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A direct method of Lie-algebraic discrete approximation for numerical solving the

Cauchy problem for heat transfer equation is proposed in this paper. The key idea of

direct method of Lie-algebraic discrete approximations is using analytical approaches, in

particular the method of small parameter or Taylor series expansion, to construct analyti-

cal approximation of the solution for the problem in the form of power series with respect

to the time variable.

The conditions for convergence of analytical series are studied in particular. By means

of small parameter method the recurrence relation for evaluation of each member of a se-

quence is provided. This approach enables fast computation and signi�cant reduction of

computational cost in compare to Generalized method of Lie-algebraic discrete approxima-

tions which performs complete discretization by all variables.

Thereafter, the discrete match of recurrence relation is built using quasi-representations

of the Lie-algebra basis elements, which means, that each di�erential operator is replaced

by its analogue matrix which is quasi-representation of di�erential operator in �nite dimen-

sional space. It is proved that computational scheme has a factorial rate of convergence.

The proposed approach is applied to model case and obtained results are compared

with �nite di�erence method, classical method of Lie-algebraic discrete approximations and

Generalized method of Lie-algebraic discrete approximation. The convergence rates for all

of these methods are compared in di�erent functional spaces. In addition, we study the

count of arithmetical operations for equal set of nodes.

Key words: direct method of Lie-algebraic discrete approximations, heat equation, �nite

dimensional quasi representation, Lagrange polynomial, small parameter method, factorial

convergence.

1. Introduction

The heat equation is the partial di�erential equation that describes how the distribu-
tion of some quantity (such as heat) evolves over time in a solid medium, as it sponta-
neously �ows from places where it is higher towards places where it is lower. It has many
applications in the diverse scienti�c �elds: physics, engineering and earth sciences, prob-
ability theory, �nancial mathematics [18, 19, 27, 28]. Hence e�ective numerical solution
is an actual problem besides the existing of various approaches [1, 9, 19].

The Direct method of Lie-algebraic discrete approximations was �rstly proposed for
advection equation in [24] and has been approbated on conference [25]. Further this
method was extended on nonlinear equation, namely Burger's nonviscous equation and
was discussed on conference [5]. This method is one of the whole family of methods
which use Lie-algebraic discrete approximations [1�4, 7, 8, 10�18, 21�23, 26, 28].

The main prerequisite of these method is that di�erential operator should be the
element of universe enveloping Heisenberg-Weyl's algebra with basis elements from the
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Lie algebra {1, x, d/dx}, i.e. di�erential operator for the problem must be superposition
and/or linear combination of these base elements of Lie algebra. As a next step we
introduce the �nite dimensional discrete quasi representations of {1, x, d/dx} as matrices
{I,X,Z}.

Further, if we reduce partial di�erential equation to system of ordinary di�erential
equations we get the (classic) Method of Lie-algebraic discrete approximations [1, 7,
8, 10, 12�17, 26, 28]; if reduce partial di�erential equation to the system of algebraic
equation (either linear or nonlinear) we get the (classic) Method of Lie-algebraic discrete
approximations [3, 4, 21�23].

Let us explain the idea of Direct method of Lie-algebraic discrete approximation on
the model problem investigated in [24]. Considering a bounded domain Ω := (a, b) ⊂ R,
time limit T < +∞, cylinder QT = Ω×(0, T ] we take the Banach space V = W∞,∞ (QT

)
and formulate the Cauchy problem

given advection coe�cient c ∈ R,
distribution at initial moment of time φ = φ(x);
�nd function u = u(x, t) ∈ V such, that:
∂u

∂t
+ c

∂u

∂x
= 0, ∀(x, t) ∈ QT ,

u|t=0 = φ,φ ∈ W∞,∞ ((−|c|T, |c|T ) ∪Q
)
,

(1)

where space V = W∞,∞ (QT

)
denotes the functional space in which all functions and

its derivatives up to arbitrary order are bounded in the domain QT , i.e.:

W∞,∞ (QT

)
= {u : QT → R : Dαu ∈ L∞(QT ),∀α ∈ N} .

The idea of a direct method of Lie-algebraic discrete approximations consists in the
use of analytical approaches, in particular the method of a small parameter, to construct
an approximate analytic solution of a problem (1) in the form of a power series:

un(x, t) =

n∑
k=0

(
ũk

tk

k!

)
= φ− cφ′t+ c2φ′′ t

2

2!
+ ...+ (−1)ncnφ(n) t

n

n!
. (2)

After this, the corresponding discrete series was constructed for (2) using the �nite di-
mensional quasi-representations of elements of the Lie algebra:

un,h(t) =

n∑
k=0

(
ũk,h

tk

k!

)
= φh − cZφht+ c2Z2φh

t2

2!
+ ...+ (−1)ncnZnφh

tn

n!
, (3)

where the matrix Z approximates the di�erential operator d/dx. Moreover, the series
(3) is �nite, since the matrix Z is nilpotent [15].

It was proved in [24] that the computational scheme is convergent with error rate:

∥u− uh∥Vh
≤ |c|n+1Tn+1 + (2max {|c|T, diamΩ})n+1

(n+ 1)!
∥φ(n+1)∥∞.

