Hoshko B., Chernyakhivskyy V.
126 ISSN 2078-5097. Bicu. JIbsis. yu-ty. Cep. npuksa. marem. ta indg. 2019. Bun. 27

IHPOPMATHUKA
UDC 004.42

BASIC SEMANTICS OF COMPOUND PYTHON
OPERATORS

B. Hoshko, V. Chernyakhivskyy

ITvan Franko National University of Lviv,
Universytets’ka Str., 1, Lviv, 79000, Ukraine,
e-mail: volodymyr. chernyakhivskyy@lnu. edu.ua

The semantic definitions of compound Python programming language operators, for
which we have expanding applications in application projects, are explained in the article.
The definitions are written in the basic initial form, which is primary for the study of
programming and for the construction of algorithms for data processing. On the basis
of semantic definitions, syntax definitions are formed, which form the correct subset of
the general Python syntax, and can be supplemented by extension operations without
modification of the base part.

The method of operational-functional definition of semantics is presented, which allows
to rebuild syntax definitions so as to preserve the basic semantics of individual construc-
tions of the language and to minimize the length of output by grammatical definitions
startdef=>+"example”. For this purpose we use basically three methods: reduction of
complete grammatical rules; substitution of definitions of non-terminals on the right side
of the syntax; adding non-strictly defined terminals with reference to previously defined
non-terminals.

Semantics models are built on the classification of operations and data conversion func-
tions. Models are treated as universal algebras U(A) =< M;Q >, where M is a nonempty
set (quantities, memory cells, structures, operators), and Q is a set of operations (possibly
partial) on the set M, including the signature. We define semantics models in two groups:
1) models based on valid Python operations; 2) models based on Python operators and
control structures. For each group of models of algebra semantics has its own peculiarities.

Semantics models are defined for the following objects: numeric types, assignment,
data system, print, input; conditional expressions, conditional operator if; loop operators
while, for; try exception control operator; operator with context managers.

Key words: semantic definitions, Python, universal algebras, operations, data transforma-
tion functions, compound operators.

1. INTRODUCTION

The semantics of the programming language is determined by specifying the basic
functions of data processing, a set of control structures and methods of constructing
more "complex" programs based on "simple". The semantics of the programming lan-
guage must be formally defined, otherwise it will not be possible in the future to build
a corresponding speech processor. Today, there are two main areas for determining the
semantics of programming languages: methods of denotational semantics and methods of
operational semantics. Methods of denotational semantics are based on the correspond-
ing algebras, methods of operational semantics are based on the syntactic structures of
programs.

The syntax of the programming language defines a set of syntactic constructions of
the programming language that are used to notation (record) the semantic units in the
program.

© Hoshko B., Chernyakhivskyy V., 2019

Hoshko B., Chernyakhivskyy V.
ISSN 2078-5097. Bicu. JIbBiB. yu-ry. Cep. npuksa. marem. ta ind. 2019. Bun. 27 127

2. THE OVERVIEW AND TASK FORMULATION

The means of defining the semantics of programming languages and formal analysis
are an integral part of the general logic of mathematics and computer science [1]. The
semantics of programming languages require different ways of determining them, depend-
ing on the applications of the language, and remain an urgent problem [2]. Denotation
and operational semantics are a prerequisite for the construction of grammatical and se-
mantic processors [3], [4] for both compiled-type and interpreted-language languages, to
which Python belongs. Methods for determining and applying semantics are described,
in particular, in [4], [5]. Our article is an attempt to build the primary semantics of
compound Python operators for the purposes of learning programming and algorithm
design, in view of the significant expansion of language use today.

The full definition of Python syntax [6] is presented as a combined list of Full Gram-
mar specification parser rules, starting with the "single input" start symbol (or another
specified in [6]) and ending with the terminal characters of the language. The direct and
complete application of the rules is ineffective for learning the language and for program-
ming. The same applies to the syntactic definitions of individual constructs, for which
non-terminal characters have links to other syntactic definitions, forming a large length
of output IV in grammatical terms startdef=>+"example”.

The paper describes the method of operative-functional definition of semantics, which
allows reconstructing syntactic definitions in such a way as to preserve the basic semantics
of individual language constructs and maximally reduce the length of the output of
N. For this we use mainly three techniques: the reduction of complete grammar rules;
substitution of non-terminology definitions; the addition of terminals, defined unsteady,
with reference to the previously studied material. A similar approach for the case of the
C++ language is given in [7].

