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The scheduling theory studying, in particular, minimization of the total weighted com-
pletion time, which refers to planning, organizing, and executing complex or multistep
processes of assembling, manufacturing, building, dispatching, computing, etc., possesses
both exact and heuristic approaches to the schedule computation. The computation time
of the exact schedule approach grows immensely when the number of jobs is increased o�
just a few jobs (roughly, o� 6 to 9, depending also on how jobs are divided into job parts).
Therefore, a lot of heuristics are used to �nd the approximate schedule but to obtain it much
faster. The heuristics' approximate schedule is not always executed in the exactly minimal
total weighted completion time, but the loss is commonly not so great. Moreover, when
the number of jobs is of order of hundreds, the scheduling problems become intractable
by any exact schedule approaches, and so the heuristics remain the single way to �nd a
schedule. Considering the preemptive scheduling problem by subsequent length-equal job
importance growth, there are two ways to input the job release dates and the respective
priority weights. On the one hand, the release dates can be given in ascending order; then
the respective priority weights will be a set of, generally speaking, non-decreasing values.
On the other hand, the release dates can be given in descending order; and then the re-
spective priority weights will be a set of, generally speaking, non-increasing values. Having
estimated the averaged time of obtaining the approximate schedule by both ascending and
descending orders of inputting the job release dates, the heuristic's job order is revealed to
be very signi�cant. Its signi�cance grows as the number of jobs increases. The in�uence of
the heuristic's job order also grows as the number of job parts increases. The descending
job order has the growing advantage for scheduling about 300 jobs and more. In partic-
ular, the descending job order's advantage in scheduling 100000 jobs divided in two parts
each is almost 42%. So, for total weighted completion time minimization in the preemp-
tive scheduling problem by subsequent length-equal job importance growth, the job release
dates are to be input in the descending order. However, the heuristic's job order gain in
scheduling a lesser number of jobs (a few tens and up to 100, 200, 300) remains uncertain
due to considerable �uctuations of the much shorter computation time.

Key words: scheduling theory, total weighted completion time minimization, single ma-
chine, preemption, heuristic, subsequent length-equal job importance growth, ascend-
ing/descending job order, computation time, relative advantage, heuristic's job order gain,
computational speed.

1. Total weighted completion time minimization

Minimization of the total weighted completion time refers to planning, organizing,
and executing complex or multistep processes of assembling, manufacturing, building,
dispatching, computing, etc., that is studied by the scheduling theory [1, 2]. A number
of jobs, each of which has its own importance valued as a weight, should be scheduled by
respective release dates of the jobs so that the resulting schedule would be executed (or
completed) as fast as possible. Thus, minimizing the total weighted completion time is the
main criterion [2, 3], whether they consider a single machine to process jobs or multiple
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machines. Within a class of single-machine scheduling problems, there is a subclass of
preemptive scheduling problems, wherein a job can be deliberately interrupted in favor
of another job [3].

2. Scheduling by subsequent job importance growth

When a complex system is designed in multiple steps, where every subsequent step
is executed by greater costs, a schedule for such a system can be obtained by setting
subsequent jobs to greater priority weights. Those are preemptive scheduling problems by
subsequent job importance growth. Scheduling by subsequent job importance growth is
a common task in building (or assembling) hierarchical systems/objects whose build-ups
above the basis are more complicated and expensive (see, e. g., [1, 2, 4, 5]). In particular,
it can be loosely imagined as a cone-shaped body whose apex is at the bottom.

3. Approaches to scheduling

The scheduling problems can be solved exactly by using the Boolean linear program-
ming model [6]. However, the computation time of the exact schedule approach grows
immensely when the number of jobs is increased o� just a few jobs (roughly, o� 6 to
9, depending also on how jobs are divided into job parts) [1, 2]. Therefore, a lot of
heuristics are used to �nd the approximate schedule but to obtain it much faster [1, 3, 7].
The heuristics' approximate schedule is not always executed in the exactly minimal total
weighted completion time, but the loss is commonly not so great [3, 7]. Moreover, when
the number of jobs is of order of hundreds, the scheduling problems become intractable
by any exact schedule approaches, and so the heuristics remain the single way to �nd a
schedule.

