
HoshkoB., ChernyakhivskyyV.

126 ISSN 2078�5097. Âiñí. Ëüâiâ. óí-òó. Ñåð. ïðèêë. ìàòåì. òà iíô. 2019. Âèï. 27

IÍÔÎÐÌÀÒÈÊÀ

UDC 004.42

BASIC SEMANTICS OF COMPOUND PYTHON

OPERATORS

B.Hoshko, V.Chernyakhivskyy

Ivan Franko National University of Lviv,

Universytets'ka Str., 1, Lviv, 79000, Ukraine,

e-mail: volodymyr.chernyakhivskyy@lnu.edu.ua

The semantic de�nitions of compound Python programming language operators, for
which we have expanding applications in application projects, are explained in the article.
The de�nitions are written in the basic initial form, which is primary for the study of
programming and for the construction of algorithms for data processing. On the basis
of semantic de�nitions, syntax de�nitions are formed, which form the correct subset of
the general Python syntax, and can be supplemented by extension operations without
modi�cation of the base part.

The method of operational-functional de�nition of semantics is presented, which allows
to rebuild syntax de�nitions so as to preserve the basic semantics of individual construc-
tions of the language and to minimize the length of output by grammatical de�nitions
startdef=>+"example". For this purpose we use basically three methods: reduction of
complete grammatical rules; substitution of de�nitions of non-terminals on the right side
of the syntax; adding non-strictly de�ned terminals with reference to previously de�ned
non-terminals.

Semantics models are built on the classi�cation of operations and data conversion func-
tions. Models are treated as universal algebras U(A) =< M ; Ω >, where M is a nonempty
set (quantities, memory cells, structures, operators), and Ω is a set of operations (possibly
partial) on the set M, including the signature. We de�ne semantics models in two groups:
1)models based on valid Python operations; 2)models based on Python operators and
control structures. For each group of models of algebra semantics has its own peculiarities.

Semantics models are de�ned for the following objects: numeric types, assignment,
data system, print, input; conditional expressions, conditional operator if; loop operators
while, for; try exception control operator; operator with context managers.

Key words: semantic de�nitions, Python, universal algebras, operations, data transforma-
tion functions, compound operators.

1. Introduction

The semantics of the programming language is determined by specifying the basic
functions of data processing, a set of control structures and methods of constructing
more "complex" programs based on "simple". The semantics of the programming lan-
guage must be formally de�ned, otherwise it will not be possible in the future to build
a corresponding speech processor. Today, there are two main areas for determining the
semantics of programming languages: methods of denotational semantics and methods of
operational semantics. Methods of denotational semantics are based on the correspond-
ing algebras, methods of operational semantics are based on the syntactic structures of
programs.

The syntax of the programming language de�nes a set of syntactic constructions of
the programming language that are used to notation (record) the semantic units in the
program.

c⃝ HoshkoB., ChernyakhivskyyV., 2019

HoshkoB., ChernyakhivskyyV.

ISSN 2078�5097. Âiñí. Ëüâiâ. óí-òó. Ñåð. ïðèêë. ìàòåì. òà iíô. 2019. Âèï. 27 127

2. The overview and task formulation

The means of de�ning the semantics of programming languages and formal analysis
are an integral part of the general logic of mathematics and computer science [1]. The
semantics of programming languages require di�erent ways of determining them, depend-
ing on the applications of the language, and remain an urgent problem [2]. Denotation
and operational semantics are a prerequisite for the construction of grammatical and se-
mantic processors [3], [4] for both compiled-type and interpreted-language languages, to
which Python belongs. Methods for determining and applying semantics are described,
in particular, in [4], [5]. Our article is an attempt to build the primary semantics of
compound Python operators for the purposes of learning programming and algorithm
design, in view of the signi�cant expansion of language use today.

The full de�nition of Python syntax [6] is presented as a combined list of Full Gram-
mar speci�cation parser rules, starting with the "single_input" start symbol (or another
speci�ed in [6]) and ending with the terminal characters of the language. The direct and
complete application of the rules is ine�ective for learning the language and for program-
ming. The same applies to the syntactic de�nitions of individual constructs, for which
non-terminal characters have links to other syntactic de�nitions, forming a large length
of output N in grammatical terms startdef=>+"example".

The paper describes the method of operative-functional de�nition of semantics, which
allows reconstructing syntactic de�nitions in such a way as to preserve the basic semantics
of individual language constructs and maximally reduce the length of the output of
N. For this we use mainly three techniques: the reduction of complete grammar rules;
substitution of non-terminology de�nitions; the addition of terminals, de�ned unsteady,
with reference to the previously studied material. A similar approach for the case of the
C++ language is given in [7].