We construct semantic models based on the classification of operations and data
transformation functions. Models are treated as universal algebras U(A) =< M;Q >,
where M is a nonempty set (values, memory cells, structures, operators), and £ is a set
of operations (possibly partial) on the set M, including the signature.

Models of semantics are defined by two groups: 1) models based on permissible
operations of the language Python; 2) models based on operators and Python con-
trol structures. For the first group of models, we construct the algebra of the form
Ul =< t;;{opii} >, where t; — the type of Python program object, op;; — defined op-
erations for ¢;. For the second group of models, we construct the algebra of the form
U =< {par}s; {operators; : read,write} >, where {par}s; — parameters of the imple-
mentation of the operator or the structure si, {operators; : read, write} — the function
of converting input values or states of objects (values) read into output values or write
states.

3. SEMANTICS OF COMPOUND OPERATORS AND SOME ELEMENTS
OF LANGUAGE

3.1. NUMERICAL TYPES, ASSIGNMENT, DATA SYSTEM, PRINT,
INPUT

These Python elements do not belong to compound operators. However, they are
always needed in any program, following the usual steps: input data; data processing;

Hoshko B., Chernyakhivskyy V.
128 ISSN 2078-5097. Bicu. JIbsis. yu-ty. Cep. npuksa. marem. ta indg. 2019. Bun. 27

output results. In addition, such elements are required to organize the application testing
procedure. We will also use them to outline the following article material.
US*® =< name, number, assignmentstatement; {abs(),int(), float(),
4 math.sqrt(), math.sin(), +, —, *, /, //, %, xx} >
UR™ =< name, number, print _ function; {print(), object _list, sep, end} >
U =< name, input_ function; {input(), input _line, convert _to_string, return} >
For such models we formulate syntactic definitions:

name ::= "first letter" '"the next letter" *

number ::= '"cipher" ‘'cipher" *

assignment_statement ::= name "=" arith_expr

arith_expr ::= term (("+" | "-") term) *

term ::= factor (("x" ["/ | "y | "//") factor) *
factor ::= name | number | "built-in functions" | power
power ::= factor "*x" factor

print_function ::= print ("object_list", sep=’ ’, end=’\n’)
input_function ::= dinput ([prompt])

In this definition, the complete list of permissible arithmetic operations was reduced,
substitutions were made to the arithmetic expression arith expr, added non-strictly
defined "first letter terminals", "the next letter", "built-in functions", and "object list".

Example of application:

any = int (input (’Print three digit integer:’))

hundred = any // 100; there = any // 10 % 10; one = any % 10

print (hundred, ten, one, sep = ’\ n’) # digits in the column

print (one * 100 + ten * 10 + hundred) # number in the reverse order

The first step would be prepare models and definitions as partial. The next step is
to add objects, operations, and options to receive the full definition, while retaining the
original model.

3.2. CONDITIONAL EXPRESSIONS, CONDITIONAL OPERATOR IF
Uil =< {or test,and _test,not_test,comparison,if,else,elif, suite};
{operator;y : i f(True) — suitel,if(False) — (else suite2),
if(False) — pass,if(False) — (elif suite3)} >
Syntactic definitions:

comparison ::= "arith_expr" (comp_operator "arith_expr") *
comp_operator ::= R I DY I P L I U P E L BN P
or_test ::= and_test ("or" and_test) *
and_test ::= not_test ("and" not_test) *
not_test ::= "not" not_test | comparison
if_stmt ::= "if" comparison ":" suite
("elif" comparison ":" suite) *
["else" ":" suite]
suite ::= statement NEWLINE | (NEWLINE INDENT statement DEDENT) +
statement ::= ‘"one_stmt" (";" ‘'one_stmt"™) * [";"]

Expressions in comparisons of "comparison" have been reduced only to the arithmetic
"arith _expr" with reference to p.3.1, considering the non-strictly defined terminal. In

Hoshko B., Chernyakhivskyy V.
ISSN 2078-5097. Bicu. JIbBiB. yu-ry. Cep. npuksa. marem. ta ind. 2019. Bun. 27 129

comparison comp _operator did not include operations "in" and "is", we include them

in the next step of the model. The verification of the operator condition was determined
only as a comparison, except for extended conditions and lambda expressions. The set
of suit operators was rebuilt so that all internal if statements are write with the offset to
the right, or all in the same line with if. We define the "statement" with the help of a
non-strictly defined terminal "one stmt", considering the operator of any other type or
the same kind as if.