Computational experiments showed that with the same accuracy and convergence
indicators that are characteristic for the generalized method of Lie-algebraic discrete ap-
proximations, we succeeded in signi�cantly reducing the number of arithmetic operations
using approach from [24].
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This paper is constructed in the following way: we formulate the model problem to
which we apply the proposed numerical scheme in second chapter, analytical foundations
for the proposed numerical approach are discussed in the third chapter and its Lie-
algebraic discretization of the recurrence relation is investigated in the fourth chapter.
Numerical results with arithmetic operations count for the model problem are provided
in the �fth chapter.

2. Problem formulation

Considering a bounded domain Ω = (a, b) ⊂ R, time limit T < +∞, cylinder QT =
Ω×(0, T ] we take the Banach space V = W∞,∞ (QT

)
and formulate the Cauchy problem

given heat conduction coe�cient a ∈ R, a > 0,
temperature at initial moment of time φ = φ(x);
�nd function u = u(x, t) ∈ V such, that
∂u

∂t
= a

∂2u

∂x2
, (x, t) ∈ QT ,

u|t=0 = φ(x), φ(x) ∈ C∞
x (Ω) .

(4)

The solution of problem (4) we seek using iterative approach method via Lie-alge-
braic discrete approximations, i.e. by means of Direct method of Lie-algebraic discrete
approximations.

3. Iterative approach and its convergence

3.1. Taylor series expansion

The main idea of the direct method of Lie-algebraic discrete approximation is to
approximate the solution directly. First of all we make the analytical setup for the
proposed approach.

Lemma 1. (An integro-di�erential representation of the solution). The function
u = u(x, t) in the integro-di�erential expression

u(x, t) = ϕ(x) + a

t∫
0

(
∂2u(x, τ)

∂x2

)
d τ, (5)

is the solution of Cauchy problem (4).
Proof. Integration of the equation in (4) on the interval (0, t)

t∫
0

∂u(x, τ)

∂τ
d τ = a

t∫
0

∂2u(x, τ)

∂x2
d τ

yields

u(x, t)− u(x, 0) = a

t∫
0

∂2u(x, τ)

∂x2
d τ.

By taking into account the initial condition from (4), i.e. u|t=0 = ϕ(x) there is obtained
integro-di�erential representation of the solution (5).
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It can be shown that such de�ned function is the solution of the problem (4): if
integro-di�erential expression (5) is di�erentiated with respect to time variable, there is
retrieved the equation we deal with, namely

∂u

∂t
= a

∂2u

∂x2
.

Next, we evaluate the expression (5) at the initial moment of time u|t=0 and get the
initial condition:

u(x, 0) = ϕ(x) + a

0∫
0

(
∂2u(x, τ)

∂x2

)
d τ = ϕ(x).

Thus all requirements hold and the lemma has been proven. �
For further purposes let us denote the derivative of the function as φ(k) = dkφ/dxk.
Lemma 2. (The identity of series expansions). The solution expansion

uI =

+∞∑
k=0

ũk
tk

k!
, (6)

where ũk = akφ(2k), can be derived by means of iterative approach and provided here
expansion is a Taylor series expansion with respect to time variable.

Proof. At �rst we show that the series (6) can be derived by means of iterative ap-
proach. To accomplish this we recall the integro-di�erential representation of the solution
(5) and set up an iterative process in the following form: uk+1(x, t) = ϕ(x) + a

t∫
0

(
∂2uk(x, τ)

∂x2

)
dτ,

u0(x, t) = φ(x).

(7)

According to [11] the starting element in recurrence sequence u0(x, t) = φ(x) can be
obtained by setting u−1(x, t) = 0 in recurrence relation (7). Let us evaluate uk(x, t) for
k = 1, 2, 3:

u1 = φ(x) + a

t∫
0

(
d2φ(x)

d x2

)
d τ = φ(x) + aφ′′(x) t,

u2 = φ(x) + a

t∫
0

∂2

∂x2
(φ(x) + aφ′′(x) t) d τ = φ(x) + aφ′′(x) t+ a2φ(4) t

2

2
,

u3 = φ(x) + a

t∫
0

∂2

∂x2

(
φ(x) + aφ′′(x) t+ a2φ(4) t

2

2

)
d τ =

= φ(x) + aφ′′(x) t+ a2φ(4) t
2

2
+ a3φ(6) t

3

3!
.

Let us show that un(x, t) =

n∑
k=0

(
akφ(2k) t

k

k!

)
. We assume that this statement holds for

un(x, t) and we check whether it holds for un+1(x, t), i.e. un+1(x, t) =

n+1∑
k=0

(
akφ(2k) t

k

k!

)
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Hence we consider the term un+1(x, t):

un+1(x, t) = φ(x) + a

t∫
0

∂2

∂x2

(
n∑

k=0

(
akφ(2k) τ

k

k!

))
dτ =

= φ(x) +

t∫
0

(
n∑

k=0

(
ak+1φ(2k+2) τ

k

k!

))
dτ = φ(x) +

n∑
k=0

ak+1φ(2k+2)

t∫
0

τk

k!
dτ

 =

= φ+

n∑
k=0

ak+1φ(2k+2) tk+1

(k + 1)!
= φ+

n+1∑
k=1

akφ(2k) tk

(k)!
=

n+1∑
k=0

akφ(2k) tk

(k)!
.