Considering the preemptive scheduling problem by subsequent job importance growth,
there are two ways to input the job release dates and the respective priority weights. On
the one hand, the release dates can be given in ascending order; then the respective prior-
ity weights will be a set of, generally speaking, non-decreasing values (some weights may
be equal). On the other hand, the release dates can be given in descending order; and
then the respective priority weights will be a set of, generally speaking, non-increasing
values.

4. Goal of article and stages to achieve it

In �nding an approximate schedule by an heuristic, the goal is to study whether the
order of inputting the job release dates results in di�erent time of computations. The
signi�cance of the di�erence, if any, should be shown. For achieving the said goal, the
four stages are to be ful�lled:

1. Considering a single machine to process jobs, to formally state the preemptive
scheduling problem by subsequent job importance growth. The schedule should have no
idle time intervals [2, 3].

2. To state a known heuristic for �nding an approximate schedule. The heuristic
should be close to a commonly best approach in approximating preemptive job schedules.

3. To estimate the averaged time of obtaining the approximate schedule by both as-
cending and descending orders of inputting the job release dates. For doing this, a model
of generating the respective scheduling problems will be designed.

4. In �nding an approximate schedule by the heuristic, to discuss and conclude on
whether signi�cant the order of inputting the job release dates is.
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If the order really matters, it would be an optimization in using the heuristic for the
subclass of the preemptive scheduling problem by subsequent job importance growth.
The expected magnitude of the computation time di�erence must be estimated along
with that.

5. The preemptive scheduling by subsequent job impor-

tance growth

The parameters of the scheduling problem are declared as follows. Let N be a number
of jobs, N ∈ N\ {1}, where job n is divided into Hn equal parts (i. e., job n has a
processing period or time Hn), has a release date rn, and a priority weight wn, n = 1, N .
So, in general,

H = [Hn]1×N ∈ NN (1)

is a vector of processing periods,

W = [wn]1×N ∈ NN (2)

is a vector of priority weights, and

R = [rn]1×N ∈ NN (3)

is a vector of release dates.
To simplify the research, components of vector of processing periods (1) will be made

identical. This condition does not violate much the generalization. Priority weights
in vector (2) are either non-decreasing for the release dates' ascending order or non-
increasing for the release dates' descending order. Formally,

wl−1 6 wl ∀ l = 2, N but ∃ l∗ ∈
{
2, N

}
such that wl∗−1 < wl∗ (4)

for the ascending order, and

wl−1 > wl ∀ l = 2, N but ∃ l∗ ∈
{
2, N

}
such that wl∗−1 > wl∗ (5)

for the descending order.
Another simpli�cation is the release dates' order. Let

R = [rn]1×N = [n]1×N (i. e., rn = n by n = 1, N) (6)

for the ascending order, and

R = [rn]1×N = [N − n+ 1]1×N (i. e., rn = N − n+ 1 by n = 1, N) (7)

for the descending order. Thus, the subsequent job importance grows. This is why the
case

Hn = 1 ∀n = 1, N (8)

is excluded from consideration, inasmuch as then the scheduling problem would be trivial
(would have a trivial solution).

Considering a single machine to process jobs, the goal is to minimize the total weighted
completion time, i. e. to schedule the jobs so that sum

N∑
n=1

wnθ (n; Hn) (9)
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would be minimal, where job n is completed after moment θ (n; Hn), which is

θ (n; Hn) ∈
{
1, T

}
(10)

by

T =

N∑
n=1

Hn. (11)

The resulting schedule is a set of job tags/numbers S = [st]1×T along the grand total

of job parts (11), where st ∈
{
1, N

}
for every t = 1, T . The grand total (11) can be

measured in time units as well.