Example of application — determining the number of the quarter of a plane:

if x>0 and y>0:

quarter=1; print("x>0 and y>0", "quarter=1")
elif x>0 and y<O:

quarter=4; print("x>0 and y<0", "quarter=4")
elif x<0 and y>0:

quarter=2; print("x<0 and y>0", "quarter=2")
elif x<0 and y<O:

quarter=3; print("x<0 and y<0", "quarter=3")
else: print("x=0 or/and y=0")

3.3. OPERATORS OF THE CYCLE WHILE, FOR

Uyhile =< {conditional _expression,or _test,and_test,not_test,
comparison, suite}; {operatorypie : 1f(True) — suite,
if(False) — (complete, pass),if(False) — (else, pass),
if(break) — (complete, pass),if(continue) — (skip,testing)} >

Syntactic definitions:

while_stmt ::= '"while" conditional_expression ":" suite
["else" " : " suite]
conditional_expression ::= comparison | or_test

Like the operator if, with reference to the "comparison", expanded conditions
and lambda expressions were excluded in the first step. We specified the "condi-
tional expression" of a single conditionality request only for comparison operations
"comparison" or only logical "or test" operations without comparisons; in the general
case, "or_test" stores the inclusion of "comparison" comparisons as in paragraph 3.2

An example is whether the number p is simple:

x =p // 2 # divisors to half the value of the number p
while x> 1:
if p % x == 0: # divide remainder
print (p, ’has a divisor’, x, ’is not simple’)
break # go through block
else:
x - = 1 # decrease by one
else: print (p, ’number is simple’)

Semantic model for:
UL =< {iterable object, parametr, in, iter(), each_item,next(), order,
suite, StopIteration}; {operator jor : i f (iterator == next) — suite,

Hoshko B., Chernyakhivskyy V.
130 ISSN 2078-5097. Bicu. JIbsis. yu-ty. Cep. npuksa. marem. ta indg. 2019. Bun. 27

if (break) — (complete, pass),if(continue) — (skip, testing),
if(iterator == StopIteration) — (else,pass)} >
Syntactic definitions for a partial model of the first step:

for_stmt ::= "for" exprlist "in" testlist ":" suite ["else" ":" suite]
exprlist ::= NAME
testlist ::= "compound_object" | NAME | "range(start, stop[, step]l)"

Non-terminal "exprlist" is defined as the first step only as a separate name NAME,
which will be the operator of the loop. The non-terminal "testlist" was built differently —
the non-strictly defined terminal "compound object" was identified, separately we made
reference to the generator of integer numbers range() as the primary form for the research
of the statement "for".

Example and equivalent semantics:

for elem in [1,"two",(True,3)]: print(elem,end="-")

1-two-(True, 3)-

it = iter([1,"two",(True,3)])

print(next(it) ,end="-");print(next (it),end="-") ;print (next(it),end="-");
print(next(it)); # most recent call last

1-two-(True, 3)- . . . most recent call last . . . StopIteration

3.4. THE "TRY" EXCEPTION CONTROL OPERATOR

UZ” =< {protected block, Index Error,ValueError,types of errors,probable problem,
try, except, finally, event registration, a spare algorithm, final operations};
{operatoryy, :
if (noexception) — (skip except, goto(finally and continues after try statement)),
if (exception) — (break protected block, search exception handler, goto except,
execute except block, goto finally, continues after try statement),
if (exception and no matches the exception) —
(break protected block, goto finally, continues on the invocation stack)} >
Syntactic definitions for a partial model of the first step:

try_stmt ::= '"try" ":" suite
("except" ["the type of error"] ":" suite)+
["finally" ":" suite]

The first step of the syntax definitions is not to include parts of the "try" operator,
like "else" and "raise" statements. The optional "else" part can be functionally replaced
by the "finally" part, and the "raise" statement can be viewed separately in the Simple
statements section. In the exceptions part, the (expression ["as" identifier]) def-
inition of error type and method of processing exception handlers was replaced by the
non-strictly defined terminal "the type of error".