We construct semantic models based on the classi�cation of operations and data
transformation functions. Models are treated as universal algebras U(A) =< M ; Ω >,
where M is a nonempty set (values, memory cells, structures, operators), and Ω is a set
of operations (possibly partial) on the set M, including the signature.

Models of semantics are de�ned by two groups: 1) models based on permissible
operations of the language Python; 2) models based on operators and Python con-
trol structures. For the �rst group of models, we construct the algebra of the form
U i
A =< ti; {opti} >, where ti � the type of Python program object, opti � de�ned op-

erations for ti. For the second group of models, we construct the algebra of the form
U i
A =< {par}si; {operatorsi : read, write} >, where {par}si � parameters of the imple-

mentation of the operator or the structure si, {operatorsi : read, write} � the function
of converting input values or states of objects (values) read into output values or write
states.

3. Semantics of compound operators and some elements

of language

3.1. Numerical types, assignment, data system, print,

input

These Python elements do not belong to compound operators. However, they are
always needed in any program, following the usual steps: input data; data processing;

HoshkoB., ChernyakhivskyyV.

128 ISSN 2078�5097. Âiñí. Ëüâiâ. óí-òó. Ñåð. ïðèêë. ìàòåì. òà iíô. 2019. Âèï. 27

output results. In addition, such elements are required to organize the application testing
procedure. We will also use them to outline the following article material.
Uass
A =< name, number, assignmentstatement; {abs(), int(), f loat(),

math.sqrt(),math.sin(),+,−, ∗, /, //,%, ∗∗} >
Uprint
A =< name, number, print_function; {print(), object_list, sep, end} >

U input
A =< name, input_function; {input(), input_line, convert_to_string, return} >
For such models we formulate syntactic de�nitions:

name ::= "first letter" "the next letter" *

number ::= "cipher" "cipher" *

assignment_statement ::= name "=" arith_expr

arith_expr ::= term (("+" | "-") term) *

term ::= factor (("*" | "/"' | "%" | "//") factor) *

factor ::= name | number | "built-in functions" | power

power ::= factor "**" factor

print_function ::= print ("object_list", sep=' ', end='\n')

input_function ::= input ([prompt])

In this de�nition, the complete list of permissible arithmetic operations was reduced,
substitutions were made to the arithmetic expression arith_expr, added non-strictly
de�ned "�rst letter terminals", "the next letter", "built-in functions", and "object_list".

Example of application:

any = int (input ('Print three digit integer:'))

hundred = any // 100; there = any // 10 % 10; one = any % 10

print (hundred, ten, one, sep = '\ n') # digits in the column

print (one * 100 + ten * 10 + hundred) # number in the reverse order

The �rst step would be prepare models and de�nitions as partial. The next step is
to add objects, operations, and options to receive the full de�nition, while retaining the
original model.

3.2. Conditional expressions, conditional operator if

U if
A =< {or_test, and_test, not_test, comparison, if, else, elif, suite};

{operatorif : if(True) → suite1, if(False) → (else suite2),
if(False) → pass, if(False) → (elif suite3)} >

Syntactic de�nitions:

comparison ::= "arith_expr" (comp_operator "arith_expr") *

comp_operator ::= "<" | ">" | "==" | ">=" | "<=" | "!="

or_test ::= and_test ("or" and_test) *

and_test ::= not_test ("and" not_test) *

not_test ::= "not" not_test | comparison

if_stmt ::= "if" comparison ":" suite

("elif" comparison ":" suite) *

["else" ":" suite]

suite ::= statement NEWLINE | (NEWLINE INDENT statement DEDENT) +

statement ::= "one_stmt" (";" "one_stmt") * [";"]

Expressions in comparisons of "comparison" have been reduced only to the arithmetic
"arith_expr" with reference to p.3.1, considering the non-strictly de�ned terminal. In

HoshkoB., ChernyakhivskyyV.

ISSN 2078�5097. Âiñí. Ëüâiâ. óí-òó. Ñåð. ïðèêë. ìàòåì. òà iíô. 2019. Âèï. 27 129

comparison comp_operator did not include operations "in" and "is", we include them
in the next step of the model. The veri�cation of the operator condition was determined
only as a comparison, except for extended conditions and lambda expressions. The set
of suit operators was rebuilt so that all internal if statements are write with the o�set to
the right, or all in the same line with if. We de�ne the "statement" with the help of a
non-strictly de�ned terminal "one_stmt", considering the operator of any other type or
the same kind as if.

