
ChernyakhivskyyV.

ISSN 2078�5097. Âiñí. Ëüâiâ. óí-òó. Ñåð. ïðèêë. ìàòåì. òà iíô. 2019. Âèï. 27 147

UDC 004.02+004.021+519.17

GENERATING UNDIRECTED GRAPHS WITH A FIXED

VERTEX DEGREE FOR TESTING PURPOSES

V.Chernyakhivskyy

Ivan Franko National University of Lviv,
Universytets'ka Str., 1, Lviv, 79000, Ukraine,
e-mail: volodymyr.chernyakhivskyy@lnu.edu.ua

The analysis of problem-solving tasks and construction of graphs have been leading to

the development of new algorithms and software implementations. To verify the algorithm,

it is necessary to make test data in such a way, that all values for the test are predetermined.

The values for testing algorithms via graphs are: the number of vertices in the graph; the

vertex degree; connectivity of the graph; permissibility of multiple edges and loops; the

weight of the graph edges. If the values are known for the test graph then we can calculate

the expected results of the designed algorithm and match them with the actual ones in a

well-posed manner.

The algorithm and some elements of software implementation of generating �nite undi-

rected graphs, with such values as the number of vertices n and the degree of the vertices

k = const, which correspond to correctness of additional conditional statements, are pre-

sented in the article.

The general scheme of the algorithm is as follows. Create two lists of vertices L1 and

L2. The list L1 is initially empty; in the list L2 we have all vertices of the graph from 1 to

n. We take the �rst vertex in L2, we build all k edges to it and transfer it to the list L1.

Repeat the same for each next vertex of the L2 list, except the last one. The last vertex

L2 is just transferred to L1. The algorithm immediately builds the adjacency matrix by

modeling list operations with L1 and L2.

According to the algorithm, the adjacency matrix will always be the same for �xed

n and k when the algorithm is repeated. To obtain di�erent matrices, the rule of graph

isomorphism is used: perform the permutations of the rows and columns of the resulting

matrix.

Key words: graph, test, algorithm, isomorphism, Python.

1. Introduction

The analysis of problem-solving tasks and construction of graphs have been leading
to the development of new algorithms and software implementations. To verify the
algorithm, it is necessary to make test data in such a way, that all values for the test are
predetermined. The values for testing algorithms via graphs are: the number of vertices
in the graph; the vertex degree; connectivity of the graph; permissibility of multiple edges
and loops; the weight of the graph edges. If the values are known for the test graph then
we can calculate the expected results of the designed algorithm and match them with
the actual ones in a well-posed manner.

The algorithm and some elements of software implementation of generating �nite
undirected graphs, with such values as the number of vertices n and the degree of the
vertices k = const, which correspond to correctness of additional conditional statements,
are presented in the article.

c⃝ ChernyakhivskyyV., 2019

ChernyakhivskyyV.

148 ISSN 2078�5097. Âiñí. Ëüâiâ. óí-òó. Ñåð. ïðèêë. ìàòåì. òà iíô. 2019. Âèï. 27

2. The overview and task formulation

There are di�erent approaches to the problem of constructing graphs and their ap-
plications published in the literature. Thus, in paper [1], an algorithm for generating
nets is presented; the geometric spatial graph is the basis. The nets generator is used to
predict the crystal structure and design at the design stage. In paper [2] the problem of
generating all triangulated planar graphs is considered. The algorithm for generating a
three-connected planar graph of a given number of vertices n is described. In paper [3],
a de�ned algorithm for a given arbitrary graph G, and a positive integer k, can �nd all
the subgraphs of order k. Such results can be used for the structure of primary partial
solutions of designing and testing graph models in various subject areas. In paper [4], an
algorithm for generating random graphs is presented. The parameters are: the number
of vertices d and the total number of edges of the graph t. Such an algorithm provides a
general method of generating, which has only two speci�ed values for the characteristics
of the graph itself.

Similar methods and algorithms for the modeling of applied tasks via graphs, includ-
ing testing, remain relevant. The range of applying the results of modeling has been
expanding. Algorithms are improving by reducing the computational complexity.

