
t? t"

n k

~ t n._n n

Un,p(t) = E (uk’hk'> = pp — clppt + CZZZ@;LE +..+(=1)""Z @hﬁ, (3)
= ! ! !

where the matrix Z approximates the differential operator d/dx. Moreover, the series
(3) is finite, since the matrix Z is nilpotent [15].
It was proved in [24] that the computational scheme is convergent with error rate:

le|" AT 4 (2maz {|¢| T, diamQ})™
(n+1)!

[l —unllvi, < "o

Computational experiments showed that with the same accuracy and convergence
indicators that are characteristic for the generalized method of Lie-algebraic discrete ap-
proximations, we succeeded in significantly reducing the number of arithmetic operations
using approach from [24].
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This paper is constructed in the following way: we formulate the model problem to
which we apply the proposed numerical scheme in second chapter, analytical foundations
for the proposed numerical approach are discussed in the third chapter and its Lie-
algebraic discretization of the recurrence relation is investigated in the fourth chapter.
Numerical results with arithmetic operations count for the model problem are provided
in the fifth chapter.

2. PROBLEM FORMULATION

Considering a bounded domain © = (a, b) C R, time limit 7' < 400, cylinder Q1 =
Q% (0,T] we take the Banach space V = W (QT) and formulate the Cauchy problem

given heat conduction coefficient a € R,a > 0,

temperature at initial moment of time ¢ = ¢(z);

find function u = u(z,t) € V such, that (4)
ou  d%u

prialeh (z,t) € Qr,

uli=o = ¢(x), ¢(z) € CF (Q).

The solution of problem (4) we seek using iterative approach method via Lie-alge-
braic discrete approximations, i.e. by means of Direct method of Lie-algebraic discrete
approximations.

3. ITERATIVE APPROACH AND ITS CONVERGENCE

3.1. TAYLOR SERIES EXPANSION

The main idea of the direct method of Lie-algebraic discrete approximation is to
approximate the solution directly. First of all we make the analytical setup for the
proposed approach.

Lemma 1. (An integro-differential representation of the solution). The function
u = u(z,t) in the integro-differential expression

t

u(z,t) = ¢(x) + a/ (an(;;T)) dr, (5)

0

is the solution of Cauchy problem (4).
Proof. Integration of the equation in (4) on the interval (0,1)

t ¢

2
/8u(x,7‘)dT:a 0 u(x,T)dT
0

T Ox?
0
yields
¢
0%u(x,T)
u(xz,t) — u(z,0) = a/ Wdr

0

By taking into account the initial condition from (4), i.e. u|t=g = ¢(x) there is obtained
integro-differential representation of the solution (5).
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It can be shown that such defined function is the solution of the problem (4): if
integro-differential expression (5) is differentiated with respect to time variable, there is
retrieved the equation we deal with, namely

ou 0%u
— =0-—.
ot Ox?

Next, we evaluate the expression (5) at the initial moment of time wu|;—o and get the

initial condition: 0
2
ue0) = o(o) + o [ (55D ) a7 = o(o)
0

Thus all requirements hold and the lemma has been proven. ]
For further purposes let us denote the derivative of the function as ¢*) = d*¢/dz".
Lemma 2. (The identity of series expansions). The solution expansion

00 tk
ur = Z akﬁ’ (6)
k=0
where uj, = ak@(%) can be derived by means of iterative approach and provided here

expansion is a Taylor series expansion with respect to time variable.

Proof. At first we show that the series (6) can be derived by means of iterative ap-
proach. To accomplish this we recall the integro-differential representation of the solution
(5) and set up an iterative process in the following form:

upt1(z,t) = o(z) + a j (W) dr, (7)

0
uo(e,t) = ().

According to [11] the starting element in recurrence sequence ug(x,t) = ¢(x) can be
obtained by setting u_1(z,t) = 0 in recurrence relation (7). Let us evaluate ux(x,t) for
k=123

up = () + a/t (dz’ox(f)> dt = p(z) + ap”(2)t,

t o2 . ot
uz:¢(x)+a/@(cp(x)+ago (x)t)dT = @(x) + a@’ (z)t + a’p 3
0
u3=¢<x>+a/i2(so<x>+a¢<>t+w 2)d7—
0

t3
() + ap” (x )t+a2g0(4) 5 +a3<p(6)§.

|
S

n .
th
Let us show that w,(z,t) = E (akap(zk) ) We assume that this statement holds for
k=0

n+1
un(x,t) and we check whether it holds for up41(z,t), i.e. upi1(z,t) = Z (a ©(2F) k')
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Hence we consider the term w1 (x,t):

U1 (@,1) / (Zn: (ak 2T )) g

. 0 k=0 .
_ - k41 (2k+2)Lk dr — - k+1, (2k+2) id _
0 \k=0 ' k=0 0
+1 +1
_ ot Zakﬂ (k) tT ot nz:ak (k) t* _ ia%(%)£~
(k+1)! (k) ~ & (k)!