Example: read a group of numbers from a text file, convert it to a numeric form, and
save it for future reference:

line of text file ’uniontry.txt’: "1 2 3 4 abc 6 7 8"
error recording the fifth number

data = open(’uniontry.txt’,’r’)

try :

Hoshko B., Chernyakhivskyy V.
ISSN 2078-5097. Bicu. JIbBiB. yu-ry. Cep. npuksa. marem. ta ind. 2019. Bun. 27 131

group = data.readline().rstrip()
xm = [int(x) for x in group.split()] # list of numbers

except : # for all errors

xm=[01] * 10 # fix - we define 10 zeros
finally :

data.close() # final operation regardless of error
print (xm) # result: [0, O, O, O, O, O, O, O, O, O]

3.5. OPERATOR "WITH" CONTEXT MANAGERS

Ux’“h =< {context manager, context manager operator block,
try...except ... finally usage patterns, _enter () method, __exit__ () method,
standard context manager’s};
{operatoryp
obtain a contexrt manager(expression) — context manager's __exit () is loaded
—call __enter () context manager's — execute suite,
context manager’s __exit () method is invoked} >
Syntactic definitions:

with_stmt ::= "with" item ":" suite
item ::= expression "as" variable

To determine the basic semantics, we have the following syntax assumptions: 1) in the
header "with" there can be only one element "item", the multiple elements are deferred
to the next steps of the semantic definitions of operators; 2) we always associate the
expression value of "expression" with some fixed "variable", considering it as an integer;
We defer the variable as part of the whole object to the next steps; 3) we consider binding
"expression" to a "variable" as obligatory.

Example. Scan text file, search for lines that contain the phrase "with operator":

with open("example.txt", ’r’) as mf : # file context manager
whlines = [aline.rstrip() if "with operator" in aline else None
for aline in mf]

4. CONCLUSION

The operational-functional method can be used to build the definition of the seman-
tics of other Python constructions. For each definition of semantics, we construct the
corresponding syntactic definitions, performing the first step of reduction, substitution
and addition of non-strictly defined terminals. This approach involves a certain order of
the structure of definitions in order to minimize the entire semantic structure.

The basic semantics of compound operators, described in the article, are used for the
construction of didactic materials for studying programming at the university, for the
testing of application programs, as well as for the basis of algorithms for data processing.

REFERENCES

1. Rosu G. Matching logic / G. Rosu // Logical Methods in Computer Science. — 2017. - Vol. 13,
No.4.- P.1-61.

2. Chen X. Matching mu-Logic / X. Chen, G. Rosu // Proceedings of theThirty-Fourth Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS).— 2019. - 24-27 June 2019. -
Vancouver, Canada.

Hoshko B., Chernyakhivskyy V.

132 ISSN 2078-5097. Bicu. JIbsis. yu-ty. Cep. npuksa. marem. ta indg. 2019. Bun. 27

. Ahrent W. Deductive software verification — the key book; from theory to practice
/ W. Ahrent, B.Beckert, R. Bubel, R. Hihnle, Ph. Schmitt, M. Ulbrich, editors //Lecture
notes in computer science. — New-York: Springer, 2016.— 10001.

. Binsbergena L. T. Executable component-based semantics / L. T. Binsbergena, P. D. Mosses,
C.N. Sculthorped //J Logical Algebraic Methods Program.— 2019.— No. 103. — P. 184-212.
. Stefanescu A. Semantics-based program verifiers for all languages / A.Stefdnescu, D. Park,
S.Yuwen, Y.Li, G.Rosu //Proceedings of the 2016 ACM SIGPLAN International Con-
ference on Object-Oriented Programming, Systems, Languages, and Applications (OOP-
SLA’16). ACM. - 2016.— Amsterdam, Netherlands 30/10-04/11/2016.— P. 74-91.

. Python Software Foundation [US] //Python 3.7.3 documentation [Electronic resource].
Available from: https://docs.python.org/3/

. Kardash A.I. Construction of basic algebraic operational-functional models for the study
of programming of integer arithmetics / A.I Kardash, V. V. Chernyakhivsky // Visnyk of
Cherkasy State Technological University. Series of technical sciences. — Cherkasy: Editorial
and publishing center of the ChTTU.—- 2011. - No. 3.— P. 77-82.