Example of application � determining the number of the quarter of a plane:

if x>0 and y>0:

quarter=1; print("x>0 and y>0", "quarter=1")

elif x>0 and y<0:

quarter=4; print("x>0 and y<0", "quarter=4")

elif x<0 and y>0:

quarter=2; print("x<0 and y>0", "quarter=2")

elif x<0 and y<0:

quarter=3; print("x<0 and y<0", "quarter=3")

else: print("x=0 or/and y=0")

3.3. Operators of the cycle while, for

Uwhile
A =< {conditional_expression, or_test, and_test, not_test,

comparison, suite}; {operatorwhile : if(True) → suite,
if(False) → (complete, pass), if(False) → (else, pass),
if(break) → (complete, pass), if(continue) → (skip, testing)} >

Syntactic de�nitions:

while_stmt ::= "while" conditional_expression ":" suite

["else" " : " suite]

conditional_expression ::= comparison | or_test

Like the operator if, with reference to the "comparison", expanded conditions
and lambda expressions were excluded in the �rst step. We speci�ed the "condi-
tional_expression" of a single conditionality request only for comparison operations
"comparison" or only logical "or_test" operations without comparisons; in the general
case, "or_test" stores the inclusion of "comparison" comparisons as in paragraph 3.2

An example is whether the number p is simple:

x = p // 2 # divisors to half the value of the number p

while x> 1:

if p % x == 0: # divide remainder

print (p, 'has a divisor', x, 'is not simple')

break # go through block

else:

x - = 1 # decrease by one

else: print (p, 'number is simple')

Semantic model for:
Ufor
A =< {iterable object, parametr, in, iter(), each_item, next(), order,

suite, StopIteration}; {operatorfor : if(iterator == next) → suite,

HoshkoB., ChernyakhivskyyV.

130 ISSN 2078�5097. Âiñí. Ëüâiâ. óí-òó. Ñåð. ïðèêë. ìàòåì. òà iíô. 2019. Âèï. 27

if(break) → (complete, pass), if(continue) → (skip, testing),
if(iterator == StopIteration) → (else, pass)} >

Syntactic de�nitions for a partial model of the �rst step:

for_stmt ::= "for" exprlist "in" testlist ":" suite ["else" ":" suite]

exprlist ::= NAME

testlist ::= "compound_object" | NAME | "range(start, stop[, step])"

Non-terminal "exprlist" is de�ned as the �rst step only as a separate name NAME,
which will be the operator of the loop. The non-terminal "testlist" was built di�erently �
the non-strictly de�ned terminal "compound_object" was identi�ed, separately we made
reference to the generator of integer numbers range() as the primary form for the research
of the statement "for".

Example and equivalent semantics:

for elem in [1,"two",(True,3)]: print(elem,end="-")

1-two-(True, 3)-

it = iter([1,"two",(True,3)])

print(next(it),end="-");print(next(it),end="-");print(next(it),end="-");

print(next(it)); # most recent call last

1-two-(True, 3)- . . . most recent call last . . . StopIteration

3.4. The "try" exception control operator

U try
A =< {protected block, IndexError, V alueError, types of errors, probable problem,
try, except, finally, event registration, a spare algorithm, final operations};
{operatortry :
if(noexception) → (skip except, goto(finally and continues after try statement)),
if(exception) → (break protected block, search exception handler, goto except,
execute except block, goto finally, continues after try statement),
if(exception and no matches the exception) →

(break protected block, goto finally, continues on the invocation stack)} >
Syntactic de�nitions for a partial model of the �rst step:

try_stmt ::= "try" ":" suite

("except" ["the type of error"] ":" suite)+

["finally" ":" suite]

The �rst step of the syntax de�nitions is not to include parts of the "try" operator,
like "else" and "raise" statements. The optional "else" part can be functionally replaced
by the "�nally" part, and the "raise" statement can be viewed separately in the Simple
statements section. In the exceptions part, the (expression ["as" identifier]) def-
inition of error type and method of processing exception handlers was replaced by the
non-strictly de�ned terminal "the type of error".

Example: read a group of numbers from a text �le, convert it to a numeric form, and
save it for future reference:

line of text file 'uniontry.txt': "1 2 3 4 abc 6 7 8"

error recording the fifth number

data = open('uniontry.txt','r')

try :

HoshkoB., ChernyakhivskyyV.