At the current moment we have shown that expansion (6) can be derived by means of
the iterative approach (7). As a second step we derive the Taylor series for the problem
(4) with respect to time variable and verify that obtained expression is identical to the
expression stated in (6). Let us consider Taylor expansion at the initial moment of time:

(2 ) (2] ) B (2 )
o o |,_,) 20 "\ o3 |,_,) 3 ot |,_y) n!

with the remainder R,, = ( ?9::; ) @ +1) having the following property
—r

up(z,t) = u(z,0) + <g::

u(z,t) — up(z,t) = Ry (x, t).

oku
otk
can evaluate them with respect to initial condition and along the equation from (4). For

2
il ) nd<a2 >:
t=0 ot* |,

. 0
instance, one can evaluate <8t

Although we have not explicit formulas for the (

> ,k > 1, nevertheless we
t=0

u 0%u 92 )
<8t t_0> - (8962 t_o) - a@ (ul,_g) = ap” (),
% 0?2 ou ) ot y (4)
<at2 t—0> B a@ <at t—O) =a a‘r (u|t 0) ( )

To show that
P
otk

we assume that expression of the above holds, and retrieve the following

P\ 0 [
ot |,_ )~ “oa2 \ otk

We see that expression holds and we have derived the expansion (6) using the symbolic
computation tools.
As a third step we show the connection between these approaches. Let us consider

> = a"p® (2),k > 1,
t=0

d2
_ (2k) ) — k+1 (2k+2)
t:o) ag s (a ® ) a" (z).
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~( k entt . 0™y, )

Un(x,t) = Z are e ) The calculation of the S yields:
k=0 t=0
ouy,

o ( +Z< Ep2H)( (;le))‘ ) = ap”(x),
" G-

ot

0%u,,

o2
k=3 . t=0
9" uy, | m 2m) k(2k) e _m_(2m)
ot |,y " (a "M () + Z a‘y (x)m =a"p' "™ (z)
k=m+1 +—0
Thus we have proven the expansion (6). O

Lemma 3. (Convergence of the iterative approach). The sequence {uy(z,t)} defined
in (6) converges uniformly to the exact solution, i.e.:

nl;ngo up(z,t) = u(z,t),

where u(z,t) is the solution of the problem (4).
Proof. First of all let us show that series defined in (6) is formal solution of (4).
Algebraic calculation yields the following:

8“1 Z k+1 (2k+2)t Pur = k (2k+2)tk
s a9 a @ FRE
k!’ Oz2 Z k!

and finally we get

Our kL, 2k+2)t - (2k+2)t
ot 8x2 Z Z“ ¥ ) =0

which proves that infinite series is formal solution of the problem (4).
n

ik
As a next step we consider the finite series u,(z,t) = Z <ak<p(2k) I ) Conducted
k=0

algebraic calculations

n—1 n
3un Z k1 (2k+2)t up, fzak (2k+2)ﬁ
K 022 LT

we substitute in the equation from (4):

n—1 n
dun _ aazun Z k+1 (2k+2)t Z R+, (r42) " Q"+ p(2n+2) et _
ot Ox? k! (n+1)!
n+1 n+1
e ]W"*”] T
(n+1)! — (n+ 1)V

since p € W>(Q), i.e IM > 0,Yn € N : ||| < M. Finally we get

o (1)

Oup, 0%u,,
n—oo | Ot ox?