At the current moment we have shown that expansion (6) can be derived by means of
the iterative approach (7). As a second step we derive the Taylor series for the problem
(4) with respect to time variable and verify that obtained expression is identical to the
expression stated in (6). Let us consider Taylor expansion at the initial moment of time:

un(x, t) = u(x, 0)+

(
∂u

∂t

∣∣∣∣
t=0

)
t+

(
∂2u

∂t2

∣∣∣∣
t=0

)
t2

2!
+

(
∂3u

∂t3

∣∣∣∣
t=0

)
t3

3!
+ ...+

(
∂nu

∂tn

∣∣∣∣
t=0

)
tn

n!

with the remainder Rn =
(

∂n+1u
∂tn+1

∣∣∣
t=τ

)
tn+1

(n+1)! having the following property

u(x, t)− un(x, t) = Rn(x, t).

Although we have not explicit formulas for the

(
∂ku

∂tk

∣∣∣∣
t=0

)
, k ≥ 1, nevertheless we

can evaluate them with respect to initial condition and along the equation from (4). For

instance, one can evaluate

(
∂u

∂t

∣∣∣∣
t=0

)
and

(
∂2u

∂t2

∣∣∣∣
t=0

)
:

(
∂u

∂t

∣∣∣∣
t=0

)
= a

(
∂2u

∂x2

∣∣∣∣
t=0

)
= a

∂2

∂x2
(u|t=0) = aφ′′(x),(

∂2u

∂t2

∣∣∣∣
t=0

)
= a

∂2

∂x2

(
∂u

∂t

∣∣∣∣
t=0

)
= a2

∂4

∂x4
(u|t=0) = a4φ(4)(x).

To show that (
∂ku

∂tk

∣∣∣∣
t=0

)
= akφ(2k)(x), k ≥ 1,

we assume that expression of the above holds, and retrieve the following(
∂k+1u

∂tk+1

∣∣∣∣
t=0

)
= a

∂2

∂x2

(
∂ku

∂tk

∣∣∣∣
t=0

)
= a

d2

dx2

(
akφ(2k)

)
= ak+1φ(2k+2)(x).

We see that expression holds and we have derived the expansion (6) using the symbolic
computation tools.

As a third step we show the connection between these approaches. Let us consider
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un(x, t) =

n∑
k=0

(
akφ(2k) t

k

k!

)
. The calculation of the

∂mun

∂tm

∣∣∣∣
t=0

yields:

∂un

∂t

∣∣∣∣
t=0

=

(
aφ′′(x) +

n∑
k=2

(
akφ(2k)(x)

tk−1

(k − 1)!

))∣∣∣∣∣
t=0

= aφ′′(x),

∂2un

∂t2

∣∣∣∣
t=0

=

(
a2φ(4)(x) +

n∑
k=3

(
akφ(2k)(x)

tk−2

(k − 2)!

))∣∣∣∣∣
t=0

= a2φ(4)(x),

∂mun

∂tm

∣∣∣∣
t=0

=

(
amφ(2m)(x) +

n∑
k=m+1

(
akφ(2k)(x)

tk−m

(k −m)!

))∣∣∣∣∣
t=0

= amφ(2m)(x).

Thus we have proven the expansion (6). �
Lemma 3. (Convergence of the iterative approach). The sequence {uk(x, t)} de�ned

in (6) converges uniformly to the exact solution, i.e.:

lim
n→∞

un(x, t) = u(x, t),

where u(x, t) is the solution of the problem (4).
Proof. First of all let us show that series de�ned in (6) is formal solution of (4).

Algebraic calculation yields the following:

∂uI

∂t
=

∞∑
k=0

ak+1φ(2k+2) t
k

k!
,

∂2uI

∂x2
=

∞∑
k=0

akφ(2k+2) t
k

k!
,

and �nally we get

∂uI

∂t
− a

∂2uI

∂x2
=

∞∑
k=0

ak+1φ(2k+2) t
k

k!
− a

( ∞∑
k=0

akφ(2k+2) t
k

k!

)
≡ 0,

which proves that in�nite series is formal solution of the problem (4).

As a next step we consider the �nite series un(x, t) =

n∑
k=0

(
akφ(2k) t

k

k!

)
. Conducted

algebraic calculations

∂un

∂t
=

n−1∑
k=0

ak+1φ(2k+2) t
k

k!
,

∂2un

∂x2
=

n∑
k=0

akφ(2k+2) t
k

k!
,

we substitute in the equation from (4):∣∣∣∣∂un

∂t
− a

∂2un

∂x2

∣∣∣∣ =
∣∣∣∣∣
n−1∑
k=0

ak+1φ(2k+2) t
k

k!
−

n−1∑
k=0

ak+1φ(2k+2) t
k

k!
− an+1φ(2n+2) tn+1

(n+ 1)!

∣∣∣∣∣ =
= |a|n+1

∣∣∣φ(2n+2)
∣∣∣ tn+1

(n+ 1)!
≤ |a|n+1M

Tn+1

(n+ 1)!
,

since φ ∈ W∞,∞(Ω), i.e ∃M > 0,∀n ∈ N : ∥φ(n)∥∞ < M . Finally we get

lim
n→∞

∣∣∣∣∂un

∂t
− a

∂2un

∂x2

∣∣∣∣ ≤ M lim
n→∞

(
(|a|T )n+1

(n+ 1)!