6. The heuristic

A heuristic known to be close to a commonly best approach in approximating preemp-
tive job schedules is an online scheduling algorithm, which applies the rule of weighted
shortest remaining processing period [3]. Let

Q = [qn]1×N = H = [Hn]1×N (12)

be a starting vector containing the remaining processing periods. Later on, elements of
vector (12) will be decreased as time t progresses. Denote by S̃ = [s̃t]1×T the whole set of

jobs scheduled by the algorithm, where s̃t ∈
{
1, N

}
for every t = 1, T . It is a heuristic's

approximate schedule. A set of available jobs

A (t) =
{
i ∈

{
1, N

}
: ri 6 t and qi > 0

}
⊂

{
1, N

}
(13)

gives a set of ratios {
wi

qi

}
i∈A(t)

, (14)

whence the maximal ratio is achieved at subset

A∗ (t) = arg max
i∈A(t)

wi

qi
. (15)

If |A∗ (t)| = 1, where

A∗ (t) = {i∗} ⊂ A (t) ⊂
{
1, N

}
,

then

s̃t = i∗ by q
(obs)
i∗ = qi∗ and qi∗ = q

(obs)
i∗ − 1; (16)

otherwise, if |A∗ (t)| > 1 , then a set

A∗∗ (t) = arg max
i∗∈A∗(t)

wi∗ ⊂ A∗ (t) ⊂ A (t) (17)

is found, where

A∗∗ (t) = {i∗∗l }Ll=1 ⊂ A∗ (t) ⊂ A (t) ⊂
{
1, N

}
, (18)

whence

s̃t = i∗∗1 by q
(obs)
i∗∗1

= qi∗∗1 and qi∗∗1 = q
(obs)
i∗∗1

− 1. (19)
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Then an approximate total weighted completion time is calculated successively for every
n = 1, N using the moments at which each job is completed. If

s̃θ̃(n; hn)
= n ∀hn = 1, Hn

in a schedule S̃ = [s̃t]1×T , then job n is completed after moment θ̃ (n; Hn) ∈
{
1, T

}
.

Finally,

ρ̃ (N) =

N∑
n=1

wnθ̃ (n; Hn) (20)

is an approximately minimal total weighted completion time that corresponds to the
nearly optimal job schedule S̃ = [s̃t]1×T .

7. A model of generating the respective scheduling prob-

lems

Obviously, the minimal number of job parts is 2. The minimal number of jobs is 2
also. Besides, let

Hn = k ∀n = 1, N by k = 2, 18 and N = 2, 1000. (21)

Priority weights are generated as follows [8]:

wn = ψ (Nζ + 1) ∀n = 1, N (22)

by either (4) or (5), where ζ is a pseudorandom number drawn from the standard uniform
distribution on the open interval (0; 1), and function ψ (ξ) returns the integer part of
number ξ. Thus, the respective scheduling problem is going to be generated for each
k and N according to (21): the ascending order's problems are generated by (6) and
(22) by (4); the descending order's problems are generated by (7) and (22) by (5). Each
problem will be repeated for 100 times to ensure good enough statistical con�dence of
the results.

8. Averaged time of computations

Let τAs (k, N) be an averaged time of obtaining the heuristic's schedule by the ascend-
ing job order for de�nite k and N . The averaging is executed over those 100 repetitions.
Denote an averaged time of obtaining the heuristic's schedule by the descending job order
by τDes (k, N) likewise. Then

β (k, N) = 100 · τAs (k, N)− τDes (k, N)

τDes (k, N)
(23)

is a percentage of a relative advantage of the descending order, if value (23) is positive,
over the ascending order. Clearly, if value (23) is negative, this is a percentage of a
relative advantage of the ascending order over the descending order.

An ensemble of percentages (23) in 17 preemptive scheduling problems by subsequent
length-equal job importance growth generated according to (21) and (22) is presented
in �g. 1. Some obvious computational speed artifacts are indicated with ellipses. In
addition, as it is seen, here are a lot of artifacts for up to 100 jobs. Therefore, the
polylines in �g. 1 are shown in detail for 100 to 1000 jobs in �g. 2 within a range of 14%.
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Fig. 1. Percentages (23) by k = 2, 18 (left to right downward) versus N = 2, 1000 with
the horizontal zero level
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Fig. 2. Percentages (23) taken o� �g. 1 versus N = 100, 1000 by ignoring the artifacts
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It is also clearly seen that the heuristic's schedule by the descending job order is
obtained faster starting o� scheduling 300 jobs. The relative advantage is about 2%.
This trend is not expected to decrease by scheduling more than 1000 jobs. Nevertheless,
the ascending job order has an expected advantage by scheduling between 100 and 300
jobs, although this advantage is weaker than that of the descending job order.