Kindybaliuk A., Prytula M.
62 ISSN 2078-5097. Bicu. JIbsis. yu-ty. Cep. npuksa. marem. ta indg. 2019. Bun. 27

Let us prove the uniform convergence of a series (6). According do Weierstrass’
majorant theorem we have to show that sequence of positive constants is convergent,
thus we consider majorant series

url € 3 JalH I oo o < MY fa 2 = Y b
k=0 k=0 k=0
k
where by, = |a|kﬁ. Since ratio test
b . eI R 1
I =1 = |a|T lim —— =0
A = Sy e e i e =0

yields that majorant series is convergent, therefore series (6) converges uniformly on Q7.
Since series (6) is Taylor’s series of the solution (4) the following error estimation

holds:
anJrl U TnJrl

ot (n+ 1)1

Thus, lemma has been proven. (]

nu—mlsH

3.2. SMALL PARAMETER METHOD

Expansion provided in (6) from the previous section can derived using various ap-
proach. Nevertheless some of them appear to be more or less effective from the different
perspectives. It is obvious that iterative approach is computationally expensive, since
at each step one should integrate an increasing expression. On the other hand. Taylor
expansion requires symbolic computations and, thus, it cannot be used for the finite di-
mensional calculations we are targeting to. Next section is intended to provide approach
which can be used for the finite dimensional calculations and simultaneously be effective
even for symbolic computations.

Lemma 4. (Recurrence relation for the expansion terms). Terms {u(z)},_, in
expression (6) can be computed by means of the following recurrence relation:

d2
1:Lk+1 =aos (), (8)
Ug = @ .

Proof. To prove this proposition we will use a Small Parameter Method. We seek
solution as a formal expansion by small parameter:

for the parameterized problem:

given heat conduction coefficient a € R,a > 0,
temperature at initial moment of time ¢ = ¢(z);
find function ue = us(z,t) € V such, that

Ou, 0%u,

5= (5 ) @oeer
Ueli=0 = ¢(z), »(z) € 7 (Q).
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After substitution of formal series into parameterized problem, performing auxiliary al-
gebraic calculations and taking into account initial condition as a conclusion we obtain:

Oty |~ (O, Ohp_1\
> (G -t =0

k=1

and the set of Cauchy condition for each term in the formal expansion by small parameter

{ toli=o = ¢(),

lig|t=0 = 0,k > 1.
As a next step we introduce the set Cauchy problems:

find function iy = G (z,t) € V such, that

Oty 0?1

ot (a 90z ) (x,t) € Qr, k > (9)

tigli=0 = 0,

and

find function 4y = tg(x,t) € V such, that

Ot

dal g t 10
ot Oa (l’, ) € QT& ( )

doli=0 = ¢(z), () € C ().

0
The solution of the first problem (10) is 4y = ¢(x). In fact, equation % = 0 shows

that there are no changes during the evolution and g|;—¢p = ¢(z) will not change during

0
the all process, thus @iy = ¢(z). On the other hand, the equation 290 _ 0 leads that

solution of this equation might be an arbitrary function that doesn’t depend on time
variable and since that g at initial moment of time has a constraint as dgli—0 = ¢ (z)
then the solution is @y = ¢(z).

Similar approach we use for the next problems. Evaluation of 4; yields the following
expressions:

8’&1 . 82120 aal _ i ~ " _ i
o = (a 92 ) = o =W (x) = iy —a/go (x)dt = ap” (z)t + C1t,

where C(t) is an arbitrary function. Taking into account the initial condition 1 |;=o = 0
we obtain C; = 0 and 41 = ap” (z)t = a1 (x)t.
tk tk
Let us assume that a, = a*¢®®(2)— = ﬂk(x)g thus, we should prove that this

k! !
expression holds for k£ + 1. We consider the equation from (9) taking into account our

assumption:

L S AR RS R L
T =a (x)g—uk(x)g

Performing similar calculations as of above we prove our assumption, namely we obtain

tk+1 tk-i-l

m = Up+1(2) 77

k+1 (2/€+2(
(k+ 1)

g1 =a x)
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Since @k (7) = a®*¢* (z) and 41 (x) = a*T1p?**2(2) it implies that

2
Upy1(x) = a% (g (x))

and it proves lemma. (]

Approach based on Small Parameter Method allows fast symbolic computation in
order to obtain the analytical solution and it is a good basis to make of use the Lie-
algebraic discrete approximations. Next chapter is devoted to constructing the numerical
scheme on top of recurrence relation via finite dimensional quasi representations. This
is an essence of Direct method of Lie-algebraic discrete approzimations.

4. NUMERICAL SCHEME

The main idea of numerical scheme construction for the direct method of Lie-algebraic
discrete approximation is to replace the elements from Lie-algebra G = {1,x,9/90z} in
recurrence relation (8) by theirs finite dimensional quasi representations G = {I, X, Z}
respectively. Lagrange polynomials have been chosen as a tool for finite dimensional
quasi representations construction.