)
= 0.
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Let us prove the uniform convergence of a series (6). According do Weierstrass'
majorant theorem we have to show that sequence of positive constants is convergent,
thus we consider majorant series

|uI | ≤
∞∑
k=0

|a|k∥φ(2k)∥∞
T k

k!
≤ M

∞∑
k=0

|a|k T
k

k!
= M

∞∑
k=0

bk,

where bk = |a|k T
k

k!
. Since ratio test

lim
n→∞

bk+1

bk
= lim

n→∞

|a|k+1T k+1

(k + 1)!

k!

|a|kT k
= |a|T lim

n→∞

1

k + 1
= 0,

yields that majorant series is convergent, therefore series (6) converges uniformly on QT .
Since series (6) is Taylor's series of the solution (4) the following error estimation

holds:

∥u− un∥ ≤
∥∥∥∥∂n+1u

∂tn+1

∥∥∥∥
∞

Tn+1

(n+ 1)!
.

Thus, lemma has been proven. �

3.2. Small parameter method

Expansion provided in (6) from the previous section can derived using various ap-
proach. Nevertheless some of them appear to be more or less e�ective from the di�erent
perspectives. It is obvious that iterative approach is computationally expensive, since
at each step one should integrate an increasing expression. On the other hand. Taylor
expansion requires symbolic computations and, thus, it cannot be used for the �nite di-
mensional calculations we are targeting to. Next section is intended to provide approach
which can be used for the �nite dimensional calculations and simultaneously be e�ective
even for symbolic computations.

Lemma 4. (Recurrence relation for the expansion terms). Terms {ũk(x)}nk=0 in
expression (6) can be computed by means of the following recurrence relation: ũk+1 = a

d2

dx2
(ũk) ,

ũ0 = φ .
(8)

Proof. To prove this proposition we will use a Small Parameter Method. We seek
solution as a formal expansion by small parameter:

uε(x, t) =

∞∑
k=0

ûk(x, t)ε
k

for the parameterized problem:

given heat conduction coe�cient a ∈ R, a > 0,
temperature at initial moment of time φ = φ(x);
�nd function uε = uε(x, t) ∈ V such, that
∂uε

∂t
= ε

(
a
∂2uε

∂x2

)
, (x, t) ∈ QT ,

uε|t=0 = φ(x), φ(x) ∈ C∞
x (Ω) .
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After substitution of formal series into parameterized problem, performing auxiliary al-
gebraic calculations and taking into account initial condition as a conclusion we obtain:

∂û0

∂t
+

∞∑
k=1

(
∂ûk

∂t
− a

∂2ûk−1

∂x2

)
ε = 0.

and the set of Cauchy condition for each term in the formal expansion by small parameter{
û0|t=0 = φ(x),
ûk|t=0 = 0, k ≥ 1.

As a next step we introduce the set Cauchy problems:
�nd function ûk = ûk(x, t) ∈ V such, that
∂ûk

∂t
=

(
a
∂2ûk−1

∂x2

)
, (x, t) ∈ QT , k ≥ 1

ûk|t=0 = 0,

(9)

and 
�nd function û0 = û0(x, t) ∈ V such, that
∂û0

∂t
= 0, (x, t) ∈ QT ,

û0|t=0 = φ(x), φ(x) ∈ C∞
x (Ω) .

(10)

The solution of the �rst problem (10) is û0 = φ(x). In fact, equation
∂û0

∂t
= 0 shows

that there are no changes during the evolution and û0|t=0 = φ(x) will not change during

the all process, thus û0 = φ(x). On the other hand, the equation
∂û0

∂t
= 0 leads that

solution of this equation might be an arbitrary function that doesn't depend on time
variable and since that û0 at initial moment of time has a constraint as û0|t=0 = φ(x)
then the solution is û0 = φ(x).

Similar approach we use for the next problems. Evaluation of û1 yields the following
expressions:

∂û1

∂t
=

(
a
∂2û0

∂x2

)
⇒ ∂û1

∂t
= aφ′′(x) ⇒ û1 = a

∫
φ′′(x)dt = aφ′′(x)t+ C1t,

where C1(t) is an arbitrary function. Taking into account the initial condition û1|t=0 = 0
we obtain C1 ≡ 0 and û1 = aφ′′(x)t = ũ1(x)t.

Let us assume that ûk = akφ(2k)(x)
tk

k!
= ũk(x)

tk

k!
thus, we should prove that this

expression holds for k + 1. We consider the equation from (9) taking into account our
assumption:

∂ûk+1

∂t
= ak+1φ(2k+2)(x)

tk

k!
= ũk(x)

tk

k!
.

Performing similar calculations as of above we prove our assumption, namely we obtain

ûk+1 = ak+1φ(2k+2(x)
tk+1

(k + 1)!
= ũk+1(x)

tk+1

(k + 1)!
.
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Since ũk(x) = akφ2k(x) and ũk+1(x) = ak+1φ2k+2(x) it implies that

ũk+1(x) = a
d2

dx2
(ũk(x))

and it proves lemma. �
Approach based on Small Parameter Method allows fast symbolic computation in

order to obtain the analytical solution and it is a good basis to make of use the Lie-
algebraic discrete approximations. Next chapter is devoted to constructing the numerical
scheme on top of recurrence relation via �nite dimensional quasi representations. This
is an essence of Direct method of Lie-algebraic discrete approximations.