ISSN 2078�5097. Âiñí. Ëüâiâ. óí-òó. Ñåð. ïðèêë. ìàòåì. òà iíô. 2019. Âèï. 27 131

group = data.readline().rstrip()

xm = [int(x) for x in group.split()] # list of numbers

except : # for all errors

xm = [0] * 10 # fix - we define 10 zeros

finally :

data.close() # final operation regardless of error

print(xm) # result: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

3.5. Operator "with" context managers

Uwith
A =< {context manager, context manager operator block,
try . . . except . . . finally usage patterns,__enter__() method,__exit__() method,
standard context manager′s};
{operatorwith :
obtain a context manager(expression) → context manager′s __exit__() is loaded
→ call __enter__() context manager′s → execute suite,
context manager′s __exit__() method is invoked} >
Syntactic de�nitions:

with_stmt ::= "with" item ":" suite

item ::= expression "as" variable

To determine the basic semantics, we have the following syntax assumptions: 1) in the
header "with" there can be only one element "item", the multiple elements are deferred
to the next steps of the semantic de�nitions of operators; 2) we always associate the
expression value of "expression" with some �xed "variable", considering it as an integer;
We defer the variable as part of the whole object to the next steps; 3) we consider binding
"expression" to a "variable" as obligatory.

Example. Scan text �le, search for lines that contain the phrase "with operator":

with open("example.txt", 'r') as mf : # file context manager

whlines = [aline.rstrip() if "with operator" in aline else None

for aline in mf]

4. Conclusion

The operational-functional method can be used to build the de�nition of the seman-
tics of other Python constructions. For each de�nition of semantics, we construct the
corresponding syntactic de�nitions, performing the �rst step of reduction, substitution
and addition of non-strictly de�ned terminals. This approach involves a certain order of
the structure of de�nitions in order to minimize the entire semantic structure.

The basic semantics of compound operators, described in the article, are used for the
construction of didactic materials for studying programming at the university, for the
testing of application programs, as well as for the basis of algorithms for data processing.

References

1. Ro�suG. Matching logic /G.Ro�su //Logical Methods in Computer Science. � 2017. � Vol. 13,
No. 4. � P. 1�61.

2. ChenX. Matching mu-Logic /X.Chen, G.Rosu //Proceedings of theThirty-Fourth Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS). � 2019. � 24�27 June 2019. �
Vancouver, Canada.

HoshkoB., ChernyakhivskyyV.

132 ISSN 2078�5097. Âiñí. Ëüâiâ. óí-òó. Ñåð. ïðèêë. ìàòåì. òà iíô. 2019. Âèï. 27

3. AhrentW. Deductive software veri�cation � the key book; from theory to practice
/W.Ahrent, B.Beckert, R.Bubel, R.H�ahnle, Ph. Schmitt, M.Ulbrich, editors // Lecture
notes in computer science. � New-York: Springer, 2016. � 10001.

4. BinsbergenaL.T. Executable component-based semantics / L.T.Binsbergena, P.D.Mosses,
C.N. Sculthorped // J Logical Algebraic Methods Program. � 2019. � No. 103. � P. 184�212.

5. �Stef�anescuA. Semantics-based program veri�ers for all languages /A.�Stef�anescu, D. Park,
S.Yuwen, Y. Li, G.Ro�su //Proceedings of the 2016 ACM SIGPLAN International Con-
ference on Object-Oriented Programming, Systems, Languages, and Applications (OOP-
SLA'16). ACM. � 2016. � Amsterdam, Netherlands 30/10-04/11/2016. � P. 74�91.

6. Python Software Foundation [US] //Python 3.7.3 documentation [Electronic resource].
Available from: https://docs.python.org/3/

7. KardashA. I. Construction of basic algebraic operational-functional models for the study
of programming of integer arithmetics /A. I.Kardash, V.V.Chernyakhivsky //Visnyk of
Cherkasy State Technological University. Series of technical sciences. � Cherkasy: Editorial
and publishing center of the ChTTU. � 2011. � No. 3. � P. 77�82.

Article: received 29.08.2019
revised 17.11.2019

printing adoption 20.11.2019

ÁÀÇÎÂÀ ÑÅÌÀÍÒÈÊÀ ÑÊËÀÄÅÍÈÕ ÎÏÅÐÀÒÎÐIÂ

ÌÎÂÈ PYTHON

Á.Ãîøêî, Â.×åðíÿõiâñüêèé

Ëüâiâñüêèé íàöiîíàëüíèé óíiâåðñèòåò iìåíi Iâàíà Ôðàíêà,

âóë. Óíiâåðñèòåñüêà, 1, Ëüâiâ, 79000,

e-mail: volodymyr.chernyakhivskyy@lnu.edu.ua

Âèêëàäåíî ñåìàíòè÷íi îçíà÷åííÿ ñêëàäåíèõ îïåðàòîðiâ ìîâè ïðîãðàìóâàííÿ Py-
thon, äëÿ ÿêî¨ ìà¹ìî ðîçøèðåííÿ çàñòîñóâàííÿ â ïðèêëàäíèõ ïðîåêòàõ. Ñåìàíòè÷-
íi îçíà÷åííÿ çàïèñàíî â áàçîâié ïî÷àòêîâié ôîðìi, ÿêà ¹ ïåðâèííîþ äëÿ âèâ÷åííÿ
ïðîãðàìóâàííÿ i äëÿ áóäîâè àëãîðèòìiâ ïðîöåñiâ îáðîáêè äàíèõ.