We examine numerical scheme construction, recall approximation properties and
prove convergence of proposed numerical scheme in this section.

4.1. LIEFALGEBRAIC DISCRETIZATION

Let n, denotes the count of nodes in domain €2 and n; denotes count of nodes in
interval [0, T] and Qr,;, denotes the mesh of nodes built upon nodes {z;}.*, and {t;};,.
Lagrange polynomials [;(x) built at the nodes {z;}}*, form the basis in finite dimensional
space Vp,.

Let us denote the matrix Z as finite dimensional quasi representation of the differential
operator d/dz. The matrix Z is built upon the rule Z;; = I’ (z;) [16]. The key property
of this matrix is such, that matrix Z* = (Z )k approximates differential operator d* /dz*
and matrix Z is nilpotent [15], i.e. there is some number n that all further multiplications
give nil matrix: Vk > n: 7k = 0.

Having built all required quasi-representations we provide the following lemma as
a key finding of this paper, namely the discrete recurrence relation as a Lie-algebraic
discrete approximation of the recurrence relation.

Lemma 5. (Finite dimensional recurrence relation for the expansion terms). Terms
{tpn}y_, in expression

Up,h = Zﬂk,hﬁa (11)
k=0
can be computed by means of the following recurrence relation:

{ g1, = aZ? (g,p),

- 12
Uo,h = Ph - ( )

which is the Lie-algebraic discretization of the recurrence relation (8).
Proof. Since g1, from discrete expansion (11) is the finite dimensional quasi rep-
resentation of infinite series expansion (6), matrix Z2 is the finite dimensional quasi
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representation of differential operator d?/dx?, then expression

() = 0t (4 (2))

from (8) may be rewritten as a finite dimensional quasi representation
ﬂk+1,h = aZ2 (ﬂk,h) .

Since the matrix Z is nilpotent, the length of a sequence of @, in (11) is [2E]. To
prove that property one can rewrite the recurrence relation into the following form

ﬂk,h = akZQk (gDh) .
Nge + ]. . +1
due to nilpotent property Z"*7" = 0 we

have @y, = 0 for all further £ > "TT'H O

When the index k reaches the number

4.2. APPROXIMATION PROPERTIES

Since the numerical scheme uses Lagrange interpolation and Lagrange polynomials,
we need to discuss some issues regarding the approximation properties of Lagrange poly-
nomials in the context of constructed numerical scheme.

The tooling of Lagrange interpolation has not been changed since previously discussed
model in [24], so we will recall main approximation lemmas proved in [24] in current
section.

Lemma 6. (Derivative error bounds for Lagrange interpolation). Let v(z) €
We(Q) and vy denotes the Lagrange interpolation of function v(x) built at nodes
{x;};",. Then the following estimation of the error bounds for Lagrange interpolation
holds:

. n—k+1
Hv(k) B ng)” < (diam Q)

n+1)
(n—k+1)! loe-

o

Proof. Proved in [24], please see the lemma "Derivative error bounds for Lagrange

interpolation"”. O
Let us consider the cylinder norm for the function v = v(z) : R — R: as a following
1 n
functional: ||1)H%/h = v*(x;), being a norm in the finite dimensional space Vj,.
n
i=0

One can verify that the following inequality |[v||v, < ||v]lco holds [24].

Lemma 7. (Derivative error bounds for quasi representation). Let v(x) € W>°(Q)
and v; denotes the Lagrange interpolation of function v(z) built at nodes {x;}.._,, matrix
Z* as finite dimensional quasi representation of the differential operator d*/dz*, then
the following estimation of the error bounds for finite dimensional quasi representations
holds:

k
lo® = ZF0||y;, < [o® — 0P .

Proof. Proved in [24], please see the lemma "Derivative error bounds for quasi repre-
sentation”. O



Kindybaliuk A., Prytula M.

66 ISSN 2078-5097. Bicu. JIbsis. yu-ty. Cep. npuksa. marem. ta indg. 2019. Bun. 27

4.3. CONVERGENCE AND ERROR ESTIMATION

The key finding of this paper is the proposition of method which has almost the same
properties regarding the convergence but has more comprehensive way in the constructing
and implementation of the numerical scheme. The discussion concerning the convergence
of numerical scheme we start from proof of some auxiliary lemmas which finally allow us

to formulate the key finding of current article.