4. Numerical scheme

The main idea of numerical scheme construction for the direct method of Lie-algebraic
discrete approximation is to replace the elements from Lie-algebra G = {1, x, ∂/∂x} in
recurrence relation (8) by theirs �nite dimensional quasi representations G = {I,X,Z}
respectively. Lagrange polynomials have been chosen as a tool for �nite dimensional
quasi representations construction.

We examine numerical scheme construction, recall approximation properties and
prove convergence of proposed numerical scheme in this section.

4.1. Lie-algebraic discretization

Let nx denotes the count of nodes in domain Ω and nt denotes count of nodes in
interval [0, T ] and QT,h denotes the mesh of nodes built upon nodes {xi}nx

i=0 and {ti}nt

i=0.
Lagrange polynomials lj(x) built at the nodes {xi}nx

i=0 form the basis in �nite dimensional
space Vh.

Let us denote the matrix Z as �nite dimensional quasi representation of the di�erential
operator d/dx. The matrix Z is built upon the rule Zij = l′j(xi) [16]. The key property

of this matrix is such, that matrix Zk = (Z)
k
approximates di�erential operator dk/dxk

and matrix Z is nilpotent [15], i.e. there is some number n that all further multiplications
give nil matrix: ∀k ≥ n : Zk = 0.

Having built all required quasi-representations we provide the following lemma as
a key �nding of this paper, namely the discrete recurrence relation as a Lie-algebraic
discrete approximation of the recurrence relation.

Lemma 5. (Finite dimensional recurrence relation for the expansion terms). Terms
{ũk,h}nk=0 in expression

un,h =

n∑
k=0

ũk,h
tk

k!
, (11)

can be computed by means of the following recurrence relation:{
ũk+1,h = aZ2 (ũk,h) ,
ũ0,h = φh .

(12)

which is the Lie-algebraic discretization of the recurrence relation (8).

Proof. Since ũk+1,h from discrete expansion (11) is the �nite dimensional quasi rep-
resentation of in�nite series expansion (6), matrix Z2 is the �nite dimensional quasi
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representation of di�erential operator d2/dx2, then expression

ũk+1(x) = a
d2

dx2
(ũk(x))

from (8) may be rewritten as a �nite dimensional quasi representation

ũk+1,h = aZ2 (ũk,h) .

Since the matrix Z is nilpotent, the length of a sequence of ũk,h in (11) is ⌊n+1
2 ⌋. To

prove that property one can rewrite the recurrence relation into the following form

ũk,h = akZ2k (φh) .

When the index k reaches the number
nx + 1

2
due to nilpotent property Znx+1 = 0 we

have ũk,h = 0 for all further k ≥ nx+1
2 . �

4.2. Approximation properties

Since the numerical scheme uses Lagrange interpolation and Lagrange polynomials,
we need to discuss some issues regarding the approximation properties of Lagrange poly-
nomials in the context of constructed numerical scheme.

The tooling of Lagrange interpolation has not been changed since previously discussed
model in [24], so we will recall main approximation lemmas proved in [24] in current
section.

Lemma 6. (Derivative error bounds for Lagrange interpolation). Let v(x) ∈
W∞,∞(Ω) and vI denotes the Lagrange interpolation of function v(x) built at nodes
{xi}ni=0. Then the following estimation of the error bounds for Lagrange interpolation
holds: ∥∥∥v(k) − v

(k)
I

∥∥∥
∞

≤ (diamΩ)
n−k+1

(n− k + 1)!
∥v(n+1)∥∞.

Proof. Proved in [24], please see the lemma "Derivative error bounds for Lagrange

interpolation". �
Let us consider the cylinder norm for the function v = v(x) : R → R: as a following

functional: ∥v∥2Vh
=

1

n+ 1

n∑
i=0

v2(xi), being a norm in the �nite dimensional space Vh.

One can verify that the following inequality ∥v∥Vh
≤ ∥v∥∞ holds [24].

Lemma 7. (Derivative error bounds for quasi representation). Let v(x) ∈ W∞,∞(Ω)
and vI denotes the Lagrange interpolation of function v(x) built at nodes {xi}ni=0, matrix
Zk as �nite dimensional quasi representation of the di�erential operator dk/dxk, then
the following estimation of the error bounds for �nite dimensional quasi representations
holds:

∥v(k) − Zkv∥Vh
≤ ∥v(k) − v

(k)
I ∥∞.

Proof. Proved in [24], please see the lemma "Derivative error bounds for quasi repre-

sentation". �
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4.3. Convergence and error estimation

The key �nding of this paper is the proposition of method which has almost the same
properties regarding the convergence but has more comprehensive way in the constructing
and implementation of the numerical scheme. The discussion concerning the convergence
of numerical scheme we start from proof of some auxiliary lemmas which �nally allow us
to formulate the key �nding of current article.

Lemma 8. The series
n/2∑
k=0

1

(n− 2k)!k!
(13)

can be estimated as the following expression:

n/2∑
k=0

1

(n− 2k)!k!
≤ 2n−1(

n
2 − 1

)
!