The aim of the present research is to obtain a method for designing test graphs for
proof veri�cation of various methods and algorithms for problem-solving tasks via graphs.
The test graphs will be used in computational experiments, so in fact, it is necessary to
have a numerical representation of the graph, rather than a graph as a geometric image.
It is assumed that the graph is represented with adjacency matrix. Thus, the aim can be
formulated in the following way: to obtain the method for building an adjacency matrix
with speci�ed values of the graph structure.
Input:

n - number of vertices in the graph
k = const - the same degrees of all vertices
Vi in set(1, n) - vertices are numbered from 1 to n
path(Vi, Vj) = 1, i ̸= j - connected graph, there is a path between each pair of vertices
d(Vt, Vp) = d(Vp, Vt) - all edges are of equal weight or unweighted graph
d(Vp, Vp) = −1 - the graph has no loops

Output:
graph Gn = {(Vt, Vp)}, Gn ↔ (input def property), Gn = [Vtp] - obtain all the edges

of the constructed graph represented by the adjacency matrix.

Note, in many cases of the computational experiments a planar graph is optional, for
example, testing search tasks via graphs.

3. Algorithm for graph generation

The general scheme of the algorithm is as follows. Create two lists of vertices L1 and
L2. The list L1 is initially empty; in the list L2 we have all vertices of the graph from
1 to n (from 0 to n-1 according to the rules of the algorithmic language). We take the
�rst vertex in L2, we build all k edges to it and transfer it to the list L1. Repeat the
same for each next vertex of the L2 list, except the last one. The last vertex L2 is just
transferred to L1. As a result, there will be all vertices of the graph with de�nite edges
[(Vi, Vi1), (Vi, Vi2), ..., (Vi, Vik)] in the list L1.

Now we de�ne the complete and accurate algorithm for generation. The elements

ChernyakhivskyyV.

ISSN 2078�5097. Âiñí. Ëüâiâ. óí-òó. Ñåð. ïðèêë. ìàòåì. òà iíô. 2019. Âèï. 27 149

of the algorithm are written in the notation of Python [5]. The algorithm immediately
builds the adjacency matrix by modeling list operations with L1 and L2.

Step 1. Determine the values n, k of the structure of the graph, the initial zero
adjacency matrix mta and the �xed vector adj of the degree of vertices:

n = int(input('Number of vertices ='))

if n<3: raise RuntimeError("n=" + str(n) + "\ Need n>=3")

k = int(input('Specified degree of vertices ='))

if k<2:

raise RuntimeError("The degree of vertices must be not less than 2")

if k>=n: raise RuntimeError("The degree of vertices must be less than

the number of vertices")

mta = [] # basic adjacency matrix

for i in range (n): mta.append([0] * n) # zero initialization

isomta1 = [] # adjacency matrix, isomorphism, rows are permuted

for i in range(n): isomta1.append([0] * n) # zero initialization

isomta2 = [] # adjacency matrix, isomorphism, columns are permuted

for i in range(n): isomta2.append([0] *n) # zero initialization

adj = [0] * n # vector of degree of vertices:\ zero initialization

Step 2. De�ne the function of next�rstmin() search for the vertex with the least
number of constructed edges with additional search terms:

Find the first vertex after fm with the least number of edges

at the time of the search

def nextfirstmin(fm):

temp = [n+1 if i<=fm else adj[i] for i in range(n)]

return(temp.index(min(temp))) # return the number of the vertex

Let's clarify the structure of the algorithm. If it is necessary to construct edges to the
vertex V, we search the pair points among the vertices V+1, V+2, V+3 and then in
the ascending order of the number of vertices. The very �rst vertex with the minimum
number of edges at the time of the search is the result of the search. That is, we perform
a "forward search" strictly in the ascending order of number. We construct all necessary
edges for V. Vertex of V is de�nitely de�ned by its edges. If this is done, then, obviously,
the next vertex V+1 may have a pair points only among the vertices V+2, V+3, V+4
and so on.

In case all edges of the vertices are built up to fm − 1 inclusively, then the search
for fm next pair points must be performed starting with fm + 1. The temp list must
demonstrate the complete list of the number of current links for each vertex for each
step of the algorithm. In order to obtain the index of the next pair points correctly, the
previously constructed vertices till fm incl, we determine the number by n+1, which is
greater than n (according to the input it is also greater than k). Thus, the result of the
search is guaranteed only among the vertices fm+1, fm+2, fm+3 and so on, because
the degree s of each vertex at each step of the algorithm s ≤ k < n.