Íà ïiäñòàâi ñåìàíòè÷íèõ îçíà÷åíü ñêëàäåíî ñèíòàêñè÷íi îçíà÷åííÿ, ÿêi óòâîðþþòü
ïðàâèëüíó ïiäìíîæèíó çàãàëüíîãî ñèíòàêñèñó ìîâè Python, i ìîæóòü áóòè äîïîâíåíi
îïåðàöiÿìè ðîçøèðåííÿ áåç ìîäèôiêàöi¨ áàçîâî¨ ÷àñòèíè.

Âèêëàäåíî ìåòîä îïåðàöiéíî-ôóíêöiîíàëüíîãî âèçíà÷åííÿ ñåìàíòèêè, ÿêèé äà¹
çìîãó ïåðåáóäóâàòè ñèíòàêñè÷íi âèçíà÷åííÿ òàê, ùîá çáåðåãòè áàçîâó ñåìàíòèêó
îêðåìèõ êîíñòðóêöié ìîâè i ìàêñèìàëüíî ñêîðîòèòè äîâæèíó âèâåäåííÿ çà ãðàìà-
òè÷íèìè îçíà÷åííÿìè startdef=>+"example".

Äëÿ öüîãî âèêîðèñòîâó¹ìî ãîëîâíî òðè ïðèéîìè: ñêîðî÷åííÿ ïîâíèõ ãðàìàòè÷íèõ
ïðàâèë; ïiäñòàíîâêà îçíà÷åíü íåòåðìiíàëiâ â ïðàâi ÷àñòèíè ñèíòàêñè÷íîãî âèçíà÷åííÿ;
äîäàâàííÿ òåðìiíàëiâ, âèçíà÷åíèõ íåñòðîãî, ç ïîñèëàííÿì íà íåòåðìiíàëè, âèçíà÷åíi
ðàíiøå.

Ìîäåëi ñåìàíòèêè ïîáóäîâàíi íà ïiäñòàâi êëàñèôiêàöi¨ îïåðàöié i ôóíêöié ïåðå-
òâîðåííÿ äàíèõ. Ìîäåëi òðàêòó¹ìî ÿê óíiâåðñàëüíi àëãåáðè U(A) =< M ; Ω >, äå M
� äåÿêà íåïóñòà ìíîæèíà (âåëè÷èí, êîìiðîê ïàì'ÿòi, ñòðóêòóð, îïåðàòîðiâ), à Ω �
ñóêóïíiñòü îïåðàöié (ìîæëèâî ÷àñòèííèõ) íà ìíîæèíi M, âðàõîâóþ÷è ñèãíàòóðó.

Ìîäåëi ñåìàíòèêè âèçíà÷à¹ìî äâîìà ãðóïàìè: 1) ìîäåëi íà ïiäñòàâi äîïóñòèìèõ
îïåðàöié ìîâè Python; 2) ìîäåëi íà ïiäñòàâi îïåðàòîðiâ i êåðóþ÷èõ ñòðóêòóð ìîâè
Python. Äëÿ êîæíî¨ ãðóïè ìîäåëåé àëãåáðà ñåìàíòèêè ìà¹ ñâî¨ îñîáëèâîñòi.

Ìîäåëi ñåìàíòèêè âèçíà÷åíi äëÿ òàêèõ îá'¹êòiâ: ÷èñëîâi òèïè, ïðèñâî¹ííÿ, ñèñòåìà
äàíèõ, print, input; óìîâíi âèðàçè, óìîâíèé îïåðàòîð if; îïåðàòîðè öèêëó while, for;
îïåðàòîð try êîíòðîëþ âèíÿòêîâèõ ñèòóàöié; îïåðàòîð with êîíòåêñòíèõ ìåíåäæåðiâ.

Êëþ÷îâi ñëîâà: âèçíà÷åííÿ ñåìàíòèêè, Python, óíiâåðñàëüíi àëãåáðè, îïåðàöiÿ, ôóíê-
öiÿ ïåðåòâîðåííÿ äàíèõ, ñêëàäåíèé îïåðàòîð.