(14)

and

lim
n→∞

n/2∑
k=0

1

(n− 2k)!k!
= 0.

Proof. We can recall that series

n/2∑
k=0

1

(n− 2k)!(2k)!

has the property, so that:
n/2∑
k=0

1

(n− 2k)!(2k)!
=

2n−1

n!

Let us consider a series
n/2∑
k=0

(2k)!

k!

which has the following rough estimation:

n/2∑
k=0

(2k)!

k!
≤ n

2

n!(
n
2

)
!
=

n!(
n
2 − 1

)
!
.

At the current moment we can proceed to the estimation of (13):

n/2∑
k=0

1

(n− 2k)!k!
=

n/2∑
k=0

1

(n− 2k)!(2k)!
· (2k)!

k!
≤

≤

n/2∑
k=0

1

(n− 2k)!(2k)!

n/2∑
k=0

(2k)!

k!

 ≤ 2n−1

n!

n!(
n
2 − 1

)
!
=

2n−1(
n
2 − 1

)
!
,

which proves the estimation (14).
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One can verify that

lim
n→∞

2n−1(
n
2 − 1

)
!
= 0.

In fact, by making a substitution m = n/2− 1 which yields: n− 1 = 2m+ 1 we obtain

lim
n→∞

2n−1(
n
2 − 1

)
!
= lim

m→∞

22m+1

m!
= 2 lim

m→∞

22m

m!
= 2 lim

m→∞

4m

m!
= 0.

Set us consider

lim
n→∞

n/2∑
k=0

1

(n− 2k)!k!

 ≤ lim
n→∞

(
2n−1(
n
2 − 1

)
!

)
= 0,

since

n/2∑
k=0

1

(n− 2k)!k!
> 0 the lemma is proven. �

Theorem 9. (Convergence of the direct Lie-algebraic numerical scheme). Let u =

u(x, t) be the solution of the problem (4), un =

n/2∑
k=0

(
akφ(2k) t

k

k!

)
be the Taylor expansion

of the solution and uh =

n∑
j=0

n/2∑
k=0

(
akZ2kφh

tk

k!

) lj(x)

 be the �nite dimensional

solution. Then built numerical scheme (12) is convergent having the factorial rate of
convergence:

∥u− uh∥Vh
≤ Tn/2+1(

n
2 + 1

)
!

∥∥∥∥∂n+1u

∂tn+1

∥∥∥∥
∞

+
(2max {a, diamΩ, T})n+1

4 (n/2− 1)!

∥∥∥φ(n+1)
∥∥∥
∞

. (15)

Proof. Triangle inequality shows the natural way to split the norm ∥u− uh∥Vh
in the

following way:
∥u− uh∥Vh

≤ ∥u− un/2∥Vh
+ ∥un/2 − uh∥Vh

where the �rst norm ∥u − un/2∥Vh
represents the accuracy of approximation of the so-

lution by means Taylor expansion and second form represents the error of Taylor series
approximation by means of Lie-algebraic �nite dimensional quasi representations. Using
the property of error estimation of Taylor series we obtain the estimation for the �rst
norm:

∥u− un/2∥Vh
≤ ∥u− un/2∥∞ ≤ Tn/2+1(

n
2 + 1

)
!

∥∥∥∥∂n+1u

∂tn+1

∥∥∥∥
∞

.

Decomposition of the ∥un/2 − uh∥Vh
implies yields the following calculations:

∥un/2 − uh∥Vh
=

∥∥∥∥∥∥
n/2∑
k=0

akφ(2k) t
k

k!
−

n/2∑
k=0

akZ2kφh
tk

k!

∥∥∥∥∥∥
Vh

=

=

∥∥∥∥∥∥
n/2∑
k=0

ak
(
φ(2k) − Z2kφh

) tk

k!

∥∥∥∥∥∥
Vh

≤
n/2∑
k=0

ak
∥∥∥φ(2k) − Z2kφh

∥∥∥
Vh

tk

k!
≤

≤
n/2∑
k=0

ak
∥∥∥φ(2k) − φ

(2k)
I

∥∥∥
∞

tk

k!
≤

n/2∑
k=0

ak

(
(diamΩ)

n+1−2k

(n+ 1− 2k)!

)
T k

k!

∥∥∥φ(n+1)
∥∥∥
∞

.
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Let us denote M = max {a, diamΩ, T} then we derive the estimation for ∥un/2 − uh∥Vh
:

∥un/2 − uh∥Vh
≤

n/2∑
k=0

Mk

(
Mn+1−2k

(n+ 1− 2k)!

)
Mk

k!

∥∥∥φ(n+1)
∥∥∥
∞

=

=
∥∥∥φ(n+1)

∥∥∥
∞

·
n/2∑
k=0

Mn+1

(n+ 1− 2k)!
≤ Mn+12n−1(

n
2 − 1

)
!

∥∥∥φ(n+1)
∥∥∥
∞

=
(2M)n+1

4
(
n
2 − 1

)
!

∥∥∥φ(n+1)
∥∥∥
∞

.

As a conclusion of the above �ndings we can verify that lim
n→∞

∥un/2 − uh∥Vh
= 0, in fact:

lim
n→∞

∥un/2 − uh∥Vh
≤
∥∥∥φ(n+1)

∥∥∥
∞

lim
n→∞

(
(2M)n+1

4
(
n
2 − 1

)
!