Article: received 29.08.2019
revised 17.11.2019
printing adoption 20.11.2019

BA30OBA CEMAHTUKA CKJIAJEHUX OIIEPATOPIB
MOBU PYTHON

B.Tomko, B. Yepusaxiscbkuii

JIvsiscvrull Hayionarvrul ynisepcumem iment Isana Ppanka,
eys. Ymuieepcumecwvka, 1, Jlveis, 79000,
e-mail: volodymyr. chernyakhivskyy@lnu. edu.ua

Bukia/ieHO ceMaHTHUYHI O3Ha4YEHHHA CKJIAJeHUX OIEPATOPIiB MOBHM IpOrpaMyBaHH:A Py-
thon, st sikOi Ma€MO pO3LIMPEHHS] 3aCTOCYBAHHSI B IIPUKJIAHUX [poekrax. CemaHTHY-
Hi O3HAYEHHST 3AMMCAHO B 6a30Bilt mowaTkoBilt dopMi, sKA € MEPBUHHOIO IJIsI BUBUEHHS
IpOorpaMyBaHHs i A7 OyIOBH aJTrOPUTMIB IPOIECiB 0OPOOKHU JAHUX.

Ha migcraBi ceMaHTHIHUX O3HAYEHD CKJIAEHO CHHTAKCHYIHI O3HAMEHHS, sIKi yTBOPIOIOTH
NpaBUJIbHY HiIMHOXKHUHY 3arajbHOTO CHHTaKcucy mMoBu Python, i MoXyTh 6yTH JOmOBHEHI
omnepaiiisimu po3umupentsi 6e3 momudikaiii 6a30B0OT YaCTUHH.

Bukmnaneno meron omepamniiiHO-dyHKIIOHAJIBHOTO BH3HAUYEHHsS CEMAHTUKHU, AKHI J1a€
3Mory uepeby/lyBaTu CHHTAKCHYHI BU3HAYEHHs Tak, 00 30epertu 0a30By CEMAaHTHKY
OKpeMHUX KOHCTDYKI[i# MOBH i MAKCHMAaJbHO CKODOTHTH JOBXKHHY BHBEJEHHS 32 IpDaMa-
TUYHUMHU O3HAYeHHsMU startdef—>+"ezample".

,Z[J'I?I OHOT'0 BUKOPUCTOBYEMO I'OJIOBHO TPpHU HpHﬁOMHZ CKOPOYEHHS MIOBHUX I'PAMATUYIHUAX
MPAaBWJI; MiICTAHOBKA O3HAYEHbh HETEPMIHAJIIB B IIPABi YACTUHHU CHHTAKCHIHOTO BU3HAYUEHHSI;
T0faBAaHHS TePMiHAJIB, BU3HAYEHUX HECTPOrO, 3 IOCHJAHHSM HA HETePMiHAJIHN, BU3HAYEHI
pasmire.

Mogeni cemanTuku no0ymoBani Ha mijgcrasi kiacudikanii omepamniit i dynkniit nepe-
TBOpeHHs maHuX. Mogeni TpakTyeMo K yHiBepcaabHi anrebpu U(A) =< M;Q >, qe M
— JesiKa HelyCTa MHOXKuHA (BeIMdHMH, KOMIpOK mam’sti, CTpykTyp, oumeparopis), a —
CYKyHHICTB onepaniit (MOXKJIMBO YaCTHHHEX) Ha MHOXKUHI M, BpPaXOBYIOUH CHTHATYDY.

Mopeni ceMaHTHKH BH3HAYAEMO JBOMA TrpymaMu: 1)Mozmesni Ha MmifCTaBi JOMyCTHMEHX
omepaniit moBu Python; 2)momeni ma mimcrasi omeparopis i kepyrodmx CTPyKTyp MOBH
Python. /Insa xkoxHoI rpynu Moneseit anrebpa ceMaHTUKH MAa€ CBOI OCOOJIMBOCTI.

Mopesti cemManTHKY BU3HAYEH] A1 TAKUX 00 €KTiB: YUCJIOBI THIM, IPUCBOEHHS, CHCTEMA,
IaHuX, print, input; ymoBHI Bupa3m, ymoBHHUil omeparop if; omeparopu mukiay while, for;
oneparop try KOHTPOJIIO BUHSITKOBUX CUTYallil; onepaTrop with KOHTeKCTHUX MeHe KepiB.
Knatouoe6i caosa: BU3HAUEHHS ceMaHTUKM, Python, yHiBepcanabui anrebpu, oneparis, dyHK-
Iist IepeTBOPEeHHsI JaHUX, CKJIAJeHUuN omepaTop.