In Python it is presented with two lines of function next�rstmin().
In this interpretation, the part of the list of temp within [0 − fm] of the Python

indexes is the list L1, and the part of the temp within [(fm+1)− (n− 1)] is the L2 list.
Step 3. De�ne the function rib() of connection of edges of the pair of speci�ed

vertices:

ChernyakhivskyyV.

150 ISSN 2078�5097. Âiñí. Ëüâiâ. óí-òó. Ñåð. ïðèêë. ìàòåì. òà iíô. 2019. Âèï. 27

def rib(a,b): # connect with the edge of the vertex a, b

control of the multiplicity of edges

if mta[a][b]==1: print('Error-multiple edge !!', a, b)

mta[a][b]=1; mta[b][a]=1 # undirected graph

the current state of the vector of degree of the vertices

adj[a]+=1; adj[b]+=1

The function �xes the undirected edge in the adjacency matrix with the pair mta[a][b]
and mta[b][a] and performs the control of the multiplicity of the edges mta[a][b] == 1 for
debugging the algorithm. The current state of the corresponding elements of the vector
adj[] of the degrees of vertices is increased by 1.

Step 4. Detect the basic cycle of the structure of the edges of all vertices:

for a in range(n-1):

we look through all vertices in turn [0-(n-2)],

except the last one

control: how many edges are needed to be constructed

print(k-adj[a],end='')

while adj[a]<k: # construct all 'k' edges to the vertex 'a'

b=nextfirstmin(a) # next the first one after 'a'

rib(a,b) # connect with the edge

Scanning the vertices for the building of the edges is performed in ascending order
of numbers of vertices for a in range(n − 1). The vertex with least number of edges
nextfirstmin(a) is always the pair point for the adjacent edge for a at each step of the
search. At the beginning, each vertex has zero edges. That is why the very �rst vertex
without edges will be connected by the edge of the one already connected vertex. In this
way, we guarantee the connectivity of the whole graph after the construction of all edges.

Note, by the run of algorithm the last vertex n− 1 obtains automatically all needed
edges with accuracy (0;-1) depending on the parity of the total number of edges of the
graph.

An example of iteration of step 4 for the �rst three vertices at n=8, k=4 is shown in
Table 1,a and (iteration 1), Table 1,b (iteration 2), Table 1,c in (iteration 3). The result
of the complete structure for all vertices is presented in Table 1,d.

Table 1

Example of iteration at n = 8, k = 4

0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 1 0 0 1 1 1 0 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 1 1
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 1 1 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 1 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 1 0

a) iter.1 b) iter.2 c) iter.3 d) iter.n-1

ChernyakhivskyyV.

ISSN 2078�5097. Âiñí. Ëüâiâ. óí-òó. Ñåð. ïðèêë. ìàòåì. òà iíô. 2019. Âèï. 27 151

Taking into account the already constructed edges in the previous iterations, the
control number of edges that must be construct for each vertex is carried out:

print(k-adj[a],end=�)

As a result of the control at n = 8, k = 4 we get (4 3 3 2 2 1 1).
Step 5. According to the algorithm, the adjacency matrix will always be the same

for �xed n and k when the algorithm is repeated. To obtain di�erent matrices, the rule
of graph isomorphism is used: perform the permutations of the rows and columns of the
resulting matrix. To calculate the vector of permutation rearr[] we use the standard
function randint() the Python library [5] to generate random numbers:

import random

rearr=[]; k=0; c=0 # c - control of the generator (will be ~2-3 times

greater than n)

while k<n-1:

newpos = random.randint(0,n-1); c+=1

if newpos not in rearr: rearr.append(newpos); k+=1

add the last element to the vector "manually"

rearr += list(set(range(0,n)) - set(rearr))

New positions of permutation are generated for all rows (columns) except the last
one. We calculate the last position as the di�erence of sets {0, 1, ..., (n− 1)} − {rearr}.
When a new position is added, the repetition is under control (newpos not in rearr).
For example, repeated run of the algorithm for n = 8, k = 4 can provide such vectors of
permutation and meter measurements c the function call randint():

[1, 2, 3, 5, 4, 6, 0, 7] , c= 29

[4, 1, 5, 3, 0, 6, 2, 7] , c= 9

[0, 3, 1, 6, 4, 7, 5, 2] , c= 11

[2, 4, 3, 6, 5, 7, 1, 0] , c= 14

In accordance with the achieved vector of permutation the program code of the per-
mutations of the rows and columns of the matrix mta[][] in an arbitrary manner is
presented. For example:

step 1: rearrange the rows

for i in range(0,n): isomta1[rearr[i]] = mta[i][:]

step 2: rearrange the columns of the isomta1 matrix obtained in step 1

for col in range(n):

for row in range(n):

isomta2[row][rearr[col]] = isomta1[row][col]

Step 6. Save the constructed adjacency matrix as the text �le, taking into account the
permutations of the rows and columns of step 5. There are various methods of formatting
as a text �le, depending on the usage of the adjacency matrix. Python provides a lot of
formatting capabilities.