Lemma 8. The series y
n/2

1
Z (n — 2k)!k!

k=0
can be estimated as the following expression:

"f 1 Lo
2 (n—2k)k = (2 1)!

and
n/2 1

I S S
ninloga (n — 2Kk)1K!

Proof. We can recall that series

_ | |
— (n — 2k)!(2k)!
has the property, so that:
_ ] | !
= (n — 2k)!1(2k)! n!
Let us consider a series
”Z/é (2k)!
|
Pt k!

D T T}

(13)

At the current moment we can proceed to the estimation of (13):

n/2 n/2

(2Kk)!

IA

n/2 n/2

1 1
2 (n—2k)1K! 2 (n—2k)I(2k)! &

1 (2k)1) _ 2n!
S D sl B DR Tl e (

k=0 k=0

which proves the estimation (14).
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One can verify that
) 2n71
Rl e T
In fact, by making a substitution m = n/2 — 1 which yields: n — 1 = 2m + 1 we obtain

n—1 22m+1 2m m

lim —— = lim =2 lim — =2 lim — =0.
n— oo (5 — 1)' m—oo m)! m—oo m! m—oo m)!

Set us consider
n/2

) 1 ) 2n—1 -
A I; =2kl | = A ((g - 1)!) o

n/2
since Z — 2/<: T > 0 the lemma is proven. O
Theorem 9. (Convergence of the direct Lie-algebraic numerical scheme). Let u =
n/2 k
t
u(z,t) be the solution of the problem (4), u, = Z (a 2R x ) be the Taylor expansion
k=0 ’
of the solution and up = Z Z (akZ%cphk!> l;(z)| be the finite dimensional
§=0 | \k=0

solution. Then built numerical scheme (12) is convergent having the factorial rate of
convergence:
Tn/2+1

i — unlly, < (2maz {a, diamQ, TH)" !
]

A(n/2 - 1) H“”

(1) H . (15)

oo

otn+1

‘6"+1u

Proof. Triangle inequality shows the natural way to split the norm ||u — up||v; in the
following way:
u —unllv, < lluw—un2llvi, + lluns2 — unllv,
where the first norm |lu — u,, /2|y, represents the accuracy of approximation of the so-
lution by means Taylor expansion and second form represents the error of Taylor series
approximation by means of Lie-algebraic finite dimensional quasi representations. Using
the property of error estimation of Taylor series we obtain the estimation for the first

norme.:
Tn/2+1 an+1u

u—Uu < llu—u <
I ny2llvie <l n/2lloo < (2 +1)! | ot

Decomposition of the ||, /o — upllv;, implies yields the following calculations:

o0

n/2 n/2 k
lunjz =l = |3 e o - > 2oy =

Vi
n/2 " n/2 k
_ Zak (Q(Zk) sz%) . < Zak HQO(Zk) — 7%, T <
k=0 k=0

Vh

n/2 k n/2 . n+1—2k k
, . t (diam) T
< k H (2k) (2k)H L k H (n+1)H
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Let us denote M = max {a, diam$, T} then we derive the estimation for [|u, /2 — un|v,:

n/2
Mn+172k Mk N
ltn 2 = unllv, <> M <(n+ - Qk)!) a Hso( H)Hoo -
k=0
n/2 n+1 n+lon—1 n+1
= e 3 iy = S e = s el
00 =0 (TL+1-2]€)‘ (%—1)' o) 4(%—1)' o}

As a conclusion of the above findings we can verify that lim |lu, /2 — us|v, = 0, in fact:
n—oo

| vl @My
#&WW-WM<W”WL£&@@—N v

Finally we have the estimation (15) which implies the convergence of the proposed in
(11) numerical scheme, namely lim |lu — wup|y;, = 0, since
n—oo

T fu—wlly, < (1 = wollv, + 1 s — sy, ) = 0.