The real time (in seconds) of obtaining the heuristic's schedule by the ascending/des-
cending job order is shown in �g. 3 for N ∈

{
5 · 103, 104, 105

}
by k = 2 (left column)

and for N ∈
{
5 · 103, 104, 2 · 104

}
by k = 5 (right column). These graphs totally

con�rm the mentioned trend. The advantage of the descending order increases as the
number of jobs increases. This holds as well for the greater number of job parts, al-
though then the advantage is apparently less. In particular, the descending job or-
der's advantage in scheduling 100000 jobs divided in two parts each is almost 42%.

Fig. 3. The real time (in seconds) of obtaining the heuristic's schedule along a series
of 100 repetitions

A single schedule in this case is obtained by no shorter than in two minutes, whereas the
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ascending order approach takes up to three minutes. In scheduling 20000 jobs divided
into �ve parts each, the descending job order's advantage is a little greater than that for
10000 jobs divided in two parts, but the expected computation time di�erence is about
4 seconds (8 times greater).
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ÏËÀÍÓÂÀÍÍß Ç ÏÅÐÅÌÈÊÀÍÍßÌÈ ÇI ÇÐÎÑÒÀÍÍßÌ
ÇÍÀ×ÓÙÎÑÒI ÍÀÑÒÓÏÍÈÕ ÇÀÂÄÀÍÜ ÎÄÍÀÊÎÂÎÃÎ
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Òåîðiÿ ðîçêëàäiâ, ÿêà âèâ÷à¹, çîêðåìà, ìiíiìiçàöiþ çàãàëüíîãî çâàæåíîãî ÷àñó
çàâåðøåííÿ, ùî íàëåæèòü äî ïëàíóâàííÿ, îðãàíiçàöi¨ òà âèêîíàííÿ êîìïëåêñíèõ àáî
áàãàòîåòàïíèõ ïðîöåñiâ êîìïîíóâàííÿ, âèðîáíèöòâà, áóäiâíèöòâà, äèñïåò÷åðèçàöi¨,
îá÷èñëåíü òîùî, âîëîäi¹ i òî÷íèìè, i åâðèñòè÷íèìè ïiäõîäàìè äî îá÷èñëåííÿ ðîçêëà-
äiâ. Îá÷èñëþâàëüíèé ÷àñ ïiäõîäó ç òî÷íèì ðîçêëàäîì íåïîìiðíî çðîñòà¹, êîëè
êiëüêiñòü çàâäàíü çáiëüøóþòü âiä ëèøå äåêiëüêîõ îäèíèöü (ïðèáëèçíî âiä 6 äî 9,
çàëåæíî òàêîæ âiä òîãî, ÿê çàâäàííÿ ðîçáèòi íà ÷àñòèíè). Òîìó âèêîðèñòîâóþòü
íèçêó åâðèñòèê äëÿ òîãî, ùîá çíàéòè íàáëèæåíèé ðîçêëàä é îòðèìàòè éîãî ÿêîìîãà
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øâèäøå. Íàáëèæåíèé ðîçêëàä çà åâðèñòèêàìè íå çàâæäè âèêîíó¹òüñÿ çà òî÷íî ìiíi-