4. Some results of calculating experiments

Examples of calculations of adjacency matrices of graphs are presented in Table 2,a,
in Table 2,b, and Table 2,c. The values of the structure of the graph are indicated in the
signature tables.

ChernyakhivskyyV.

152 ISSN 2078�5097. Âiñí. Ëüâiâ. óí-òó. Ñåð. ïðèêë. ìàòåì. òà iíô. 2019. Âèï. 27

Table 2

Examples of calculations of adjacency matrices

0 0 0 0 1 1 0 0 1 0 0 1 0 0 1 1 0 1 1 1 1 0 0 1 0 0 0 1 1 0 0 0 1 1 0
0 0 1 0 0 0 0 1 1 0 1 0 1 0 1 0 0 1 1 1 1 0 0 1 1 1 0 0 0 0 1 0 0 1 0
0 1 0 1 0 0 1 0 0 0 0 1 0 1 1 1 1 0 0 1 1 1 1 0 1 0 0 0 1 1 0 0 0 0 0
0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1 1 0 0 0
1 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 1 0 1 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1
1 0 0 0 0 0 1 1 0 0 1 0 1 1 0 0 1 1 1 0 1 0 0 0 1 1 0 0 0 1 1 0 0 1 0
0 0 1 1 0 1 0 0 0 0 0 0 1 1 0 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1
0 1 0 0 0 1 0 0 0 1 1 1 0 1 1 1 1 0 1 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 1
1 1 0 0 1 0 0 0 0 0 1 1 0 1 0 1 1 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0 0 0
0 0 0 1 1 0 0 1 0 0 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 0

a) n = 10, k = 3 1 1 1 1 1 1 0 0 0 1 0 0 0 0 1 0 0 1 0 1 1 0 1 0 0

b) n = 11, k = 7 1 0 0 0 1 0 1 0 0 0 1 0 0 1
1 1 0 0 0 1 1 0 0 0 0 0 0 1
0 0 0 0 1 0 1 1 0 0 0 1 1 0

c) n = 14, k = 5

5. Conclusion

The aim of the paper is to determine the general algorithm and elements of software
implementation of the structure of the test graphs de�ned by the adjacency matrix. Test
graphs or adjacency matrices can be used for tasks that are modeled via graphs. The
obtained test matrices can be saved in a binary �le without converting them to a text
form using the Python language tools.

References

1. McColmG. Generating Geometric Graphs Using Automorphisms /G.McColm // Journal
of Graph Algorithms and Applications. � 2012. � Vol. 16, No. 2. � P. 507�541.

2. ParvezM.T. Generating All Triangulations of Plane Graphs /M.T.Parvez, Md. S.Rah-
man, S.Nakano // Journal of Graph Algorithms and Applications. � 2011. � Vol. 15, No. 3. �
P. 457�482.

3. ElbassioniK. A Polynomial Delay Algorithm for Generating Connected Induced Subgraphs
of a Given Cardinality /K.Elbassioni // Journal of Graph Algorithms and Applications. �
2015. � Vol. 19, No. 1. � P. 273�280.

4. BayatiM. A Sequential Algorithm for Generating Random Graphs /M.Bayati, J. H.Kim,
A. Saberi //Discrete Applied Mathematics. � 2010. � Vol. 58, Issue 4. � P. 860�910.

5. Python Software Foundation [US]. Python 3.7.3 documentation [Electronic resource]. Avail-
able from: https://docs.python.org/3/

Article: received 05.08.2019
revised 20.11.2019

printing adoption 20.11.2019

ChernyakhivskyyV.