)
= 0.

Finally we have the estimation (15) which implies the convergence of the proposed in
(11) numerical scheme, namely lim

n→∞
∥u− uh∥Vh

= 0, since

lim
n→∞

∥u− uh∥Vh
≤
(
lim
n→∞

∥u− un/2∥Vh
+ lim

n→∞
∥un/2 − uh∥Vh

)
= 0.

�

5. Numerical example

Let us proceed to the analysis of numerical results. For that purpose, we consider
a cylindric domain QT := (0, 1) × (0, 1), i.e x ∈ (0, 1), t ∈ (0, 1). and a model problem
from [14]: 

�nd function u = u(x, t) such, that:
∂u

∂t
=

∂2u

∂x2
, (x, t) ∈ QT ,

u|t=0 = sinx,

(16)

having the exact solution u(x, t) = e−t sin(x).
The norm of the error of approximating the exact solution u− uh = u(x, t)− uh(x, t)

in the functional space L2(QT ) is calculated by the formula

∥u− uh∥2L2(QT ) =

∫
QT

(u− uh)
2
dxdt,

in the functional space L∞(QT,h) is calculated at the discretization nodes:

∥u− uh∥L∞(QT,h) = sup
(x,t)∈QT,h

|u(x, t)− uh(x, t)|,

and the norm in the Sobolev's space W 1,2(QT ) [6] is calculated according to

∥u− uh∥2W 1,2(QT ) =

∫
QT

[
(u− uh)

2
+

(
∂u

∂x
− ∂uh

∂x

)2

+

(
∂u

∂t
− ∂uh

∂t

)2
]
dxdt.
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The exact solution is known for the problem (16), thus we use the following rule for

evaluating the rate of convergence: ph = log2

(
∥u− uh∥
∥u− uh/2∥

)
. If we get value ∥u−uh∥ = 0

and ∥u− uh/2∥ = 0, thus the value 0/0 is shown as NaN (not a number).
The model problem is investigated by explicit scheme of �nite di�erences method

(FDM), the method of Lie-algebraic discrete approximations (MLADA), Generalized
method of Lie-algebraic discrete approximations (GMLADA) and Direct method of Lie-
algebraic discrete approximations (DMLADA). The solution of Cauchy problem with the
system of di�erential equations was performed using Mathematica. Let us denote the
step of discretization by space variable by ∆x = 1

(nx−1) , and ∆t = 1
(nt−1) as the step

of discretization by time variable. If discretization steps by both variables are equal
then we use h = ∆x = ∆t for FDM and GMLADA. Nevertheless h denotes the step of
discretization by space variable for MLADA, because time step is chosen automatically
while solving the Cauchy problem with the system of di�erential equation by means of
Wolfram Mathematica software.

Table 1

Error estimations in L2(QT ) space

Step h FDM MLADA GMLADA DMLADA
h = 1/2 0.0419804 0.129574 0.0479767 0.0507986
h = 1/4 0.0199765 0.051718 0.0146769 0.0146827
h = 1/8 0.00965197 0.00343672 0.000637523 0.000637523
h = 1/16 2.05974 · 1010 3019.86 1.83044 · 10−7 1.83044 · 10−7

Table 2

Error estimations in L∞(QT,h) space

Step h FDM MLADA GMLADA DMLADA
h = 1/2 0.0904097 0.46952 0.23476 0.23476
h = 1/4 0.0414633 0.249107 0.085016 0.085016
h = 1/8 0.0200078 0.0226241 0.0046676 0.0046676
h = 1/16 4.19664 · 1011 18151.3 1.7980 · 10−6 1.7980 · 10−6

Table 3

Error estimations in W 1,2(QT ) space

Step h FDM MLADA GMLADA DMLADA
h = 1/2 0.119842 0.452594 0.202487 0.203796
h = 1/4 0.0594391 0.2167 0.0727922 0.0727891
h = 1/8 0.0294888 0.0197359 0.00419756 0.00419756
h = 1/16 1.24976 · 1012 24988.7 1.85966 · 10−6 1.85966 · 10−6
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Table 4

Rates of convergence in L2(QT ) space

Step h FDM MLADA GMLADA DMLADA
h = 1/2 1.07141 1.32504 1.70879 1.79067
h = 1/4 1.04941 3.91156 4.52493 4.5255
h = 1/8 −40.9567 −19.745 11.7661 11.7661

Table 5

Rates of convergence in L∞(QT ) space

Step h FDM MLADA GMLADA DMLADA
h = 1/2 1.12464 0.91442 1.46539 1.46539
h = 1/4 1.05128 3.46084 4.18698 4.18698
h = 1/8 −44.2537 −19.6138 11.3421 11.3421

Table 6

Rates of convergence in W 1,2(QT ) space

Step h FDM MLADA GMLADA DMLADA
h = 1/2 1.01165 1.06252 1.47598 1.48533
h = 1/4 1.01124 3.45681 4.11616 4.11616
h = 1/8 −45.2685 −20.272 11.1403 11.1403

From the above tables we can see the increase of errors in MLADA. This is caused by
the sti� system of ordinary di�erential equations to which the partial di�erential equation
was reduced to. Such systems need either increasing the count of nodes or usage of some
special numerical techniques.