ìàëüíèé çàãàëüíèé çâàæåíèé ÷àñ çàâåðøåííÿ, àëå âòðàòà çàçâè÷àé ¹ íåâåëèêîþ. Êîëè
êiëüêiñòü çàâäàíü ñòàíîâèòü ïîðÿäîê ñîòåíü, çàäà÷i ïëàíóâàííÿ ñòàþòü íåðîçâ'ÿçíèìè
çà áóäü-ÿêèìè ïiäõîäàìè äî òî÷íèõ ðîçêëàäiâ, i òîìó åâðèñòèêè çàëèøàþòüñÿ ¹äèíèì
ñïîñîáîì âèçíà÷åííÿ ðîçêëàäó. Ðîçãëÿäàþ÷è çàäà÷ó ïëàíóâàííÿ ç ïåðåìèêàííÿìè
çi çðîñòàííÿì çíà÷óùîñòi íàñòóïíèõ çàâäàíü îäíàêîâîãî îá'¹ìó, iñíó¹ äâà øëÿõè
ïîäàííÿ ìîìåíòiâ âiäïóñêó çàâäàíü i âiäïîâiäíèõ âàã ïðiîðèòåòiâ. Ç îäíîãî áîêó,
ìîìåíòè âiäïóñêó ìîæóòü áóòè ïîäàíi ó ïîðÿäêó çðîñòàííÿ; òîäi âiäïîâiäíi âàãè
ïðiîðèòåòiâ áóäóòü ìíîæèíîþ, âçàãàëi êàæó÷è, íåñïàäíèõ çíà÷åíü. Ç iíøîãî �
ìîìåíòè âiäïóñêó ìîæóòü áóòè ïîäàíi ó ïîðÿäêó ñïàäàííÿ; òîäi âæå âiäïîâiäíi âàãè
ïðiîðèòåòiâ áóäóòü ìíîæèíîþ, çàãàëîì íåçðîñòàþ÷èõ çíà÷åíü. Îöiíèâøè ñåðåäíié
÷àñ îòðèìàííÿ íàáëèæåíîãî ðîçêëàäó çà çðîñòàþ÷èì i ñïàäàþ÷èì ïîðÿäêàìè ïîäàííÿ
ìîìåíòiâ âiäïóñêó çàâäàíü, âèÿâëÿ¹òüñÿ, ùî ïîðÿäîê çàâäàíü ó âèçíà÷åíié åâðèñòèöi
âåëüìè çíà÷óùèé. Éîãî çíà÷óùiñòü çðîñòà¹ çà çðîñòàþ÷î¨ êiëüêîñòi çàâäàíü. Âïëèâ
ïîðÿäêó çàâäàíü ó âèçíà÷åíié åâðèñòèöi òàêîæ çðîñòà¹ çi çðîñòàííÿì êiëüêîñòi ÷àñòèí
çàâäàííÿ. Ñïàäàþ÷èé ïîðÿäîê çàâäàíü ìà¹ çðîñòàþ÷ó ïåðåâàãó ïðè ïëàíóâàííi
áëèçüêî 300 çàâäàíü i áiëüøå. Çîêðåìà, ïåðåâàãà ñïàäàþ÷îãî ïîðÿäêó çàâäàíü ïðè
ïëàíóâàííi 100000 çàâäàíü, êîæíå ç ÿêèõ ðîçäiëåíå íà äâi ÷àñòèíè, ñòàíîâèòü ìàéæå
42%. Îòæå, äëÿ ìiíiìiçàöi¨ çàãàëüíîãî çâàæåíîãî ÷àñó çàâåðøåííÿ ó çàäà÷i ïëàíóâàí-
íÿ ç ïåðåìèêàííÿìè çi çðîñòàííÿì çíà÷óùîñòi íàñòóïíèõ çàâäàíü îäíàêîâîãî îá'¹ìó
ìîìåíòè âiäïóñêó çàâäàíü òðåáà ïîäàâàòè ó ñïàäàþ÷îìó ïîðÿäêó. Îäíàê âèãðàø
ïîðÿäêó çàâäàíü ó âèçíà÷åíié åâðèñòèöi ïðè ïëàíóâàííi ìåíøî¨ êiëüêîñòi çàâäàíü (âiä
äåêiëüêîõ äåñÿòêiâ äî 100, 200, 300) çàëèøà¹òüñÿ íåâèçíà÷åíèì âíàñëiäîê ñóòò¹âèõ
ôëóêòóàöié çíà÷íî ìåíøîãî ÷àñó îá÷èñëåíü.

Êëþ÷îâi ñëîâà: òåîðiÿ ðîçêëàäiâ, çàãàëüíèé çâàæåíèé ÷àñ çàâåðøåííÿ, îäèí êîìï'þ-
òåð, ïåðåìèêàííÿ, åâðèñòèêà, çðîñòàííÿ çíà÷óùîñòi íàñòóïíèõ çàâäàíü îäíàêîâîãî
îá'¹ìó, çðîñòàþ÷èé/ñïàäàþ÷èé ïîðÿäîê çàâäàíü, ÷àñ îá÷èñëåíü, âiäíîñíà ïåðåâàãà,
âèãðàø ïîðÿäêó çàâäàíü ó âèçíà÷åíié åâðèñòèöi, îá÷èñëþâàëüíà øâèäêiñòü.