ISSN 2078�5097. Âiñí. Ëüâiâ. óí-òó. Ñåð. ïðèêë. ìàòåì. òà iíô. 2019. Âèï. 27 153

ÃÅÍÅÐÓÂÀÍÍß ÒÅÑÒÎÂÈÕ ÍÅÎÐI�ÍÒÎÂÀÍÈÕ

ÃÐÀÔIÂ ÔIÊÑÎÂÀÍÎÃÎ ÑÒÅÏÅÍß ÂÅÐØÈÍ

Â.×åðíÿõiâñüêèé

Ëüâiâñüêèé íàöiîíàëüíèé óíiâåðñèòåò iìåíi Iâàíà Ôðàíêà,
âóë. Óíiâåðñèòåñüêà, 1, Ëüâiâ, 79000,

e-mail: volodymyr.chernyakhivskyy@lnu.edu.ua

Ðîçâ'ÿçóâàííÿ çàäà÷ àíàëiçó i êîíñòðóþâàííÿ ãðàôiâ ïðèâîäèòü äî áóäîâè íîâèõ

àëãîðèòìiâ i ïðîãðàìíî¨ ðåàëiçàöi¨. Äëÿ ïåðåâiðêè àëãîðèòìó ïîòðiáíî áóäóâàòè

òåñòîâi äàíi òàêîãî âèäó, ùîá ìàòè íàïåðåä çàäàíi çíà÷åííÿ ïàðàìåòðiâ òåñòiâ. Äëÿ

âèïàäêó òåñòóâàííÿ àëãîðèòìiâ íà ãðàôàõ òàêèìè ïàðàìåòðàìè ¹: êiëüêiñòü âåðøèí

ãðàôà; ñòåïåíi âåðøèí; çâ'ÿçíiñòü ãðàôà; äîïóñòèìiñòü êðàòíèõ ðåáåð i ïåòåëü; âàãà

ðåáåð. ßêùî òåñòîâèé ãðàô ìà¹ âiäîìi çíà÷åííÿ ïàðàìåòðiâ, òîäi ìîæíà îá÷èñëþâàòè

òåîðåòè÷íi ðåçóëüòàòè ïîáóäîâàíîãî àëãîðèòìó i êîðåêòíî çiñòàâëÿòè ç ðåàëüíî îòðè-

ìàíèìè.

Âèêëàäåíî àëãîðèòì i åëåìåíòè ïðîãðàìíî¨ ðåàëiçàöi¨ çàäà÷i ãåíåðóâàííÿ ñêií÷å-

íèõ íåîði¹íòîâàíèõ ãðàôiâ, ïàðàìåòðàìè ÿêèõ ¹ êiëüêiñòü âåðøèí n i ñòåïåíi âåðøèí

k = const i ÿêi âiäïîâiäàþòü äîäàòêîâèì óìîâàì êîðåêòíîñòi.

Çàãàëüíà ñõåìà àëãîðèòìó òàêà. Ñòâîðþ¹ìî äâà ñïèñêè âåðøèí L1 i L2. Ñïèñîê

L1 � ïî÷àòêîâî ïóñòèé, â ñïèñêó L2 � âñi âåðøèíè ãðàôà âiä 1 äî n. Áåðåìî

íàéïåðøó çà íîìåðîì âåðøèíó â L2, áóäó¹ìî äî íå¨ âñi k ðåáåð i ïåðåíîñèìî â ñïèñîê

L1. Ïîâòîðþ¹ìî îïèñàíó îïåðàöiþ äëÿ êîæíî¨ íàñòóïíî¨ âåðøèíè ñïèñêó L2, êðiì

îñòàííüî¨. Îñòàííþ âåðøèíó L2 ïðîñòî ïåðåíîñèìî â L1. Àëãîðèòì çðàçó áóäó¹

ìàòðèöþ ñóìiæíîñòi, ìîäåëþþ÷è îïåðàöi¨ çi ñïèñêàìè L1 i L2.

Âiäïîâiäíî äî àëãîðèòìó ìàòðèöÿ ñóìiæíîñòi çàâæäè áóäå îäíàêîâîþ äëÿ ôiê-

ñîâàíèõ n, k ïðè ïîâòîðíîìó âèêîíàííi àëãîðèòìó. Ùîá îòðèìàòè ðiçíi ìàòðèöi,

âèêîðèñòà¹ìî ïðàâèëî içîìîðôiçìó ãðàôà: âèêîíà¹ìî ïåðåñòàíîâêè ðÿäêiâ i ñòîâïöiâ

îòðèìàíî¨ ìàòðèöi.

Êëþ÷îâi ñëîâà: ãðàô, òåñò, àëãîðèòì, içîìîðôiçì, Python.