5. NUMERICAL EXAMPLE

Let us proceed to the analysis of numerical results. For that purpose, we consider
a cylindric domain Qr := (0,1) x (0,1), i.e x € (0,1), ¢t € (0,1). and a model problem
from [14]:
find function u = u(z,t) such, that:
ou  0%u
. T a9 at S )
ot = gz (WD EQr (16)
ul¢=o = sinz,
having the exact solution u(z,t) = e~ !sin(z).
The norm of the error of approximating the exact solution u — up, = u(z,t) — up(x,t)
in the functional space L?(Qr) is calculated by the formula

[l — uh||%2(QT) = / (u — up)® dadt,
Qr

in the functional space L (@1 ) is calculated at the discretization nodes:

||U_UhHLoc(QT7h) = sup |u(z,t) —up(z,t),
(z,t)€EQT,

and the norm in the Sobolev’s space W2(Q7) [6] is calculated according to

ou  Oup\’ ou  Oup\>
T S o2, (Ou  Ouy _ Ou,
lu = unlliyr200) / l(u up)® + (C% 8m) + <8t o ) ]dwdt.
Q

T
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The exact solution is known for the problem (16), thus we use the following rule for

evaluating the rate of convergence: pp = log, (HHU_uh”) If we get value ||lu—up|| =0
U — uh/g
and ||u — up /2]| = 0, thus the value 0/0 is shown as NaN (not a number).

The model problem is investigated by explicit scheme of finite differences method
(FDM), the method of Lie-algebraic discrete approximations (MLADA), Generalized
method of Lie-algebraic discrete approximations (GMLADA) and Direct method of Lie-
algebraic discrete approximations (DMLADA). The solution of Cauchy problem with the
system of differential equations was performed using Mathematica. Let us denote the
step of discretization by space variable by Az = m, and At = ﬁ as the step
of discretization by time variable. If discretization steps by both variables are equal
then we use h = Az = At for FDM and GMLADA. Nevertheless h denotes the step of
discretization by space variable for MLADA, because time step is chosen automatically
while solving the Cauchy problem with the system of differential equation by means of
Wolfram Mathematica software.

Table 1
Error estimations in L?(Q7r) space
Step h FDM MLADA GMLADA DMLADA
h=1/2 0.0419804 0.129574 0.0479767 0.0507986
h=1/4 0.0199765 0.051718 0.0146769 0.0146827
h=1/8 0.00965197 | 0.00343672 | 0.000637523 0.000637523
h=1/16 | 2.05974-10™ | 3019.86 | 1.83044-10~" | 1.83044-10~7
Table 2
Error estimations in L (Qr,5) space
Step h FDM MLADA GMLADA DMLADA
h=1/2 0.0904097 0.46952 0.23476 0.23476
h=1/4 0.0414633 0.249107 0.085016 0.085016
h=1/8 0.0200078 0.0226241 0.0046676 0.0046676
h=1/16 | 4.19664 - 10T | 18151.3 | 1.7980-10~C [ 1.7980 - 10—
Table 3
Error estimations in W12(Qr) space
Step h FDM MLADA GMLADA DMLADA
h=1/2 0.119842 0.452594 0.202487 0.203796
h=1/4 0.0594391 0.2167 0.0727922 0.0727891
h=1/8 0.0294888 0.0197359 | 0.00419756 0.00419756
h=1/16 | 1.24976 - 1012 | 24988.7 | 1.85966-10~° | 1.85966 - 10~°
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Table 4

Rates of convergence in L?(Q7) space

Rates of convergence in W2(Qr) space

Step h FDM MLADA | GMLADA | DMLADA
h=1/2 | 1.07141 1.32504 1.70879 1.79067
h=1/4| 1.04941 3.91156 4.52493 4.5255
h=1/8 | —40.9567 | —19.745 11.7661 11.7661
Table 5
Rates of convergence in L (Qr) space
Step h FDM MLADA | GMLADA | DMLADA
h=1/2 | 1.12464 0.91442 1.46539 1.46539
h=1/4 | 1.05128 3.46084 4.18698 4.18698
h=1/8 | —44.2537 | —19.6138 11.3421 11.3421
Table 6

Step h FDM MLADA | GMLADA | DMLADA
h=1/2 | 1.01165 1.06252 1.47598 1.48533
h=1/4] 1.01124 3.45681 4.11616 4.11616
h=1/8 | —45.2685 | —20.272 11.1403 11.1403

From the above tables we can see the increase of errors in MLADA. This is caused by
the stiff system of ordinary differential equations to which the partial differential equation
was reduced to. Such systems need either increasing the count of nodes or usage of some
special numerical techniques.