Also we can observe that proposed numerical method has the same accuracy as Gen-
eralized method of Lie-algebraic discrete approximations. The norm of the error of
approximating the exact solution was evaluated as

∥u− uh∥BL = max
i=1,nt

√√√√ nx∑
j=1

(u(xj , ti)− uh(xj , ti))
2
. (17)

in the [14]. For the case nx = 10, nt = 10 by means of MLADA there was obtained the
following error in [14]: ∥u−uh∥BL = 7, 75 ·10−3. With the same count of nodes and with
respect to the same norm (17) using GMLADA and DMLADA we achieved the error
∥u − uh∥BL = 2, 69 · 10−3 which is almost three times (2, 88104) more precise than the
result obtained by means of classic approach.

These tables highlight the main bene�t of using the proposed numerical scheme is
reduced count of arithmetic operations maintaining the same computational properties
as a generalized method of Lie-algebraic discrete approximations.
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Table 7

Count of arithmetic operations for nx = nt = 3

Step h = 1/16 FDM MLADA GMLADA DMLADA
Error in L2(ΩT ) space 0.0419804 0.129574 0.0479767 0.0507986
Additions, substractions 46 145 1093 44
Multiplications 50 157 1179 54
Divisions 18 3 42 2
Time (ms) 8 3 24 4

Table 8

Count of arithmetic operations for nx = nt = 5

Step h = 1/16 FDM MLADA GMLADA DMLADA
Error in L2(ΩT ) space 0.0199765 0.051718 0.0146769 0.0146827
Additions, substractions 163 615 92937 158
Multiplications 152 663 93805 180
Divisions 66 5 420 4
Time (ms) 8 3 79 4

Table 9

Count of arithmetic operations for nx = nt = 9

Step h = 1/16 FDM MLADA GMLADA DMLADA
Error in L2(ΩT ) space 0.00965197 0.00343672 0.000637523 0.000637523
Additions, substractions 613 3323 14007761 786
Multiplications 524 3499 14018265 864
Divisions 258 9 5256 8
Time (ms) 8 3 571 11

Table 10

Count of arithmetic operations for nx = nt = 17

Step h = 1/16 FDM MLADA GMLADA DMLADA
Error in L2(ΩT ) space 4.19664 · 1011 18151.3 1.85966 · 10−6 1.85966 · 10−6

Additions, substractions 2313 21252 2767151635 5008
Multiplications 1940 21843 2767300273 5304
Divisions 1026 17 74256 16
Time (ms) 8 3 21389 20

6. Conclusions

We have applied the direct method of Lie-algebraic discrete approximations for solving
the Cauchy problem for heat equation in this paper. There were compared di�erent
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numerical schemes (�nite di�erence method, classical method of Lie-algebraic discrete
approximations, generalized method of Lie-algebraic discrete approximations and direct
method of Lie-algebraic discrete approximations) for solving the Cauchy problem for
advection equation. One can obtain numerical result with the same high precision and
with signi�cantly less computational costs in compare to the generalized method of Lie-
algebraic discrete approximations because that method approximates the solution instead
of the di�erential operator of the equation.
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Çàïðîïîíîâàíî é îá ðóíòîâàíî ïðÿìèé ìåòîä Ëi-àëãåáðè÷íèõ äèñêðåòíèõ àïðîê-

ñèìàöié äëÿ ÷èñåëüíîãî ðîçâ'ÿçóâàííÿ çàäà÷i Êîøi äëÿ ðiâíÿííÿ òåïëîïðîâiäíîñòi.

Iäåÿ ïðÿìîãî ìåòîäó Ëi-àëãåáðè÷íèõ àïðîêñèìàöié ïîëÿãà¹ â òîìó, ùî ç âèêîðèñòàí-

íÿì àíàëiòè÷íèõ ïiäõîäiâ, çîêðåìà ìåòîäó ìàëîãî ïàðàìåòðà, àáî ðîçêëàäó ó ðÿä

Òåéëîðà, ïîáóäîâàíî íàáëèæåíèé àíàëiòè÷íèé ðîçâ'ÿçîê çàäà÷i ó âèãëÿäi ñòåïåíåâîãî

ðÿäó çà ÷àñîâîþ çìiííîþ. Ïiñëÿ öüîãî ïîáóäîâàíî éîãî äèñêðåòíèé âiäïîâiäíèê ç

âèêîðèñòàííÿì êâàçiçîáðàæåíü åëåìåíòiâ àëãåáðè Ëi. Äîâåäåíî, ùî îá÷èñëþâàëüíà

ñõåìà ìà¹ ôàêòîðiàëüíèé ïîðÿäîê çáiæíîñòi.

Êëþ÷îâi ñëîâà: ïðÿìèé ìåòîä Ëi-àëãåáðè÷íèõ äèñêðåòíèõ àïðîêñèìàöié, ðiâíÿííÿ

òåïëîïðîâiäíîñòi, ñêií÷åííîâèìiðíå êâàçiçîáðàæåííÿ, ïîëiíîì Ëàãðàíæà, ìåòîä ìàëî-

ãî ïàðàìåòðà, ôàêòîðiàëüíà çáiæíiñòü.