Also we can observe that proposed numerical method has the same accuracy as Gen-
eralized method of Lie-algebraic discrete approximations. The norm of the error of
approximating the exact solution was evaluated as

lu—unllpr = max | > (u(w;,t:) — un(z;, t:))% (17)
i=1,n4 j=1
in the [14]. For the case n, = 10,n; = 10 by means of MLADA there was obtained the
following error in [14]: ||u—wuy| s = 7,75-1073. With the same count of nodes and with
respect to the same norm (17) using GMLADA and DMLADA we achieved the error
|lu —un|lgr = 2,69 - 1073 which is almost three times (2,88104) more precise than the
result obtained by means of classic approach.
These tables highlight the main benefit of using the proposed numerical scheme is
reduced count of arithmetic operations maintaining the same computational properties
as a generalized method of Lie-algebraic discrete approximations.
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Table 7
Count of arithmetic operations for n, =n; =3
Step h =1/16 FDM MLADA | GMLADA | DMLADA
Error in L%(Q7) space 0.0419804 | 0.129574 | 0.0479767 | 0.0507986
Additions, substractions 46 145 1093 44
Multiplications 50 157 1179 54
Divisions 18 3 42 2
Time (ms) 8 3 24 4
Table 8
Count of arithmetic operations for n, =n; =5
Step h = 1/16 FDM MLADA | GMLADA | DMLADA
Error in L?(Q7) space 0.0199765 | 0.051718 | 0.0146769 | 0.0146827
Additions, substractions 163 615 92937 158
Multiplications 152 663 93805 180
Divisions 66 5 420 4
Time (ms) 8 3 79 4
Table 9
Count of arithmetic operations for n, =n; =9
Step h = 1/16 FDM MLADA GMLADA DMLADA
Error in L?(Qr) space 0.00965197 | 0.00343672 | 0.000637523 | 0.000637523
Additions, substractions 613 3323 14007761 786
Multiplications 524 3499 14018265 864
Divisions 258 9 5256 8
Time (ms) 8 3 571 11
Table 10
Count of arithmetic operations for n, = n; = 17
Step h =1/16 FDM MLADA GMLADA DMLADA
Error in L?(Qr) space 4.19664 - 10 | 18151.3 | 1.85966 - 10~6 | 1.85966 - 10~
Additions, substractions 2313 21252 2767151635 5008
Multiplications 1940 21843 2767300273 5304
Divisions 1026 17 74256 16
Time (ms) 8 3 21389 20

6. CONCLUSIONS

We have applied the direct method of Lie-algebraic discrete approximations for solving
the Cauchy problem for heat equation in this paper. There were compared different
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numerical schemes (finite difference method, classical method of Lie-algebraic discrete
approximations, generalized method of Lie-algebraic discrete approximations and direct
method of Lie-algebraic discrete approximations) for solving the Cauchy problem for
advection equation. One can obtain numerical result with the same high precision and
with significantly less computational costs in compare to the generalized method of Lie-
algebraic discrete approximations because that method approximates the solution instead
of the differential operator of the equation.
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3ampornoHOBaHO i OOIPYHTOBAHO TpsiMuii MeTo Jli-aareOpuaHnX AUCKPETHUX ATPOK-
CHMAIiil IS YUCeTbHOTO pPO3B’SA3yBaHHA 3agadi Komri jjs piBHAHHS TemJIONPOBITHOCTI.
Inest upsimoro meroay Jli-asreOpudHUX APOKCUMAILM HOJISra€ B TOMY, [0 3 BUKOPUCTAH-
HSM AHAJITUYHHUX HiIXOAiB, 30KpeMa MeTOJy MaJIoro MapaMeTpa, abo PO3KIaxy y pPaxg
Teitnopa, n00ys0BaHO HAOJIMKEHMI aHAJITUIHNUNE PO3B’sI30K 3a/1a4l y BUIVIsI/ CTEIEHEBOIO
pany 3a 49acoBoro 3MiHHOMO. Ilicaa nmporo mobysoBaHOo lOro NMCKPETHHI BiANIOBITHUK 3
BUKOPHUCTAHHSIM KBa3izo0OpakeHb eseMeHTiB anrebpu JIi. JloBemeHo, 1o 0O0YHCIIOBAJIBLHA
cxema Ma€e pakTopiaJbHUM TOPs 0K 36i>KHOCTI.

Karouosi caosa: npamuit meron Jli-aarebpuuHux AUCKPETHHX AMPOKCHMAIil, DiBHSHHS

TEeIJIONPOBITHOCTI, CKIHYeHHOBUMipHEe KBa3i300parkeHHs, MOJIiHOM Jlarpanka, MeTo ] MaJio-
ro napamerpa, pakropiajbHa 301KHICTb.



